A Practical
Introduction
to Protege

Session 1: Primitive Classes

Nick Drummond, Matthew Horridge,
Olivier Dameron, Alan Rector, Hai Wang

v

>

<

MANCHESTER
1824

Tutorial Aims

Overview (morning)

OWL Language Overview

» Language constructs

Primitive Pizzas
» Creating a class hierarchy

» Basic relations

Basic Reasoning
» Class consistency
» Your first defined class

Q&A

© 2006, The University of Manchester

MANCHESTER
1824

Overview (afternoon)

» Formal Semantics of OWL
» Harder but more fun

» Advanced Reasoning
» Defined Classes
» Using a reasoner for computing a classification

» Common Mistakes
» Q&A

© 2006, The University of Manchester 3 @

MANCHESTER

== Aims of this morning

» Make OWL (DL) more approachable
» Get you used to the tool
» Give you a taste for the afternoon session

© 2006, The University of Manchester 4 ﬁ

y
er

The Universit
of Manchest

Exposing OWL

© 2006, The University of Manchester

What is OWL?

» OWL is the Web Ontology Language

» It's part of the WIT deiieibiaish

Semantic Web framework

» It's a W3C standard

© 2006, The University of Manchester 6 ﬁ

MANCHESTER . .
OWL has explicit formal semantics

Can therefore be used to capture knowledge in a
machine interpretable way

© 2006, The University of Manchester

OWL helps us...

» Describe something, rather than just name it
» Class (BlueThing) does not mean anything
» Class (BlueThing complete

owl:Thing

restriction (hasColour someValuesFrom (Blue)))

has an agreed meaning to any program accepting
OWL semantics

o

o

© 2006, The University of Manchester ﬂ

What is the Semantic Web?

The University
of Manchester

» A vision of a computer-understandable web

» Distributed knowledge and data in reusable
form

» XML, RDF(S), OWL just part of the story

=

© 2006, The University of Manchester

y
er

What is the Semantic Web?

The Univers
of Manchest

Scientific American 2001:;

A new form of Web content
that is meaningful to computers
will unleash a revolution of new abilities

by

TiM BERNERS-LEE,
JAMES HENDLER and
ORA LASSILA

© 2006, The University of Manchester 10

OWL and the Semantic Web

» A little semantics goes a long way
» Start small
» OWL is not an everything or nothing language

» Much can be gained from using the simplest
of constructs and expanding on this later

» KISS

&

(o
© 2006, The University of Manchester 11 H

OWL and XML

» XML is a syntax
» EXtensible Markup Language
» XML describes a tree structure

» XML was designed to improve interoperability
by standardising syntax

© 2006, The University of Manchester 12 @

OWL and RDF

» Another Semantic Web language
» Resource Description Framework

» RDF describes a graph of nodes and arcs,
each normally identified by a URI

» RDF statements are triples
» subject — predicate — object
» myhouse - islocatedin - Manchester

» Semantics are limited and use is
unconstrained compared to OWL

© 2006, The University of Manchester

OWL and RDFS

» RDF Schema

» Adds the notion of classes to RDF

» Allows hierarchies of classes and properties
» Allows simple constraints on properties

» OWL has the same interpretation of some
RDFS statements (subsumption, domain and
range)

&

(o
© 2006, The University of Manchester 14 @

OWL and Frames

» 2 different modelling paradigms
» Frames is object-oriented
» OWL is based on set theory

» Both languages supported by Protege
» Native language is Frames
» Only basic import/export between them

» Differences between them big subject
» Overview talk by Hai Wang on Tuesday

(o7
© 2006, The University of Manchester 15 H

OWL and Databases

» Databases are about how data is stored
» OWL is for describing domain knowledge

» Triple stores are databases optimised for
storing RDF/OWL statements

© 2006, The University of Manchester

» Databases are closed world, whereas OWL
is open world (more about this this afternoon)

!

OWL comes in 3 Flavours

y
er

The Univers
of Manchest

» Lite - partially restricted to aid
learning curve

» DL = Description Logic
Description Logics are a fragment of
First Order Logic (FOL) that are
decidable - this allows us to use DL
reasoners (more later)

» Full
unrestricted use of OWL constructs,
but cannot perform DL reasoning

© 2006, The University of Manchester 17

» OWL is often thought of as an extension to
RDF which is not strictly true

» OWL is a syntax independent language that
has several common representations

» Many tools try to completely abstract away
from the syntax

© 2006, The University of Manchester 18 @

OWL Syntax: abstract syntax

» One of the clearer human-readable syntaxes

Class (SpicyPizza complete
annotation (rdfs:label "PizzaTemperada"(@pt)
annotation (rdfs:comment "Any pizza that has a spicy topping
is a SpicyPizza"@en)
Pizza

restriction (hasTopping someValuesFrom (SpicyTopping))

© 2006, The University of Manchester

OWL Syntax: N3

» Recommended for human-readable fragments

default:SpicyPizza
a owl:Class ;

rdfs:comment "Any pizza that has a spicy topping is a
SpicyPizza"@en ;
rdfs:label "PizzaTemperada"@pt ;
owl:equivalentClass
[@ owl:Class ;
owl:intersectionOf (default:Pizza [a owl:Restriction ;
owl:onProperty default:hasTopping ;
owl:someValuesFrom default:SpicyTopping

1)

© 2006, The University of Manchester

OWL Syntax: RDF/XML

» Recommended for serialisation

<owl:Class rdf:ID="SpicyPizza">
<rdfs:label xml:lang="pt">PizzaTemperada</rdfs:label>

<rdfs:comment xml:lang="en">Any pizza that has a spicy topping is a SpicyPizza</
rdfs:comment>

<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Pizza"/>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#hasTopping"/>
</owl:onProperty>
<owl:someValuesFrom rdf:resource="#SpicyTopping"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

© 2006, The University of Manchester

B 1o01s “Hiding the Syntax”

owl: Thing l

Y DomainConcept
MECESSARY & SUFFICIENT
Country .
i Pizza
leeCream L =
v Pizza hasCourtryOfOrigin has Raly
CheeseyPizza _ _ NECESSARY
InterestingPizza hasBase only ThinAndCrispyBase
MeatyPizza INHERITED
» O NamedPiz=a hasBase some PizzaBase [from Pizzal]

'V

Mon'/egetarianPizza
RealtalianFizza
SpicyPizza

SpicyPizzaEquivalent } I n th e too I S , yO u a re m O re

YVegetarianPizza

b likely to find OWL looking

S more like a tree of classes

v FishTopping 2 - =
AnchoviesTopping } And thel r deSC” ptlons
MixedSeafood Topping
PrawnsTopping

> Frut Topping

> HerbSpiceTopping

> MeatTopping

© 2006, The University of Manchester

e OWL Constructs Overview

() Class (concept)

< Individual (instance)

arrow = relationship
label = Property

© 2006, The University of Manchester

OWL Constructs: Classes

Eg Mammal, Tree, Person, Building, Fluid
Classes are sets of Individuals

7 (13 7 (13

aka “Type”, “Concept”, “Category”, “Kind”

Membership of a Class is dependent on its logical
description, not its name

Classes do not have to be named — they can be
logical expressions — eg things that have colour Blue

A Class should be described such that it is possible
for it to contain Individuals (unless the intention is to
represent the empty class)

© 2006, The University of Manchester 24 @

OWL Constructs: Individuals

» Eg me, you, this tutorial, this room
» Individuals are the objects in the domain
» aka “Instance”, “Object”

» Individuals may be (and are likely to be) a member of
multiple Classes

© 2006, The University of Manchester 25 @

OWL Constructs: Properties

» Object Properties are used to relate Individuals
» Datatype Properties relate Individuals to data values

» We generally state that “Individuals are related along
a given property”
» Relationships in OWL are binary and can be
represented in triples:
» subject — predicate — object

» nick — worksWith — matthew

» Eg hasPart, isinhabitedBy, isNextTo, occursBefore

© 2006, The University of Manchester @

MANCHESTER

= A note on naming

» Named things (classes, properties and individuals)
have unique identifiers

» In Semantic Web languages these are URIs
» Something with the same URI is the same object

» This is so we can refer to things in someone else’s
ontology

» Full URIs are hidden in most tools:
http://www.co-ode.org/ontologies/pizza/2006/07/18/pizza.owl#PizzaTopping
IS a bit harder to read than:
PizzaTopping

» URIs do not have to be URLs

© 2006, The University of Manchester

!

What can be said in OWL?

» “All pizzas are a kind of food”
» “No kinds of meat are vegetables”

» “All pizzas must have only one base but at
least one topping”

» “Ingredients must be some kind of food”

» “Any pizza that has no meat or fish on it must
be vegetarian”

» “Interesting pizzas have at least 4 toppings”

» “Spicy pizzas are pizzas that have at least ..,
one ingredient that is spicy” H

© 2006, The University of Manchester

y
er

The Universit
of Manchest

The Pizza Ontology

© 2006, The University of Manchester 29

» Pizzas have been used in Manchester
tutorials for years

© 2006, The University of Manchester

MANCHESTER
1824

Pizzas...

» Tutorial developed by BioHealth
Informatics Group in Manchester
(in alphabetical order)
Mike Bada, Sean Bechhofer, Carole
Goble, Matthew Horridge, Ian Horrocks,
Alan Rector, Jeremy Rogers, Robert
Stevens, Chris Wroe

© 2006, The University of Manchester

Pizzas...

The University
of Manchester

» are fun

» are internationally known
» are highly compositional
» are limited in scope

» are fairly uncontroversial

» Although arguments still break out over
representation

» ARGUING IS NOT BAD!

© 2006, The University of Manchester

You are the Expert

» Most often it is not the domain expert that
formalises their knowledge

» Because of the complexity of the modelling
task it is normally a specialist “knowledge
engineer’

Hopefully, as tools get easier to use, this will change

» Having access to experts is critical for most
domains

» Luckily, we are all experts in Pizzas, so we
just need some material to verify our
Knowledge...

© 2006, The University of Manchester

Reference Materials

» Having references to validate decisions, and
act as provenance can be useful for
maintaining an ontology

» Mistakes, omissions and intentions can be
more easily traced if a reference can be made
» When building, we highly recommend documenting

your model as you go — keeping provenance
information is a good way of doing this

» We have pizza menus available for inspiration

o

-..*..,-r""r

© 2006, The University of Manchester H

Our Ontology

y
er

The Univers
of Manchest

» Some things get built just to impress

&
=

s a

e

» Ontologies are not just there to look pretty
» Have an application in mind before starting

© 2006, The University of Manchester

Demo Ontology

Our Pizza Ontology is available from:
www.co-ode.org/ontologies/pizza/

8086 OWLDoc |
| 4 | | 1 | ‘ s | 4 http: f jwww.co-ode.org/ontologies pizza /200607 18 /owldoc/ ~ Q- little semantics long way

[0 AJAX Tutorial Grokking the GIMP Apple (8) Flickr (539)v CO-ODEv Photography ¥ Stuff (50)v wwwv usefulv web2.0v postto delicio.us

2 9th International Protég... = OWLDoc |

Contents Ontology

“An example ontolegy that contains all constructs required for the various versions of the Pizza Tutorial run by Manchester University (see
Ontology http:/ fwwaw.co-ode.org/resources/tutorials /)" [lang: en]

All Resources
All Classes Annotations
All Object Properties
All Datatype Properties
All Annotation Properties 4 protege:defauliLanguage en
Individuals b

Al

| Resources
Namespaces

America
American
Americankot Default Namespace
AnchoviesTopping
ArtichokeTopping
AsparagusTopping
Lajun
CajunSpiceTopping
CaperTopping
Capricciosa xsd http: [fwweerw3 ora/2001/XML Schema#
Caprina
LCheeseTopping xsp http: / fwew.owl-ontolegies.com /2005 /0807 [xsp.owlé o
CheeseyPizza
CheeseyVegetableTopping dc
ChickenTopping
Country
DeepPanBase
DomainConcept
England
Fiorentina
FishTopsing rdf http:/ /www.w3.0rq/1999/02 /22 -rdf -syntax-ns#

http:/ fwww.co -ode.org fontologies/pizza/2006/07 {18/ pizza.owl#

http: [/purl.org/dc felements 1.1}

ht protege.stanford.edu/plugins fowl/protege#

rdfs http:/ fwwew.w3.0rg/2000/01 /rdf-schema#

Food
FourCheesesTopping daml http: [/wwer.daml.org/2001/03 /daml +oil#
. v =)

[

© 2006, The University of Manchester

36

MANCHESTER

“® Classes vs Instances

» You may note that the ontology consists
almost completely of Classes

» Ontologies are about knowledge, so we only

use individuals when necessary to describe a
class

» Be careful adding Individuals to your ontology
as they can restrict its reusability

» eg you cannot create a new kind of Cheese if
Cheese is an individual

© 2006, The University of Manchester 37 @

ity

The Universit
of Manchester

Our Application

806

Pizza Finder

The Manchester Pizza Finder

rIncluded toppings:

v & Toppings

> 4 SpicyTopping
> 4 MeatTopping
v 42 DairyTopping

b & CheeseTopping

& EggTopping

> & VegetableTopping
» 4 SauceTopping
> 4 FruitTopping .
> & NutTopping rExcluded toppings:
> 4B HerbSpiceTopping
> & FishTopping (" Add) Rem

Add Rem

& DairyTopping

(_ Get Pizzas '

www.co-ode.org/downloads/pizzafinder/

© 2006, The University of Manchester

Pizza Finder Architecture

y
er

The Univers
of Manchest

© 2006, The University of Manchester

y
er

The Universit
of Manchest

606

Pizza Finder Architecture

Pizza Finder

v & Toppings
> & spicyTopping
> & MeatTopping
»

Included toppings:

ve

» & CheeseTopping
& EqgTopping

» & vegetableTopping

» & SauceTopping

» & FruitTopping

» & NutTopping

> & HerbSpiceTopping

» & FishTopping

& DairyTopping

Interface

" -Excluded toppings:

© 2006, The University of Manchester

Plug a Pizza Ontology

» The PizzaFinder application has been
developed so that you can create your own
pizza ontology and plug it in to see it in action

» At the end of the day, let us know if you want
to try this

© 2006, The University of Manchester 41 @

Protégé-OWL = Protégé + OWL

» core is based on Frames (object oriented)
modelling

» has an open architecture that allows other
modelling languages to be built on top

» supports development of plugins to allow
backend / interface extensions

» supports OWL through the Protege-OWL
plugin

So let’s have a look... °,

© 2006, The University of Manchester 43 @

y
er

The Universit
of Manchest

8666

Protege-OWL

pizza Protégé 3.2 beta (file:/Users/drummond/Sites/co-ode/ontologies/pizza/2006/07/18/pizza.pprj, OWL / RDF Files)

File Edit Project OWL Code Tools Window Help

CEEHEEkE] ¢ s FEEE>

ﬁpmtégé

Foi

Asserted Hierarchy

(7 OwLClasses | m Properties
SUBCLASS EXPLORER |

r Project: @ pizza

=[#[e]

= Forms

@ Individuals @ Metadata (pizza.owl) |

CLASS EDITOR
For Class: @ Caprina

[Cl] ofm|[E]

(instance of owl:Class)

& |=lE T
[Inferred View

[Annotations

v

owl:Thing
@ DomainConcept
© Country
v & Food
@ IceCream
v O Pizza
() CheeseyPizza
© InterestingPizza
© MeatyPizza
v () NamedPizza
@ American
@ AmericanHot
® Cajun
@ Capricciosa

@ Fiorentina
® FourSeasons
@ FrutiDiMare
@ Giardiniera
@ LaReine

) Margherita
@ Mushroom
@ Napoletana
@ Parmense
@ PolloAdAstra
@ PrinceCarlo
) QuattroFormaggi
@ Rosa

® siciliana

Property
3 rdfs:comment

= rdfs:label Caprina

G Y

Value

Lang

pt

Asserted Conditions

@ NamedPizza

B

€) hasTopping some MozzarellaTepping
€) hasTopping some TomatoTopping

hasBase some PizzaBase

CIDEED

€) hasTopping some SundriedTomatoTopping
) hasTopping some GoatsCheeseTopping

£ hasTopping only (GoatsCheeseTopping or MozzarellaTopping or Sundried TomatoTopping or TomatoTopping)

[from Pizza]

@D Disjoints

© LaReine

© Rosa

@ Napoletana
@ Margherita
® Mushroom
) FourSeasons

B[R

@ Giardiniera

! [2]=][e]

~
a
v

® Logic View) Properties View

© 2006, The University of Manchester

Loading OWL files

806
v

Create New Project

™! Create from Existing Sources

Protégé Database

OWL / RDF Database
OWL / RDF Files
RDF Files

» If you only have an OWL
file:
- File — New Project
- Select OWL Files as the type
- Tick Create from existing sources
- Next to select the .owl file

» If you've got a valid project file:
- File — Open Project
- select the .pprj file

© 2006, The University of Manchester

Protégé Files (.pont and .pins)

Experimental XML File (.xml)

{ﬂext > 3 : (" Cancel)

Saving OWL Files

e OWL / RDF Files

JUsers/drummond/Sites fco-ode/ontologies/pizza/2006/07/18/pizza.pprj

» Select File — Save Project As =
A dialog (as shown) will pop up iz

RDF /XML-ABBREV 9

J (61,4 Cancel

» Select a file directly by clicking the button on the top right
You will notice that 2 files are created
.pprj — the project file
this just stores information about the GUI
and the workspace

.owl — the OWL file

this is where your ontology is stored in
RDF/OWL format

© 2006, The University of Manchester

Protéege-OWL Tabs

f OWLClasses | M Properties = Forms 4 Individuals & Metadata (pizza.owl)

» OWLClasses - class hierarchy and definitions

» Properties - property hierarchies and definitions

» Forms - edit forms for instances/metaclasses
Individuals - create and populate individuals
Metadata - ontology management and annotation

© 2006, The University of Manchester 47 ﬁ

w v

ity
er

The Universit
of Manchest

D OWL Classes Tab
Class annotations (for class

Asserted Class hierarchy Class name metadata and documentation)

pizza Protégé 3.2 beta (file:/Users/drummond/Sites/co-ode/ontologies/pizza/2006/07/18/pizza.ppfll, OWL / RDF Files)

o]
ElEERE <{\protégé
! OWLClasses | m Propeniesr: Forms 4 Individuals ® Metadata (pizzl:M} !

NEEE SRR

F T =|E T
For Project: @ §zza For Class Caprina (instance of owl:Class) " Inferred View
Asserted Hierar ‘<>|t¢|j ?l °IJTT H J Annotations
owl:Thing T« Property Value Lang
v @ DomainConce jt | rdfs:comment
Country \ rdfs:label Caprina pt
v © Food |
IceCrea 1
v O Pizza |
CheeseyPizza | — .
InterestingPizza | DlSJOI ntS
MeatyPizza]
v @ NamedPizza | S 3 R 'd t
P | [6]e e Asserted Conditions wiage
AmericanHot l e
Cajun | NamedPizza
Capricciosa {[™ © hasTopping only (GoatsCheeseTopping or MozzarellaTopping or Sundried TomatoTopping or TomatoTopping)
Caprina] hasTopping some MozzarellaTopping

Fiorentina | =) hasTopping some TomatoTopping
| hasTopping some SundriedTematoTopping

FourSefasons | °) hasTopping some GoatsCheeseTopping
FruttiDiMare L
Giardiniera sBase some PizzaBase
LaReine
Margherita
Mushroom
Napoletana f 4’- R
Parmense LaReine
PolloAdAstra Rosa
PrinceCarlg, Napoletana
QuattroFgfmaggi Margherita
Mushroom
4 FourSeasons 4
X Giardiniera v
| K I =| G & | B ‘ @ Logic View () Properties View

Conditions Widget
Class-specific tools (find usage etc)

© 2006, The University of Manchester

y
er

Building a Class Hierarchy

The Universit
of Manchest

© 2006, The University of Manchester

49

D Subsumption

© 2006, The University of Manchester

50

MANCHESTER

= What is Subsumption?

bh

» Superclass/subclass relationship, “isa

» All members of a subclass are members of its
superclasses

nl: Thing: superclass of all OWL Classes

» Food subsumes Pizza
»Food is a superclass of Pizza
» Pizza is a subclass of Food

» All members of Pizza are also
members of Food

» Everything is a member of
owl:Thing

© 2006, The University of Manchester

MANCHESTER

== Class Hierarchy

23

]

- » Subclass (Subsumption)

\ hierarchy

» Structure as asserted by the

; -

ontology engineer
» owl:Thing is the root class
» Primitive class
» Defined class

o — » Find
%edﬁzza \ "
) Superclass hierarchy A

© 2006, The University of Manchester ﬁ

MANCHESTER

— Create a Class Hierarchy

® pizza

b 0 PizzaTopping

v =]

ro]
]

» Create the hierarchy shown

» new subclass of selected

» new sibling of selected

» You can move classes around

with drag and drop

» You can delete classes if
needed

© 2006, The University of Manchester

MANCHESTER

— Create a Class Hierarchy

» Create subclasses of PizzaTopping

» Think of some abstract classes to categorise
your toppings

» Include at least the following 4:

» MeatTopping

» CheeseTopping

» MozzarellaTopping
» TomatoTopping

» More examples:

l |

© 2006, The University of Manchester

MANCHESTER

— Create a Class Hierarchy

» Create a MeatyVegetableTopping

» To add multiple superclasses to a class
» first create the class

» then use the conditions widget to add a new
superclass

» make sure “Necessary” is highlighted

> sele\c(t an existing class to add \
‘ R @

MeatTopping
VegetableTopping

© 2006, The University of Manchester

MANCHESTER

== Create a Class Hierarchy

» You will notice that we use naming
conventions for our ontology entities

» Typically, we use CamelNotation with a
starting capital for Classes

» Use whatever conventions you like

» It is helpful to be consistent — especially when
trying to find things in your ontology

&

(o
© 2006, The University of Manchester @

What is a
MeatyVegetableTopping?

» Does it make sense?
» Can we check for mistakes like this?

» If we have a decent model, we can use a
reasoner

» This is one of the main advantages of using a
logic-based formalism such as OWL-DL

&

(o7
© 2006, The University of Manchester 57 @

Checking our Model

» We will explain the reasoner later
» Currently it shows us nothing
» We have something missing from the model

© 2006, The University of Manchester 58 ﬁ

y
er

The Universit
of Manchest

Disjoints

© 2006, The University of Manchester 59

Regardless of where they exist in the hierarchy,
OWL assumes that classes may overlap

MeatTopping VegetableTopping

By default, an individual could be both a MeatTopping and a
VegetableTopping at the same time

© 2006, The University of Manchester

Stating that 2 classes are disjoint means

Nothing can be both a MeatTopping and a VegetableTopping at
the same time

MeatTopping akleTopping

MeatTopping can never be a subclass of VegetableTopping

(and vice-versa)
This can help us find errors ¢ o

© 2006, The University of Manchester

» Disjoints are inherited down the subsumption
hierarchy

Pizza PizzaTopping

» Something that is a TomatoTopping cannot
be a Pizza because its superclass,
PizzaTopping, is disjoint from Pizza

© 2006, The University of Manchester

ClassesTab: Disjoints Widget

y
er

The Univers
of Manchest

Add siblings as disjoint

Add new disjoint Remove disjoint siblings

MNutTopping
SauceTopping
CheeseTopping
VegetableTopping
HerbspiceTopping
FishTopping
MeatTopping

List of disjoint classes

© 2006, The University of Manchester

Add Disjoints

» At each level in the ontology decide if the
classes should be disjoint

» Use “Add all siblings™ and choose “mutually”
from the dialog

» You should now be able to select every class
and see its siblings in the disjoints widget (if it
has any)

& 7) Add siblings to disjoints

%) Mutually between all siblings

) Only between this class and its siblings

W OK Cancel H
© 2006, The University of Manchester

Checking disjoints

» Now that we've asserted some disjoints we
have enough to start checking the consistency

of our model
» Time for some magic...

© 2006, The University of Manchester 65 ﬁ

Reasoners and Inference

y
er

The Univers
of Manchest

© 2006, The University of Manchester

MANCHESTER
1824

Reasoners and Inference

—)

Reasoner:
A clever (probably magic) black box designed by clever people
Best to let them worry about how they work

© 2006, The University of Manchester

-
L.}

MANCHESTER
1824

Reasoners and Inference:
Basics

classifiers

» Reasoners can be used at runtime In
applications as a querying mechanism (esp
useful for smaller ontologies)

» We will use one during development as an
ontology “compiler”

© 2006, The University of Manchester

» Reasoners are used to infer information that
IS not explicitly contained within the ontology

» You may also hear them being referred to as

MANCHESTER
1824

Reasoners and Inference:
Services

» Standard reasoner services are:
» Consistency Checking
» Subsumption Checking
» Equivalence Checking
» Instantiation Checking

© 2006, The University of Manchester 69 @

MANCHESTER

== Reasoners and Protégé

» Protegée-OWL supports the use of reasoners
implementing the DIG interface

» Protegé-OWL can connect to reasoners that
provide an http:// connection

FaCT++ Pellet

KAON2

© 2006, The University of Manchester

o

o

%

MANCHESTER

== Connecting to a reasoner

® 00 Terminal — java — 80x24

Last login: Thu Jul 28 15:24:45 on tivpZ
AdpplicationsReqzoners pel let-1.3/pel let-dig.command ; exit

Welcome to Darwin!

nick—drummonds-computer :~ drummond$ Aapplications/Reazoners/pel let-1.3/pel let—di
g.command ; exit

PelletDIGSelver Version night ly-build-28868719 {July 19 2886
Port: G851

» Run a reasoner locally (or on a server)
» Note the address
» local typically http://localhost:<port_number>

[

© 2006, The University of Manchester 71 ﬁ

MANCHESTER

== Connecting a Reasoner

» In Protégeé menu, go to:
OWL — Preferences

» Set the reasoner URL to match

ee OWL Preferences

[Ceneral [Visibility Datatypes Searching

User Interface Features
Ei Drag and Drop
W Constraint checking (red borders) at edit time

1 Allow the creation of external resources (untyped URIs)

rReasoning

http://localhost:8081

© 2006, The University of Manchester

ity

The Universit
of Manchester

r ||:f

D Accessing the Reasoner

Classify taxonomy
(and check consistency)

Just check consistency
(for efficiency)

Compute inferred types
(for individuals)

806 Connected to Pellet nightly-build-20060719

Finished: Classification complete

* TIme to update reasoner = U.285 seconds
Time to synchronize = 0.413 seconds

¥ # Check concept consistency
Time to build query = 0.0020 seconds

* Time to send and receive from reasoner = 0.544 seconds

¥ @ Inconsistent concepts

@ CheeseyVegetableTopping is |nc0n5|stem|
[@ MeatyVegetable is inconsistent]

Time to update Protege-OWL = 0.026 seconds

¥ # Compute inferred hierarchy

Time to build guery = 0.0010 seconds

» Time to query reasoner = 1.106 seconds

» Time to update Protege-OWL = 0.047 seconds

¥ # Compute equivalent classes
Time to build query = 0.0060 seconds
Time to query reasoner = (0.027 seconds
Time to update Protege-OWL = 0.0080 seconds
» Total time: 2.302 seconds

© 2006, The University of Manchester

4 r fpP—_———————————————)

Cancel [OK

[2 PizzaBase
v PizzaTopping
> FishTopping
v MeatTopping
ChickenTopping
> HamTopping
HotspicedBeefTopping
@ MearyVegetable
PeperoniSausage Topping
SpicyTopping
> VegetarianTopping

]
& pizza
=| B8
owl:Thing
Y DomainConcept
v Food
| Pizza

Reasoning about our Pizzas

» When the reasoner has
finished, you will see the
inferred hierarchy

» Inferences are reported in the
reasoner dialog and in a
separate results window

» Inconsistent classes turn red
» moved classes turn blue
» close this window

© 2006, The University of Manchester 74 ﬁ

Why is MeatyVegetableTopping
Inconsistent?

» MeatyVegetableTopping is a subclass of two
classes we have stated are disjoint

» The disjoint means nothing can be a MeatTopping
and a VegetableTopping at the same time

» This means that MeatyVegetableTopping can
never contain any individuals

» The class is therefore inconsistent
» This is what we expect!

» It can be useful to create “probe” classes we
expect to be inconsistent to “test” your model

© 2006, The University of Manchester 75 H

» You might have several inconsistent classes
with multiple asserted parents

» We call this a tangle

» As we have seen, a class cannot have 2
disjoint parents — it will be inconsistent

» Removing disjoints between multiple parents
by hand is tricky

» We will later show you some better ways to
manage your tangle

© 2006, The University of Manchester

o
-‘_*,,«:""r

C

D What have we got?

» We've created a tangled graph of mostly
disjoint classes

Pizza

PizzaTopping

© 2006, The University of Manchester

D What have we got?

» Although this could be very useful, its not
massively exciting is it?

Pizza

PizzaTopping

© 2006, The University of Manchester

MANCHESTER
1824

What have we got?

» Apart from “is kind of” (subsumption) and “is
not kind of” (disjoint), we currently don’'t have
any other information of interest

Pizza

PizzaTopping

© 2006, The University of Manchester

D What have we got?

» We want to say more about Pizzas
» eg All Pizzas must have a PizzaBase

Pizza

PizzaTopping

© 2006, The University of Manchester

1915aydueW Jo
Kyisianun 3y L

81

© 2006, The University of Manchester

Relationships in OWL

» In OWL-DL, relationships can only be formed
between Individuals or between an
Individual and a data value

(In OWL-Full, Classes can be related, but this cannot be reasoned with)

» Relationships are formed along Properties

» We can restrict how these Properties are
used:
» Globally — by stating things about the Property itself
» Or locally — by restricting their use for a given Class

© 2006, The University of Manchester

I OWL Properties

iIsFromSpecies

iIsCoveredWith

¢ o

—

© 2006, The University of Manchester

\

hasLimbs

hasCuteness

@
83

MANCHESTER

“*“ Property Browser

o > | ¥ ODbject Property — relate
m et prone ikt Individuals
S e » Datatype Property — relate
e Individuals to data
(int, string, float etc)
» Annotation Property — for
attaching metadata to
classes, individuals or
T properties
i oo | » Note that Properties can be ‘2

in a hierarchy ﬁ

Subproperties

» What does subproperty mean?

»isChildOf
pisDaughterOf ischidor
- N
7 d N
o isDaughterOf ¥<>
Kirsty Julie

» You cannot mix property types in the tree
ie Object properties cannot be subproperties
of Datatype properties and vice-versa 2

(o7
© 2006, The University of Manchester 85 H

MANCHESTER

“*“ Property Features

» There are many other things we can say
about properties

» These are covered in the afternoon

Pizza i PizzaTopping =) Functianal

Inverse Functional

Symmetric

I ENE

Transitive

[isToppingOf

© 2006, The University of Manchester

86@

Creating Object Properties

» Switch to the properties
Tab

» Make sure the object
(=) property hierarchy is
E ® showing

¥ M hasingredient

f[)bject | Datatype Annotation — p |

I hasTopping

M hasBase } Create the property
hierarchy shown

» We will normally use the
subproperties and infer
the superproperties

© 2006, The University of Manchester 87 @

MANCHESTER

== Using Properties

» We now have some properties we want to use
to describe Pizzas

» We can just use properties directly to relate
individual pizzas

» But, we're not creating individuals

» Instead, we are going to make statements
about all members of the Pizza Class

&

(o7
© 2006, The University of Manchester 88 @

MANCHESTER

= Using Properties with Classes

» To do this, we must go back to the Pizza class
and add some further information

» This comes in the form of Restrictions
» We create Restrictions in the Conditions
widget

» Conditions can be any kind of Class — you
have already added Named superclasses in
the Conditions Widget. Restrictions are a
type of Anonymous Class

© 2006, The University of Manchester 89 H

y
er

Conditions Widget

The Univers
of Manchest

Conditions asserted by the ontology engineer

Add different types of condition

T o
k]

Pizza
hasCountryOfQOrigin has Italy

hasBAse only ThinAndCrispyBase [E |
hagBase some PizzaBase from P LL
Definition e
Description
of the class - . :
(later) of the class Conditions inherited from superclasses

© 2006, The University of Manchester

Conditions Widget

Logical (Anonymous) Classes

y
er

The Univers
of Manchest

Create Class Expression

Create Restriction (next)

/ Add Named Superclass

[]
.I.
|
-
)
ju k]
-
Irn

© 2006, The University of Manchester

y
er

The Universit
of Manchest

m Creating Restrictions

Restricted Property

eMNe Create Restriction
Restricted Prope ﬁllﬁ -
hasBase allValuesFrom l Restriction
sCountryOfOrigin someValuesFrom
[hasingredient has\{alu? / Type
- cardinality
L haSSp'C'”fESS minCardinality
[hasTopping maxCardinality
[isBaseOf
Fi"er [islngredientOf -
™ isToooinaOf b
Expression -

Cille)
\izzaBase

< .
xpression [@]ele]o]e] .‘\ ____ Syntax

Construct "i|-|*\¢*|¢|¢H |”|—\
check
Palette

J Ok Cancel §

© 2006, The University of Manchester

MANCHESTER
1824

What does this mean?

» restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase

» “If an individual is a member of this class, it
IS necessary that it has at least one
hasBase relationship with an individual from
the class PizzaBase”

© 2006, The University of Manchester

MANCHESTER
1824

What does this mean?

» restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase

» “Every individual of the Pizza class must
have at least one base from the class
PizzaBase”

© 2006, The University of Manchester

MANCHESTER
1824

What does this mean?

» restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase

» “There can be no individual, that is a
member of this class, that does not have
at least one hasBase relationship with an
individual from the class PizzaBase”

© 2006, The University of Manchester

MANCHESTER
1824

Why? Restrictions are Classes

» restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

hasBase some¢€
: PizzaBase

» Restrictions and Class Expressions are
anonymous classes

» they contain the set of all individuals that)
satisfy the condition @

© 2006, The University of Manchester

MANCHESTER
1824

Superclasses

» restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

Pizz

» Each necessary condition is a superclass

» Pizza is a subclass of all the things that
have a pizza base

» All pizzas must have a pizza base

© 2006, The University of Manchester

Why? Necessary Conditions are

MANCHESTER

=% Create your first pizza

» Create a subclass of Pizza, NamedPizza
» Create a named pizza, Margherita

» Add 2 restrictions on Margherita:
hasTopping some MozzarellaTopping
hasTopping some TomatoTopping
“All Margheritas have at least one topping that
IS Mozzarella and one that is Tomato”

Ea
| (g2

NamedPizza
hasTopping some TomatoTopping [
hasTopping some MozzarellaTopping [= ¢ o

hasBase PizzaBase \
© 2006, The University of Manchester 98 H

MANCHESTER

== Create more pizzas

» Create a couple more named pizzas and add

the appropriate toppings using existential
restrictions

L 4 MamedPizza
American
AmericanHot
LaReine
Margherita
Mushroom
Parmense

GG

NamedPizza

hasTopping some TomatoTopping
hasTopping some MozzarellaTopping
hasTopping some PeperoniSausageTopping

hasBase PizzaBase

© 2006, The University of Manchester

MANCHESTER

“* Restriction Types

3 Existential, someValuesFrom “some”’, “at least one”
v Universal, allValuesFrom “only”

B hasValue “equals x”

= Cardinality “exactly n”

< Max Cardinality “at most n”

> Min Cardinality “at least n”

© 2006, The University of Manchester

Single Asserted Qf

Superclasses

» All classes in our ontology so far are
Primitive

» Primitive Class = only Necessary Conditions

» We condone building @

a disjoint tree of =
rimitive classes
P O

» This Is also known as
a Primitive Skeleton

0000

&

(o7
© 2006, The University of Manchester 101 @

MANCHESTER
1824

Polyhierarchies

» In the afternoon session you will create a
VegetarianPizza

» Some of our existing Pizzas could be types of
VegetarianPizza, SpicyPizza and/or
CheeseyPizza

» We need to be able to give them multiple
parents in a principled way

» We could just assert multiple parents like we
did with MeatyVegetable Topping (without
disjoints) e

© 2006, The University of Manchester 102 H

Multiple Asserted x

Superclasses

» We lose some encapsulation of knowledge
» Why this class is a subclass of that one

» Adding a new abstraction
becomes difficult because (™
all subclasses may need
to be updated

» Extracting from a graph is
harder than from a tree

let the reasoner do it!

© 2006, The University of Manchester

y
er

The Universit
of Manchest

Defined Classes

© 2006, The University of Manchester 104

MANCHESTER

= CheeseyPizza

» “A CheeseyPizza is any pizza that has some
cheese on it

» We would expect then, that some pizzas
might be both named pizzas and cheesey
pizzas (among other things later on)

» We can use the reasoner to help us produce
this polyhierarchy without having to assert
multiple parents and so avoid a tangle

o
-‘_*,,«:""r

© 2006, The University of Manchester 105 @

MANCHESTER

=% Creating a CheeseyPizza

» We often create primitive classes and then migrate
them to defined classes

» All of our defined pizzas will be direct subclasses of

Pizza

» Create a CheesyPizza Class (do not make it disjoint)

» add a restriction:

“Every CheeseyPizza must have at least one
CheeseTopping”

7

7

Pizza

hasTopping some CheeseTopping

oy

hasBase

= &
PizzaBase :

(o
© 2006, The University of Manchester H

MANCHESTER

-+ Classifying Primitive Classes

» Classifying this ontology
does nothing

» Our definition is oo
“Every CheeseyPizza
must have at leastone '
CheeseTopping” " Pz

» What we want is . ﬁ::::;:;?zaza

[MamedPizza

“A CheeseyPizza is any
pizza that has some
cheese on it”

© 2006, The University of Manchester

] |
o/l
o
_*"‘J

Creating a Defined Class

» Lets move the conditions we’ve created
» There is a useful button for turning this into

» Notice the conditions are

now in the “Necessary & o &
Sufficient” block —I=

ut

Pizza
hasTopping some CheeseTopping

© 2006, The University of Manchester

a

defined class at the bottom of the class editor

MANCHESTER

» The inferred hierarchy
now shows many (blue)
subclasses of
CheeseyPizza

» The reasoner has been
able to infer that any
Pizza that has at least
one topping from
CheeseTopping is a
CheeseyPizza

© 2006, The University of Manchester

—= Classifying a Defined Class

)

& pizza

owl:Thing

DomainConcept
L J Food
v Pizza

v CheeseyPizza
American
AmericanHot
Cajun
Capricciosa
Caprina

Einranting

=&

Why? Necessary & Sufficient

Conditions

» Each set of necessary & sufficient conditions
Is an Equivalent Class

CheeseyPizza

» CheeseyPizza is equivalent to the
intersection of Pizza and o
hasTopping some CheeseTopping @

© 2006, The University of Manchester

Why? Necessary & Sufficient

Conditions

» Each set of necessary & sufficient conditions
Is an Equivalent Class

CheeseyPizza

argheritaPizza

» Classes, all of whose individuals fit this
definition are found to be subclasses of
CheeseyPizza

© 2006, The University of Manchester

L J Pizza o
v © Cheeseypiazz | » We can see that certain
oot | Pizzas are now classified
it | under multiple parents
Mushroom I

Parmense
QuattroFormaggi

b © Interestingpizza » MargheritaPizza can be
" © @ Averin | found under both
Americantior | NamedPizza and
rr— | CheeseyPizza in the
o inferred hierarchy
A%

© 2006, The University of Manchester 112 ﬁ

» However, our unclassified version of the
ontology is a simple tree, which is much
easier to maintain

» We've now got a polyhierarchy without
asserting multiple superclass relationships

» Plus, we also know why certain pizzas have
been classified as CheeseyPizzas

© 2006, The University of Manchester

o

-~

C

» We don’t currently have many kinds of
primitive pizza but its easy to see that if we
had, it would have been a substantial task to

assert CheeseyPizza as a parent of lots, if
not all, of them

» And then do it all over again for other defined
classes like MeatyPizza or whatever

Mission Successful!

© 2006, The University of Manchester

o
-...*,‘J

C

MANCHESTER
1824

= Summary

You should now be able to:

» identify components of the Protégé-OWL
Interface

» create a hierarchy of Primitive Classes
» create Properties

» create some basic Restrictions on a Class
using Existential qualifiers

» create a simple Defined Class
» and... .

(o7
© 2006, The University of Manchester 115 H

Summary

The University
of Manchester

You should now be able to:
» go for at least a week without wanting to see

© 2006, The University of Manchester

e Additional Material

» OWLViz

© 2006, The University of Manchester

117

y
er

The Universit
of Manchest

OWLViz Tab

_

\

r [] O'Ia“-ﬂ_cksses |/ B Fropegies

= Forms iduglz | 4 Metadsts &O".-“-.ﬂ."v"lz |

V| Ooﬁ_k‘ SEEIEIR

For Project 4 pizza

Aszerted Hierarchy

¥
r Azzerted Model |/ Inferrg 2
Showy all classes
CLASS BROWSER

owl: Thing
¥ @ DomainConcept
E Country

Topping)

eTopping

_An;rmlcs'mﬂrb

B W eSoatooTapping
 RahTeping e
AT T PrawmaTopring

Erickanmooeng

b hasarmopping ;ﬂﬁ T —

T

————(DaspPan y T TamiTopping "yl PamasamiTopeing

(Piaza
(Spleineas b ot)

nma)

(Erocsoanicasizzal™

< Pamcaanicrping

& Fouthoeses Topping

“MozzarilaTopping.

© 2006, The University of Manchester

