A Practical Guide To Building OWL Ontologies Using Protégé 4
and CO-ODE Tools
Edition 1.1

Matthew Horridge,
Simon Jupp, Georgina Moulton, Alan Rector, Robert Stevens, Chris Wroe

THE UNIVERSITY OF MANCHESTER

Copyright (©) The University Of Manchester

October 16, 2007

Contents

1 Introduction

3

1.1

Conventions e

Requirements

What are OWL Ontologies?

3.1

3.2

The Three Species Of OWL e

3.1.1 OWL-Lite o o e e e

3.1.4 Choosing The Sub-Language To Use
Components of OWL Ontologies
3.2.1 Individuals
3.2.2 Propertieso

3.2.3 Classes

Building An OWL Ontology

4.1

4.2

4.3

4.4

4.5

Named Classes it i e
Disjoint Classes o . e
Using The OWL Tools To Create Classes v
OWL Properties e

Inverse Properties e e

10

10

10

11

11

11

11

11

12

12

14

4.6

4.7

4.8

4.9

4.10

4.12

4.13

4.14

4.15

4.16

OWL Object Property Characteristics, 29
4.6.1 Functional Properties e 29
4.6.2 Inverse Functional Properties oL 31
4.6.3 Transitive Properties L 31
4.6.4 Symmetric Properties oL o 31
4.6.5 Antisymmetric properties L. 34
4.6.6 Reflexive properties L 34
4.6.7 Irreflexive properties 35
Property Domains and Ranges o L 35
Describing And Defining Classes e 38
4.8.1 Property Restrictions L 39
4.8.2 Existential Restrictions L Lo L 42
Using A Reasoner o e e 50
4.9.1 Determining the OWL Sub-Language 50
4.9.2 Invoking The Reasoner. o 50
4.9.3 Inconsistent Classes e 52
Necessary And Sufficient Conditions (Primitive and Defined Classes) 55
4.10.1 Primitive And Defined Classes 59
Automatic Classification L 59
4.11.1 Classification Results 62
Universal Restrictions e 62
Automatic Classification and Open World Reasoning 66
4.13.1 Closure AXIOmMS o o v vt e e 67
Value Partitions e 71
4.14.1 Covering AXIOmS L 73
Using the Matrix Wizard o L 74
Cardinality Restrictions L 78

4.17 Qualified Cardinality Restrictions oo

Datatype Properties

More On Open World Reasoning

Creating Other OWL Constructs In Protégé 4

7.1 Creating Individuals L
7.2 hasValue Restrictions L
7.3 Enumerated Classes e
7.4 Annotation Properties L
7.5 Multiple Sets Of Necessary & Sufficient Conditions
7.6 Role Chains e

82

86

92

Copyright

Copyright The University Of Manchester 2007

Acknowledgements

I would like to acknowledge and thank my colleagues at the University Of Manchester and also Stanford
Univeristy for proof reading this tutorial/guide and making helpful comments and suggestions as to how
it could be improved. In particular I would like to thank my immediate colleagues: Alan Rector, Nick
Drummond, Hai Wang and Julian Seidenberg at the Univeristy Of Manchester, who suggested changes
to early drafts of the tutorial in order to make things clearer and also ensure the technical correctness of
the material. Alan was notably helpful in suggesting changes that made the tutorial flow more easily. I
am grateful to Chris Wroe and Robert Stevens who conceived the original idea of basing the tutorial on
an ontology about pizzas. Finally, I would also like to thank Natasha Noy from Stanford University for
using her valuable experience in teaching, creating and giving tutorials about Protégé to provide detailed
and useful comments about how initial drafts of the tutorial/guide could be made better.

This work was supported in part by the CO-ODE project funded by the UK Joint Information Services

Committee and the HyOntUse Project (GR/S44686) funded by the UK Engineering and Physical Science
Research Council and by 21XS067A from the National Cancer Institute.

http://www.co-ode.org

cooperative
ontologies
programime

THE UNIVERSITY
9/ MANCHESTER

Chapter 1

Introduction

This guide introduces Protégé 4 for creating OWL ontologies. Chapter 3 gives a brief overview of the
OWL ontology language. Chapter 4 focuses on building an OWL-DL ontology and using a Description
Logic Reasoner to check the consistency of the ontology and automatically compute the ontology class
hierarchy. Chapter 7 describes some OWL constructs such as hasValue Restrictions and Enumerated
classes, which aren’t directly used in the main tutorial.

1.1 Conventions

Class, property and individual names are written in a sans serif font like this.
Names for user interface views are presented in a style ‘like this’.
Where exercises require information to be typed into Protégé 4 a type writer font is used like this.

Exercises and required tutorial steps are presented like this:

Exercise 1: Accomplish this

1. Do this.
2. Then do this.
3. Then do this.

—
—
\5

MEANING

? 7=

Tips and suggestions related to using Protégé 4 and building ontologies are pre-
sented like this.

Explanation as to what things mean are presented like this.

Potential pitfalls and warnings are presented like this.

Vocabulary

General notes are presented like this.

Vocabulary explanations and alternative names are presented like this.

Chapter 2

Requirements

In order to follow this tutorial you must have Protégé 4, which is available from the Protégé website !,
and the Protégé Plugins which are available via the CO-ODE web site 2. It is also recommended (but not
necessary) to use the OWLViz plugin, which allows the asserted and inferred classification hierarchies to
be visualised, and is available from the CO-ODE web site, or can be installed when Protégé 4 is installed.
For installation steps, please see the documentation for each component.

lhttp://protege.stanford.edu
2http://www.co-ode.org

Chapter 3

What are OWL Ontologies?

Ontologies are used to capture knowledge about some domain of interest. An ontology describes the
concepts in the domain and also the relationships that hold between those concepts. Different ontology
languages provide different facilities. The most recent development in standard ontology languages is
OWL from the World Wide Web Consortium (W3C)*. Like Protégé , OWL makes it possible to describe
concepts but it also provides new facilities. It has a richer set of operators - e.g. intersection, union and
negation. It is based on a different logical model which makes it possible for concepts to be defined as
well as described. Complex concepts can therefore be built up in definitions out of simpler concepts.
Furthermore, the logical model allows the use of a reasoner which can check whether or not all of the
statements and definitions in the ontology are mutually consistent and can also recognise which concepts
fit under which definitions. The reasoner can therefore help to maintain the hierarchy correctly. This is
particularly useful when dealing with cases where classes can have more than one parent.

3.1 The Three Species Of OWL

OWL ontologies may be categorised into three species or sub-languages: OWL-Lite, OWL-DL and OWL-
Full. A defining feature of each sub-language is its expressiveness. OWL-Lite is the least expressive
sub-langauge. OWL-Full is the most expressive sub-language. The expressiveness of OWL-DL falls
between that of OWL-Lite and OWL-Full. OWL-DL may be considered as an extension of OWL-Lite
and OWL-Full an extension of OWL-DL.

3.1.1 OWL-Lite

OWL-Lite is the syntactically simplest sub-language. It is intended to be used in situations where only
a simple class hierarchy and simple constraints are needed. For example, it is envisaged that OWL-Lite
will provide a quick migration path for existing thesauri and other conceptually simple hierarchies.

Ihttp://wuw.w3.org/TR/owl-guide/

10

3.1.2 OWL-DL

OWL-DL is much more expressive than OWL-Lite. OWL-DL and OWL-Lite are based on Description
Logics (hence the suffix DL). Description Logics are a decidable fragment of First Order Logic? and
are therefore amenable to automated reasoning. It is therefore possible to automatically compute the
classification hierarchy® and check for inconsistencies in an ontology that conforms to OWL-DL. This
tutorial focuses on OWL-DL.

3.1.3 OWL-Full

OWL-Full is the most expressive OWL sub-language. It is intended to be used in situations where very
high expressiveness is more important than being able to guarantee the decidability or computational
completeness of the language. It is therefore not possible to perform automated reasoning on OWL-Full
ontologies.

3.1.4 Choosing The Sub-Language To Use

For a more detailed synopsis of the three OWL sub-languages see the OWL Web Ontology Language
Overview?. Although many factors come into deciding the appropriate sub-language to use, there are
some simple rules of thumb.

e The choice between OWL-Lite and OWL-DL may be based upon whether the simple constructs of
OWL-Lite are sufficient or not.

e The choice between OWL-DL and OWL-Full may be based upon whether it is important to be
able to carry out automated reasoning on the ontology or whether it is important to be able to use
highly expressive and powerful modelling facilities such as meta-classes (classes of classes).

Protégé 4 does not make the distinction between editing OWL-Lite and OWL-DL ontologies.

3.2 Components of OWL Ontologies

OWL ontologies have similar components to Protégé frame based ontologies. However, the terminology
used to describe these components is slightly different from that used in Protégé . An OWL ontology
consists of Individuals, Properties, and Classes, which roughly correspond to Protégé frames Instances,
Slots and Classes.

3.2.1 Individuals

Individuals, represent objects in the domain that we are interested in®. An important difference between
Protégé and OWL is that OWL does not use the Unique Name Assumption (UNA). This means that

2Logics are decidable if computations/algorithms based on the logic will terminate in a finite time.
3 Also known as subsumption reasoning.

dhttp://www.u3.org/TR/owl-features

5Also known as the domain of discourse.

11

&
England
% Italy ngtan

< USA

O O
Matthew<> Fluffy Gemma

4 Fido
Figure 3.1: Representation Of Individuals

two different names could actually refer to the same individual. For example, “Queen Elizabeth”, “The
Queen” and “Elizabeth Windsor” might all refer to the same individual. In OWL, it must be explicitly
stated that individuals are the same as each other, or different to each other — otherwise they might be
the same as each other, or they might be different to each other. Figure 3.1 shows a representation of
some individuals in some domain — in this tutorial we represent individuals as diamonds in diagrams.

Vocabulary

Individuals are also known as instances. Individuals can be referred to as being
‘instances of classes’.

3.2.2 Properties

Properties are binary relations® on individuals - i.e. properties link two individuals together”. For
example, the property hasSibling might link the individual Matthew to the individual Gemma, or the
property hasChild might link the individual Peter to the individual Matthew. Properties can have inverses.
For example, the inverse of hasOwner is isOwnedBy. Properties can be limited to having a single value —
i.e. to being functional. They can also be either transitive or symmetric. These ‘property characteristics’
are explained in detail section 4.8. Figure 3.2 shows a representation of some properties linking some
individuals together.

Vocabulary
Properties are roughly equivalent to slots in Protégé . They are also known as
roles in description logics and relations in UML and other object oriented notions.
In GRAIL and some other formalisms they are called attributes.

3.2.3 Classes

OWL classes are interpreted as sets that contain individuals. They are described using formal (math-
ematical) descriptions that state precisely the requirements for membership of the class. For example,
the class Cat would contain all the individuals that are cats in our domain of interest.® Classes may be

6 A binary relation is a relation between two things.

Strictly speaking we should speak of ‘instances of properties’ linking individuals, but for the sake of brevity we will
keep it simple.

8Individuals may belong to more than one class.

12

England

<O
Matthew haSSIbIIn Gemma

Figure 3.2: Representation Of Properties

England

Country

Pet

/\/

Figure 3.3: Representation Of Classes (Containing Individuals)

organised into a superclass-subclass hierarchy, which is also known as a tazonomy. Subclasses specialise
(‘are subsumed by’) their superclasses. For example consider the classes Animal and Cat — Cat might
be a subclass of Animal (so Animal is the superclass of Cat). This says that, ‘All cats are animals’, ‘All
members of the class Cat are members of the class Animal’, ‘Being a Cat implies that you're an Animal’,
and ‘Cat is subsumed by Animal’. One of the key features of OWL-DL is that these superclass-subclass
relationships (subsumption relationships) can be computed automatically by a reasoner — more on this
later. Figure 3.3 shows a representation of some classes containing individuals — classes are represented
as circles or ovals, rather like sets in Venn diagrams.

Vocabulary

The word concept is sometimes used in place of class. Classes are a concrete
representation of concepts.

In OWL classes are built up of descriptions that specify the conditions that must be satisfied by an
individual for it to be a member of the class. How to formulate these descriptions will be explained as
the tutorial progresses.

13

Chapter 4

Building An OWL Ontology

This chapter describes how to create an ontology of Pizzas. We use Pizzas because we have found them
to provide many useful examples.?

Exercise 2: Create a new OWL Ontology

1. Start Protégé

2. When the Welcome To Protégé dialog box appears, press the ‘Create New OWL
Ontology’.

3. A ‘Create Ontology URI Wizard will appear’. Every ontology is named using a Unique
Resource Identifier (URI). Replace the default URI with http://www.pizza.com/
ontologies/pizza.owl and press ‘Next’.

4. You will also want to save your Ontology to a file on your PC. You can browse your
hard disk and save your ontology to a new file, you might want to name your file
‘pizza.owl’. Once you choose a file press ‘Finish’.

After a short amount of time, a new empty Protégé file will have been created and the ‘Active Ontology
Tab’ shown in Figure 4.1 will be visible. As can be seen from Figure 4.1, the ‘Active Ontology Tab’
allows information about the ontology to be specified. For example, the ontology URI can be changed,
annotations on the ontology such as comments may be added and edited, and namespaces and imports
can be set up via this tab.

IThe Ontology that we will create is based upon a Pizza Ontology that has been used as the basis for a course on editing
DAML+OIL ontologies in OilEd (http://oiled.man.ac.uk), which was taught at the University Of Manchester.

14

000 http://www.myexample.com/pizza.owl - [fUsers/simon/Desktop/pizza_demo.owl]
File Edit Reasoner Tools Refactor Tabs View Window Help

E|=> © http:/ fwww. om/pizza.owl M =

Individuals |

[Active Ontology = Entities = Classes | Object Properties = Data Properties

Ontology Annotations: mE=E il Ontology Metrics: MEEE
Metrics
Class count 27
Object property count 6
Data property count 0
Individual count 0
DL expressivity ALCHI

Class axioms.

SubClass axioms count 27

Equivalent classes axioms count 0

Disjoint classes axioms count 8

GCl count 2

Hidden GCl Count 0

Object property axioms

Sub object property axioms count 4

Equivalent object properties axioms count 0 1
Ontology ARnotations Inverse object properties axioms count 3
Imported Ontologies: DEEE
Direct imports
Indirect imports

Ontology Imports

Figure 4.1: The Active Ontology Tab

Ontology Annotations: http://www.myexample.com/pizza.owl MEEE
Property Value Lang

" comment A pizza ontology that describes various pizzas based on their toppings.

Figure 4.2: The Ontology Annotations View — The ontology has a comment as indicated by the comment anno-
tation

Exercise 3: Add a comment to the ontology

1. Ensure that the ‘Active Ontology Tab’ is selected.

2. In the ‘Ontology Annotations’ view, double click to the right of the comment prop-
erty name. An editing window will appear in the table.

3. Enter a comment such as A pizza ontology that describes various pizzas
based on their toppings. and press CTRL+ENTER to assign the comment. The
annotations view on the ‘Active Ontology Tab’ should look like the picture shown
in Figure 4.2

15

000 http://www.myexample.com/pizza.owl - [fUsers/simon/Desktop/pizza_demo.owl]
File Edit Reasoner Tools Refactor Tabs View Window Help

E‘ 2| [@ http:/ fwww. com/pizza.owl -]]
["Active Ontology | Entities | Classes = Object Properties = Data Properties v ! -
Asserted Class Hierarchy: m=== |if Class Annotations: [ELE]
%2 | B Annotations
¥ ©Thing
O Pizza
Equivalent classes

Superclasses

Inherited classes

Instances

Disjoint classes

[Asserted class hierarchy

Figure 4.3: The Classes Tab

4.1 Named Classes

As mentioned previously, an ontology contains classes — indeed, the main building blocks of an OWL
ontology are classes. In Protégé 4 , editing of classes is carried out using the ‘Classes Tab’ shown in
Figure 4.3. The initial class hierarchy tree view should resemble the picture shown in Figure 4.4. The
empty ontology contains one class called Thing. As mentioned previously, OWL classes are interpreted

as sets of individuals (or sets of objects). The class Thing is the class that represents the set containing
all individuals. Because of this all classes are subclasses of Thing.2

Let’s add some classes to the ontology in order to define what we believe a pizza to be.

2Thing is part of the OWL Vocabulary, which is defined by the ontology located at http://www.w3.org/2002/07/owl/\#

16

Add Subclass
Add Sibling Class

Show Usage

Delete Class

v Thing
Pizza

Figure 4.4: The Class Hierarchy Pane

Exercise 4: Create classes Pizza, PizzaTopping and PizzaBase

1. Ensure that the ‘Classes Tab’ is selected.

2. Press the ‘Add subclass’ button shown in Figure 4.4. This button creates a new
class as a subclass of the selected class (in this case we want to create a subclass of

Thing).

3. A dialog will appear for you to name your class, enter Pizza (as shown in Figure 4.5)
and hit return.

4. Repeat the previous steps to add the classes PizzaTopping and also PizzaBase, en-
suring that Thing is selected before the ‘Add subclass’ button is pressed so that the
classes are created as subclasses of Thing.

The class hierarchy should now resemble the hierarchy shown in Figure 4.6.

17

'a¥aXa) Specify name

Please enter a class name

Pizza

[Cancel) f—Bl(—a

A

Figure 4.5: Class Name Dialog

(]| 9] =]

v Thing
Pizza
PizzaBase
PizzaTopping

Figure 4.6: The Initial Class Hierarchy

—
—
\v

After creating Pizza, instead of re-selecting Thing and using the ‘Create sub-
class’ button to create PizzaTopping and PizzaBase as further subclasses of
Thing, the ‘Add sibling class’ button (shown in Figure 4.4) can be used. While
Pizza is selected, use the ‘Create sibling class’ button to create PizzaTopping
and then use this button again (while PizzaTopping is selected) to create Piz-
zaBase as sibling classes of PizzaTopping — these classes will of course still be
created as subclasses of Thing, since Pizza is a subclass of Thing.

Vocabulary
1% A class hierarchy may also be called a taxonomy.

—
—
\3

Although there are no mandatory naming conventions for OWL classes, we recom-
mend that all class names should start with a capital letter and should not contain
spaces. (This kind of notation is known as CamelBack notation and is the nota-
tion used in this tutorial). For example Pizza, PizzaTopping, MargheritaPizza.
Alternatively, you can use underscores to join words. For example Pizza_Topping.
Which ever convention you use, it is important to be consistent.

18

4.2 Disjoint Classes

Having added the classes Pizza, PizzaTopping and PizzaBase to the ontology, we now need to say these
classes are disjoint, so that an individual (or object) cannot be an instance of more than one of these
three classes. To specify classes that are disjoint from the selected class click the ‘Disjoints classes’
button which is located at the bottom of the ‘Class Description’ view.

Exercise 5: Make Pizza, PizzaTopping and PizzaBase disjoint from each other

1. Select the class Pizza in the class hierarchy.

2. Press the ‘Disjoint classes’ button in the ‘class description’ view, this will bring up
a dialog where you can select multiple classes to be disjoint. This will make PizzaBase
and PizzaTopping (the sibling classes of Pizza) disjoint from Pizza.

Notice that the disjoint classes view now displays PizzaTopping and PizzaBase. Select the class Piz-
zaBase. Notice that the disjoint classes view displays the classes that are now disjoint to PizzaBase,
namely Pizza and PizzaTopping.

MEANING
7?:? OWL Classes are assumed to ‘overlap’. We therefore cannot assume that an
Fat individual is not a member of a particular class simply because it has not been

asserted to be a member of that class. In order to ‘separate’ a group of classes
we must make them disjoint from one another. This ensures that an individual
which has been asserted to be a member of one of the classes in the group cannot
be a member of any other classes in that group. In our above example Pizza,
PizzaTopping and PizzaBase have been made disjoint from one another. This
means that it is not possible for an individual to be a member of a combination
of these classes — it would not make sense for an individual to be a Pizza and a
PizzaBase!

4.3 Using The OWL Tools To Create Classes

3 The OWL Tools are plugins, which is available from the Protégé web site, is an extensible set of Tools
that are designed to make carrying out common, repetitive and time consuming tasks easy. In this section
we will use the ‘Create Class Hierarchy’ tool to add some subclasses of the class PizzaBase, this tool
is distributed by default with Protégé 4 . To use the OWL Tools you must ensure that the OWL Tools
are installed and configured in Protégé .

19

e ne Create Class Hierarchy

Pick root class

Please select the root class

v ® Thing
® Pizza
© PizzaBase
® PizzaTopping

4

Figure 4.7: Create Class Hierarchy: Select class page

Create Class Hierarchy

Enter hierarchy

Please enter the hierarchy that you want to create. You should use tabs to indent names!

Prefix

Suffix

DeepPanBase
‘ThinAndCrispyBase

4

Figure 4.8: Create Class Hierarchy: Enter classes page

20

Exercise 6: Use the ‘Create Class Hierarchy’ Tool to create ThinAndCrispy and DeepPan as sub-
classes of PizzaBase

1. Select the class PizzaBase in the class hierachy.
2. From the Tools menu on the Protégé menu bar select ‘Create Class Tierarchy... .

3. The tools shown in Figure 4.7 will appear. Since we preselected the PizzaBase class,
the first radio button at the top of the tool should be prompting us to create the classes
under the class PizzaBase. If we had not preselected PizzaBase before starting the
tool, then the tree could be used to select the class.

4. Press the ‘Next’ button on the tool—The page shown in Figure 4.8 will be displayed.
We now need to tell the tool the subclasses of PizzaBase that we want to create. In
the large text area, type in the class name ThinAndCrispyBase (for a thin based pizza)
and hit return. Also enter the class name DeepPanBase so that the page resembles
that shown in Figure 4.8 .

5. Hit the ‘Next’ button on the tool. The tool checks that the names entered adhere
to the naming styles that have previously been mentioned (No spaces etc.). It also
checks for uniqueness — no two class names may be the same. If there are any errors
in the class names, they will be presented on this page, along with suggestions for
corrections.

6. Hit the ‘Next’ button on the tool. Ensure the tick box ‘Make all new classes
disjoint’ is ticked — instead of having to use the disjoint classes view, the tool will
automatically make the new classes disjoint for us.

After the ‘Next’ button has been pressed, the tool creates the classes, makes them disjoint. Click
‘Finish’ to dismiss the tool. The ontology should now have ThinAndCrispyBase and also DeepPanBase
as subclasses of PizzaBase. These new classes should be disjoint to each other. Hence, a pizza base
cannot be both thin and crispy and deep pan. It isn’t difficult to see that if we had a lot of classes to
add to the ontology, the tool would dramatically speed up the process of adding them.

TIP,

/’ On page one of the ‘Create class hierarchy tool’ the classes to be created are
entered. If we had a lot of classes to create that had the same prefix or suffix we
could use the options to auto prepend and auto append text to the class names
that we entered.

Creating Some Pizza Toppings

Now that we have some basic classes, let’s create some pizza toppings. In order to be useful later on the
toppings will be grouped into various categories — meat toppings, vegetable toppings, cheese toppings

21

\\\\\\\\\ Create Class Hierarchy

Enter hierarchy

Please enter the hierarchy that you want to create. You should use tabs to indent names!

Prefix

Suffix | Topping

Cheese
Mozzarella
Parmezan

Meat

Pepperoni
Salami
SpicyBeef

seafood
Anchovy
Prawn
Tuna

Vegetable

Pepper
RedPepper
GreenPepper
JalapenoPepper

Tomato

GoBack | (‘Continue) (" Cancel ./
J

Figure 4.9: Topping Hierarchy

and seafood toppings.

Exercise 7: Create some subclasses of PizzaTopping

1. Select the class PizzaTopping in the class hierarchy.

2. Invoke the ‘Create class hierarchy...” tool in the same way as the tool was started
in the previous exercise.

3. Ensure PizzaTopping is selected and press the ‘Next’ button.

4. We want all out topping classes to end in topping, so in the ‘Suffix all in list with’
field, enter Topping. The tool will save us some typing by automatically appending
Topping to all of our class names.

5. The tool allows a hierarchy of classes to be entered using a tab indented tree. Using
the text area in the tool, enter the class names as shown in Figure 4.9. Note that class
names must be indented using tabs, so for example SpicyBeef, which we want to be a
subclass of Meat is entered under Meat and indented with a tab. Likewise, Pepperoni
is also entered under Meat below SpicyBeef and also indented with a tab.

6. Having entered a tab indented list of classes, press the ‘Next’ button and then make
sure that ‘Make all primitive siblings disjoint’ check box is ticked so that new
sibling classes are made disjoint with each other.

7. Press the ‘Finish’ button to create the classes. Press ‘Finish’ again to close the tool.

The class hierarchy should now look similar to that shown in Figure 4.10 (the ordering of classes may be
slightly different).

22

(%] [] [

v & Thing
© Pizza
¥ @ PizzaBase
@ DeepPanBase
@ ThinAndCrispyBase
v @ PizzaTopping
v @ CheeseTopping
© MozzarellaTopping
@ ParmezanTopping
v © MeatTopping
@ HamTopping
@ PepperoniTopping
© SalamiTopping
@ SpicyBeefTopping
v O SeafoodTopping
® AnchovyTopping
@ PrawnTopping
@ TunaTopping
¥ @ VegetableTopping
© CaperTopping
@ MushroomTopping
@ OliveTopping
@ OnionTepping
¥ @ PepperTopping
© GreenPepperTopping
@ JalapenoPepperTopping
@ RedPepperTopping
@ TomatoTopping

Figure 4.10: Class Hierarchy

23

PizzaTopping

TomatoTopping
VegetableTopping

Figure 4.11: The Meaning Of Subclass — All individuals that are members of the class TomatoTopping are
members of the class VegetableTopping and members of the class PizzaTopping as we have stated
that TomatoTopping is a subclass of VegetableTopping which is a subclass of PizzaTopping

MEANING
77,7? Up to this point, we have created some simple named classes, some of which
Pt are subclasses of other classes. The construction of the class hierarchy may have

seemed rather intuitive so far. However, what does it actually mean to be a sub-
class of something in OWL? For example, what does it mean for VegetableTopping
to be a subclass of PizzaTopping, or for TomatoTopping to be a subclass of Veg-
etableTopping? In OWL subclass means necessary implication. In other words,
if VegetableTopping is a subclass of PizzaTopping then ALL instances of Veg-
etableTopping are instances of PizzaTopping, without exception — if something is
a VegetableTopping then this implies that it is also a PizzaTopping as shown in
Figure 4.11.¢

Tt is for this reason that we seemingly pedantically named all of our toppings with the suffix
of ‘Topping’, for example, HamTopping. Despite the fact that class names themselves carry no
formal semantics in OWL (and in other ontology languages), if we had named HamTopping Ham,
then this could have implied to human eyes that anything that is a kind of ham is also a kind of
MeatTopping and also a PizzaTopping.

4.4 OWL Properties

OWL Properties represent relationships. There are two main types of properties, Object properties and
Datatype properties. Object properties are relationships between two individuals. In this chapter we
will focus on Object properties; datatype properties are described in Chapter 5. Object properties link an
individual to an individual. OWL also has a third type of property — Annotation properties®. Annotation
properties can be used to add information (metadata — data about data) to classes, individuals and
object/datatype properties. Figure 4.12 depicts an example of each type of property.

Properties may be created using the ‘Object Properties’ tab shown in Figure 4.13. Figure 4.14 shows
the buttons located in the top left hand corner of the ‘Object Properties’ tab that are used for creating
OWL properties. As can be seen from Figure 4.14, there are buttons for creating Datatype properties,

30bject properties and Datatype properties may be marked as Annotation properties

24

hasSister

Matthew Gemma

An object property linking the individual
Matthew to the individual Gemma

Matthew “25"AAxsd:integer

A datatype property linking the individual
Matthew to the data literal ‘25, which has a type
of an xsd:integer.

dc:creator
o

JetEngine “Matthew Horridge”

An annotation property, linking the class ‘JetEngine’
to the data literal (string) “Matthew Horridge”

Figure 4.12: The Different types of OWL Properties

25

8086 http:f /www. com/pizza.owl - [{Users/simon/Desktop/pizza_demo.owl]
File Edit Reasoner Tools Refactor Tabs View Window Help

E|=> © http:/ fwww. om/pizza.owl M =

" Active Ontology = Entities = Classes ~ Object Properties | Data Properties Individual. !

Object Properties: S

H] Annotations

Characteristics: D= |l Description: m==E [l Domains and ranges: ISEE
() Functional Demains (intersection)) ——————————————|| | |Domains (intersection)) ——————————

[Inverse functional .
Ranges (intersection)) —————————————— || ||Ranges (intersection}

] Transitive
. Equivalent object properties

(] Symmetric a et prop

) Antisymmetric Super properties

[} Reflexive
Inverse properties
[Irreflexive

Disjoint properties

Property chains

Figure 4.13: The PropertiesTab

Object properties and Annotation properties. Most properties created in this tutorial will be Object
properties.

Exercise 8: Create an object property called hasingredient

1. Switch to the ‘Object Properties’ tab. Use the ‘Add Object Property’ button
(see Figure 4.14) to create a new Object property.

2. Name the property to hasingredient using the ‘Property Name Dialog’ that pops
up, as shown in Figure 4.15 (The ‘Property Name Dialog’.

26

Add object property
Add sub property

Add sibling

bject Properties:

(T =] B

Find usage

Delete property

Figure 4.14: Property Creation Buttons — located on the Properties Tab above the property list/tree

Specify name

Please enter an object property name

hasIngredient

(Cancel)

¥4

Figure 4.15: Property Name Dialog

—
-
\\13

Although there is no strict naming convention for properties, we recommend that
property names start with a lower case letter, have no spaces and have the re-
maining words capitalised. We also recommend that properties are prefixed with
the word ‘has’, or the word ‘is’, for example hasPart, isPartOf, hasManufacturer,
isProducerOf. Not only does this convention help make the intent of the property
clearer to humans, it is also taken advantage of by the ‘English Prose Tooltip
Generator’®, which uses this naming convention where possible to generate more
human readable expressions for class descriptions.

%The English Prose Tooltip Generator displays the description of classes etc. in a more natural
form of English, making is easy to understand a class description. The tooltips pop up when the
mouse pointer is made to hover over a class description in the user interface.

Having added the haslngredient property, we will now add two more properties — hasTopping, and
hasBase. In OWL, properties may have sub properties, so that it is possible to form hierarchies of
properties. Sub properties specialise their super properties (in the same way that subclasses specialise
their superclasses). For example, the property hasMother might specialise the more general property of

27

hasParent

Figure 4.16: An Example Of An Inverse Property: hasParent has an inverse property that is hasChild

hasParent. In the case of our pizza ontology the properties hasTopping and hasBase should be created
as sub properties of haslngredient. If the hasTopping property (or the hasBase property) links two
individuals this implies that the two individuals are related by the haslngredient property.

Exercise 9: Create hasTopping and hasBase as sub-properties of hasingredient

1. To create the hasTopping property as a sub property of the haslngredient property, se-
lect the haslngredient property in the property hierarchy on the ‘Object Properties’
tab.

2. Press the ‘Add subproperty’ button. A new object property will be created as a
sub property of the hasingredient property.

3. Name the new property to hasTopping.

4. Repeat the above steps but name the property hasBase.

Note that it is also possible to create sub properties of datatype properties. However, it is not possible to
mix and match object properties and datatype properties with regards to sub properties. For example, it
is not possible to create an object property that is the sub property of a datatype property and vice-versa.

4.5 Inverse Properties

Each object property may have a corresponding inverse property. If some property links individual a to
individual b then its inverse property will link individual b to individual a. For example, Figure 4.16
shows the property hasParent and its inverse property hasChild — if Matthew hasParent Jean, then
because of the inverse property we can infer that Jean hasChild Matthew.

Inverse properties can be created/specified using the inverse property view shown in Figure 4.17. For

28

completeness we will specify inverse properties for our existing properties in the Pizza Ontology.

Exercise 10: Create some inverse properties

1. Use the ‘Add object property’ button on the ‘Object Properties’ tab to create
a new Object property called isIngredientOf (this will become the inverse property of
haslngredient).

2. Press the ‘Add inverse property’ button on the inverse property view shown in
Figure 4.17. This will display a dialog from which properties may be selected. Select
the haslngredient property and press ‘OK’. The property haslngredient should now be
displayed in the ‘Inverse Property’ view. The properties hierarchy should also now
indicate that haslngredient and isIngredientOf are inverse properties of each other.

3. Select the hasBase property.

4. Press the ‘Add inverse property’ button on the ‘Inverse Property’ view. This
will pop up a dialog that contains information about the newly created property.
Use this dialog to rename the property isBaseOf and the close the dialog window
(using the operating system close window button on the title bar). Notice that the
isBaseOf property has been created as a sub property of the isingredientOf property.
This corresponds to the fact that hasBase is a sub property of hasIngredient, and
isIngredientOf is the inverse property of haslngredient.

5. Select the hasTopping property.

6. Press the ‘Add inverse property’ button on the ‘Inverse Property’ view. Use the
property dialog that pops up to rename the property isToppingOf. Close the dialog.

The property hierarchy should now look like the picture shown in Figure 4.18.

4.6 OWL Object Property Characteristics

OWL allows the meaning of properties to be enriched through the use of property characteristics. The
following sections discuss the various characteristics that properties may have:

4.6.1 Functional Properties

If a property is functional, for a given individual, there can be at most one individual that is related to
the individual via the property. Figure 4.19 shows an example of a functional property hasBirthMother
— something can only have one birth mother. If we say that the individual Jean hasBirthMother Peggy
and we also say that the individual Jean hasBirthMother Margaret?, then because hasBirthMother is a
functional property, we can infer that Peggy and Margaret must be the same individual. It should be
noted however, that if Peggy and Margaret were explicitly stated to be two different individuals then the
above statements would lead to an inconsistency.

4The name Peggy is a diminutive form for the name Margaret

29

Description: isTopping

Domains (intersection)

Ranges (intersection)

Equivalent object properties

Super properties

muisingredientOf

Inverse properties

mmhasTopping

Disjoint properties

Property chains

Figure 4.17: The Inverse Property View

[[[=] [38] (]

¥ mm isingredientOf
mm isBase
mm isToppingOf
v mm hasingredient
mm hasBase
mm hasTopping

Figure 4.18: The Property Hierarchy

30

\
Jean 1 Implies Peggy and Margaret

,/ are the same individual

Figure 4.19: An Example Of A Functional Property: hasBirthMother

Vocabulary
Functional properties are also known as single valued properties and also features.

4.6.2 Inverse Functional Properties

If a property is inverse functional then it means that the inverse property is functional. For a given
individual, there can be at most one individual related to that individual via the property. Figure 4.20
shows an example of an inverse functional property isBirthMotherOf. This is the inverse property of
hasBirthMother — since hasBirthMother is functional, isBirthMotherOf is inverse functional. If we state
that Peggy is the birth mother of Jean, and we also state that Margaret is the birth mother of Jean,
then we can infer that Peggy and Margaret are the same individual.

Peggy isBi
v Irthy, oth
7 ’ e’o)r

1
Implies same individual |

Figure 4.20: An Example Of An Inverse Functional Property: isBirthMotherOf

4.6.3 Transitive Properties

If a property is transitive, and the property relates individual a to individual b, and also individual b to
individual ¢, then we can infer that individual a is related to individual ¢ via property P. For example,
Figure 4.21 shows an example of the transitive property hasAncestor. If the individual Matthew has an
ancestor that is Peter, and Peter has an ancestor that is William, then we can infer that Matthew has an
ancestor that is William — this is indicated by the dashed line in Figure 4.21.

4.6.4 Symmetric Properties

If a property P is symmetric, and the property relates individual a to individual b then individual b is
also related to individual a via property P. Figure 4.22 shows an example of a symmetric property. If the
individual Matthew is related to the individual Gemma via the hasSibling property, then we can infer

31

William

Matthew

Figure 4.21: An Example Of A Transitive Property: hasAncestor

that Gemma must also be related to Matthew via the hasSibling property. In other words, if Matthew
has a sibling that is Gemma, then Gemma must have a sibling that is Matthew. Put another way, the
property is its own inverse property.

hasSiblin

Matthew ™~ ___ hassibling .-~~~ Gemma

Figure 4.22: An Example Of A Symmetric Property: hasSibling

We want to make the haslngredient property transitive, so that for example if a pizza topping has an
ingredient, then the pizza itself also has that ingredient. To set the property characteristics of a property
the property characteristics view shown in Figure 4.23 which is located in the lower right hand corner of
the properties tab is used.

Exercise 11: Make the hasingredient property transitive

1. Select the haslngredient property in the property hierarchy on the ‘Object Proper-
ties’ tab.

2. Tick the ‘Tramnsitive’ tick box on the ‘Property Characteristics View’.

3. Select the isIngredientOf property, which is the inverse of haslngredient. Ensure that
the transitive tick box is ticked.

32

_| Functional

_| Inverse functional
— Transitive

_| Symmetric

_| Antisymmetric

"~ | Reflexive

_ Irreflexive

Figure 4.23: Property Characteristics Views

If a property is transitive then its inverse property should also be transitive.®

NOTE %At the time of writing this must be done manually in Protégé 4 . However, the reasoner will
assume that if a property is transitive, its inverse property is also a transitive.

A Note that if a property is transitive then it cannot be functional.®

%The reason for this is that transitive properties, by their nature, may form ‘chains’ of indi-
viduals. Making a transitive property functional would therefore not make sense.

We now want to say that our pizza can only have one base. There are numerous ways that this could be
accomplished. However, to do this we will make the hasBase property functional, so that it may have
only one value for a given individual.

Exercise 12: Make the hasBase property functional

1. Select the hasBase property.

2. Click the ‘Functional’ tick box on the ‘Property Characteristics View’ so that it
is ticked.

33

jsChildOf {sChildof
Robert 0, David Bill

X
isChildOf

Figure 4.24: An example of the antisymmetric property hasChildOf

AS m%

Y George 40
Simon

Figure 4.25: An example of a Reflexive Property: knows

If a datatype property is selected, the property characteristics view will be reduced
NOTE so that only options for ‘Allows multiple values’ and ‘Inverse Functional’ will
be displayed. This is because OWL-DL does not allow datatype properties to be
transitive, symmetric or have inverse properties.

4.6.5 Antisymmetric properties

If a property P is antisymmetric, and the property relates individual a to individual b then individual
b cannot be related to individual a via property P. Figure 4.24 shows an example of a antisymmetric
property. If the individual Robert is related to the individual David via the isChildOf property, then it
can be inferred that David is not related to Robert via the isChildOf property. It is, however, reasonable
to state that David could be related to another individual Bill via the isChildOf property. In other words,
if Robert is a child of David, then David cannot be a child of Robert, but David can be a child of Bill.

4.6.6 Reflexive properties

A property P is said to be reflexive when the property must relate individual a to itself. In Figure 4.25
we can see an example of this: using the property knows, an individual George must have a relationship
to itself using the property knows. In other words, George must know herself. However, in addition,
it is possible for George to know other people; therefore the individual George can have a relationship
with individual Simon along the property knows.

34

é Moty
F Qe &
! 0 Bob

Figure 4.26: An example of a Irreflexive Property: isMotherOf

haSTO ppPiINg

Pizza PizzaTopping

Figure 4.27: The domain and range for the hasTopping property and its inverse property isToppingOf. The
domain of hasTopping is Pizza the range of hasTopping is PizzaTopping — the domain and range
for isToppingOf are the domain and range for hasTopping swapped over

4.6.7 Irreflexive properties

If a property P is irreflexive, it can be described as a property that relates an individual a to individualb,
where individual a and individualb are not the same. An example of this would be the property motherOf:
an individual Alice can be related to individual Bob along the property motherOf, but Alice cannot be
motherOf herself (Figure 4.26).

4.7 Property Domains and Ranges

Properties may have a domain and a range specified. Properties link individuals from the domain to
individuals from the range. For example, in our pizza ontology, the property hasTopping would probably
link individuals belonging the the class Pizza to individuals belonging to the class of PizzaTopping. In
this case the domain of the hasTopping property is Pizza and the range is PizzaTopping — this is
depicted in Figure 4.27.

35

FhessmncaEonce T ouian peoss sdTons

vomains

Ranges (intersection

PizzaTopping

Figure 4.28: Property Range View (For Object Properties)

A Property Domains And Ranges In OWL — It is important to realise that in
OWL domains and ranges should not be viewed as constraints to be checked. They
are used as ‘axioms’ in reasoning. For example if the property hasTopping has the
domain set as Pizza and we then applied the hasTopping property to lceCream
(individuals that are members of the class lceCream), this would generally not
result in an error. It would be used to infer that the class lceCream must be a
subclass of Pizza! ©.

%An error will only be generated (by a reasoner) if Pizza is disjoint to lceCream

We now want to specify that the hasTopping property has a range of PizzaTopping. To do this the range
view shown in Figure 4.28 is used.

Exercise 13: Specify the range of hasTopping

1. Make sure that the hasTopping property is selected in the property hierarchy on the
‘Object Properties’ tab.

2. Press the ‘add class’ button on the ‘Range View’ (Figure 4.28). A dialog will appear
that allows a class to be selected from the ontology class hierarchy.

3. Select PizzaTopping and press the ‘OK’ button. PizzaTopping should now be dis-
played in the range list.

36

Description: hasTopping

Figure 4.29: Property Domain View

It is possible to specify multiple classes as the range for a property. If multiple
NOTE classes are specified in Protégé 4 the range of the property is interpreted to be
the intersection of the classes. For example, if the range of a property has the
classes Man and Woman listed in the range view, the range of the property will
be interpreted as Man union Woman. ¢

%See section 77?7 for an explanation of what a union class is.

To specify the domain of a property the domain view shown in Figure 4.29 is used.

Exercise 14: Specify Pizza as the domain of the hasTopping property

1. Make sure that the hasTopping property is selected in the property hierarchy on the
‘Object Properties’ tab.

2. Press the ‘Select and add class’ button on the Domain View. A dialog will appear
that allows a class to be selected from the ontology class hierarchy.

3. Select Pizza and press the OK button. Pizza should now be displayed in the domain

list.
MEANING
77,7? This means that individuals that are used ‘on the left hand side’ of the hasTopping
Pl property will be inferred to be members of the class Pizza. Any individuals that

are used ‘on the right hand side’ of the hasTopping property will be inferred to
be members of the class PizzaTopping. For example, if we have individuals a and
b and an assertion of the form a hasTopping b then it will be inferred that a is a
member of the class Pizza and that b is a member of the class PizzaTopping®.

2This will be the case even if @ has not been asserted to be a member of the class Pizza and/or
b has not been asserted to be a member of the class PizzaTopping.

37

Exercise 15: Specify the domain and range for the hasBase property and its inverse property is-
BaseOf

Take a look at the isToppingOf property, which is the inverse property of hasTop-
ping. Notice that Protégé has automatically filled in domain and range of the
isToppingOf property because the domain and range of the inverse property were
specified. The range of isToppingOf is the domain of the inverse property hasTop-
ping, and the domain of isToppingOf is the range of the inverse property hasTop-
ping. This is depicted in Figure 4.27.

1. Select the hasBase property.

2. Specify the domain of the hasBase property as Pizza.

3. Specify the range of the hasBase property as PizzaBase.

4. Select the isBaseOf property. Notice that the domain of isBaseOf is the range of the
inverse property hasBase and that the range of isBaseOf is the domain of the inverse
property hasBase.

5. Make the domain of the isBaseOf property PizzaBase.

6. Make the range of the isBaseOf property Pizza.

—
—
\3

In the previous steps we have ensured that the domains and ranges for properties
are also set up for inverse properties in a correct manner. In general, domain for
a property is the range for its inverse, and the range for a property is the domain
for its inverse — Figure 4.27 illustrates this for the hasTopping and isToppingOf.

Although we have specified the domains and ranges of various properties for the
purposes of this tutorial, we generally advise against doing this. The fact that
domain and range conditions do not behave as constraints and the fact that they
can cause ‘unexpected’ classification results can lead problems and unexpected
side effects. These problems and side effects can be particularly difficult to track
down in a large ontology.

4.8 Describing And Defining Classes

Having created some properties we can now use these properties to describe and define our Pizza Ontology

classes.

38

4.8.1 Property Restrictions

Recall that in OWL, properties describe binary relationships. Datatype properties describe relationships
between individuals and data values. Object properties describe relationships between two individuals.
For example, in Figure 3.2 the individual Matthew is related to the individual Gemma via the hasSibling
property. Now consider all of the individuals that have a hasSibling relationship to some other individ-
ual. We can think of these individuals as belonging the class of individuals that have some hasSibling
relationship. The key idea is that a class of individuals is described or defined by the relationships that
these individuals participate in. In OWL we can define such classes by using restrictions.

Vocabulary
A restriction describes a class of individuals based on the relationships that mem-
bers of the class participate in. In other words a restriction is a kind of class, in
the same way that a named class is a kind of class.

Restriction Examples

Let’s take a look at some examples to help clarify the kinds of classes of individuals that we might want
to describe based on their properties.

e The class of individuals that have at least one hasSibling relationship.

e The class of individuals that have at least one hasSibling relationship to members of Man — i.e.
things that have at least one sibling that is a man.

e The class of individuals that only have hasSibling relationships to individuals that are Women —
i.e. things that only have siblings that are women (sisters).

e The class of individuals that have more that three hasSibling relationships.

e The class of individuals that have at least one hasTopping relationship to individuals that are
members of MozzarellaTopping — i.e. the class of things that have at least one kind of mozzarella

topping.

e The class of individuals that only have hasTopping relationships to members of VegetableTopping
—i.e. the class of individuals that only have toppings that are vegetable toppings.

In OWL we can describe all of the above classes of individuals using restrictions. OWL restrictions in
OWL fall into three main categories:

e Quantifier Restrictions
e Cardinality Restrictions

e hasValue Restrictions.

We will initially use quantifier restrictions, which can be further categorised into ezistential restrictions
and wuniversal restrictions. Both types of restrictions will be illustrated with examples thought the
tutorial.

39

MozzarellaTopping

Things that have at least one
MozzarellaTopping
(hasTopping some MozzarellaTopping)

Figure 4.30: The Restriction hasTopping some Mozzarella. This restriction describes the class of individuals
that have at least one topping that is Mozzarella

Existential and Universal Restrictions

e Existential restrictions describe classes of individuals that participate in at least one relationship
along a specified property to individuals that are members of a specified class. For example,
“the class of individuals that have at least one (some) hasTopping relationship to members of
MozzarellaTopping”. In Protégé 4 the keyword ‘some’ is used to denote existential restrictions.’.

e Universal restrictions describe classes of individuals that for a given property only have relationships
along this property to individuals that are members of a specified class. For example, “the class of
individuals that only have hasTopping relationships to members of VegetableTopping”. In Protégé
4 the keyword ‘only’ is used. ©.

Let’s take a closer look at the example of an existential restriction. The restriction hasTopping some Moz-
zarellaTopping is an existential restriction (as indicated by the some keyword), which acts along the
hasTopping property, and has a filler MozzarellaTopping. This restriction describes the class of indi-
viduals that have at least one hasTopping relationship to an individual that is a member of the class
MozzarellaTopping. This restriction is depicted in Figure 4.30 — The diamonds in the Figure represent
individuals. As can be seen from Figure 4.30, the restriction is a class which contains the individuals
that satisfy the restriction.

MEANING
77,7? A restriction describes an anonymous class (an unnamed class). The anonymous
Pt class contains all of the individuals that satisfy the restriction — i.e. all of the

individuals that have the relationships required to be a member of the class.

The restrictions for a class are displayed and edited using the ‘Class Description View’ shown in Figure
4.31. The ‘Class Description View’ is the ‘heart of’ the ‘Classes’ tab in protege, and holds virtually
all of the information used to describe a class. At first glance, the ‘Class Description View’ may seem
complicated, however, it will become apparent that it is an incredibly powerful way of describing and
defining classes.

5Existential restrictions may be denoted by the ewistential quantifier (3). They are also knows as ‘someValuesFrom’
restrictions in OWL speak.

6Universal restrictions may be denoted by the universal quantifier (¥), which can be read as only. They are also known
as ‘allValuesFrom’ restrictions in OWL speak.

40

“Equivalent class header” A list of equivalent classes
appear here.The classes are sometimes reffered to
as a Necessary& sufficient criteria.

Delete
Create restriction

Edit

iption: MargheritaPizza

) I
Equivalent claskes

Superclasses
O NamedPizza
O hasTopping some MozzarellaTopping

@ hasTopping some TomatoTopping

O hasTopping only (TomatoTopping
or MozzarellaTopping)

Inherited anonymous classes

O hasBase some PizzaBase

Instances

Disjoint classes

O AmericanaPizza
O AmericanHotPizza
O SohoPizza

“Suclass of header” A list of

“Inferred/Inherited header” A list of
subclasses appear here.These

) conditions that have been inherited
classes are sometimes referred to from superclasses will be displayed
as Necessary criteria. here.

Figure 4.31: The Class Description View

41

Restrictions are used in OWL class descriptions to specify anonymous superclasses of the class being
described.

4.8.2 Existential Restrictions

Existential restrictions are by far the most common type of restrictions in OWL ontologies. An existential
restriction describes a class of individuals that have at least one (some) relationship along a specified
property to an individual that is a member of a specified class. For example, hasBase some PizzaBase
describes all of the individuals that have at least one relationship along the hasBase property to an
individual that is a member of the class PizzaBase — in more natural English, all of the individuals that
have at least one pizza base.

Vocabulary

Existential restrictions are also known as Some Restrictions, or as some values
from restrictions.

TIP

/,.w‘” Other tools, papers and presentations might write the restriction hasBase some
’ PizzaBase as 3 hasBase PizzaBase — this alternative notation is known as DL
Syntax (Description Logics Syntax), which is a more formal syntax.

Exercise 16: Add a restriction to Pizza that specifies a Pizza must have a PizzaBase

1. Select Pizza from the class hierarchy on the ‘Classes’ tab.

2. Select the “Subclass of” header in the ‘Class Description View’ shown in Figure
4.32 in order to create a necessary condition.

3. Press the ‘Add Class’ button shown in Figure 4.32. This will open a text box in the
Class Description view where we can enter our restrictions as shown in Figure 4.33

The create restriction text box allows you construct restrictions using class, property and individual
names. You can drag and drop classes, properties and individuals into the text box or type them in, the
text box with check all the values you enter and alert you to any errors. To create a restriction we have
to do three things:

e Enter the property to be restricted from the property list.
e Enter a type of restriction from the restriction types e.g. ‘some’ for an existential restriction.

e Specify a filler for the restriction

42

Thing

Figure 4.32: Creating a Necessary Restriction

Exercise 17: Add a restriction to Pizza that specifies a Pizza must have a PizzaBase (Continued...)

1. You can either drag and drop hasBase from the property list into the create restriction
text box, or type it in.

2. Now add the type or restriction, we will use an existential restriction so type ‘some’.

3. Specify that the filler is PizzaBase — to do this either: type PizzaBase into the filler
edit box, or drag and drop PizzaBase into the text box as show in Figure 4.33

4. Press ‘Enter’ to create the restriction and close the create restriction text box. If
all information was entered correctly the dialog will close and the restriction will
be displayed in the ‘Class Description View’. If there were errors they will be
underlined in red in the text box, o popup will give some hints to the cause of the
error — if this is the case, recheck that the type of restriction, the property and filler
have been specified correctly.

—
—
\3

A very useful feature of the expression builder is the ability to ‘auto complete’
class names, property names and individual names. Auto completion is activated
by pressing ‘alt tab’ on the keyboard. In the above example if we had typed Pi
into the inline expresion editor and pressed the tab key, the choices to complete
the word Pi would have poped up in a list as shown in Figure 4.33. The up and
down arrow keys could then have been used to select PizzaBase and pressing the
Enter key would complete the word for us.

The class description view should now look similar to the picture shown in Figure 4.34.

43

000 Thing

/—{ Class expression editor ~ Class tree Restriction creator }—

hasBase some Pi
© Pizza
() PizzaBase
() PizzaTopping

(Cancel) € OK)

VY

Figure 4.33: Creating a restriction in the text box, with auto-complete

Equivalent Class (Necessary & Sufficient Criteria)
Subclass OF (Necessary Criteria)
Thing

hasBase some PizzaBase

Inferred/Inherited anonymous descriptions (Necessary criteria)

Figure 4.34: class description view: Description of a Pizza

44

Pizza

Things that have at least
one PizzaBase
(hasBase some PizzaBase)

PizzaBase

Figure 4.35: A Schematic Description of a Pizza — In order for something to be a Pizza it is necessary for it
to have a (at least one) PizzaBase — A Pizza is a subclass of the things that have at least one

PizzaBase
MEANING
77,7? We have described the class Pizza to be a subclass of Thing and a subclass of the
Pt things that have a base which is some kind of PizzaBase.
Notice that these are necessary conditions — if something is a Pizza it is necessary
for it to be a member of the class Thing (in OWL, everything is a member of the
class Thing) and necessary for it to have a kind of PizzaBase.
More formally, for something to be a Pizza it is necessary for it to be in a relation-
ship with an individual that is a member of the class PizzaBase via the property
hasBase — This is depicted in Figure 4.35.
MEANING
7?,7? When restrictions are used to describe classes, they actually specify anonymous
Pl superclasses of the class being described. For example, we could say that Margher-

itaPizza is a subclass of, amongst other things, Pizza and also a subclass of the
things that have at least one topping that is MozzarellaTopping.

Creating Some Different Kinds Of Pizzas

It’s now time to add some different kinds of pizzas to our ontology. We will start off by adding a
‘MargheritaPizza’, which is a pizza that has toppings of mozzarella and tomato. In order to keep our

45

ontology tidy, we will group our different pizzas under the class ‘NamedPizza’:

Exercise 18: Create a subclass of Pizza called NamedPizza, and a subclass of NamedPizza called
MargheritaPizza

1. Select the class Pizza from the class hierarchy on the ‘Classes’ tab.

2. Press the ‘Add subclass’ button to create a new subclass of Pizza, and name it
NamedPizza.

3. Create a new subclass of NamedPizza, and name it MargheritaPizza.

4. Add a comment to the class MargheritaPizza using the ‘Annotations’ view that is
located next to the class hierarchy view: A pizza that only has Mozarella and
Tomato toppings — it’s always a good idea to document classes, properties etc. dur-
ing ontology editing sessions in order to communicate intentions to other ontology
builders.

Having created the class MargheritaPizza we now need to specify the toppings that it has. To do this
we will add two restrictions to say that a MargheritaPizza has the toppings MozzarellaTopping and
TomatoTopping.

Exercise 19: Create an existential (some) restriction on MargheritaPizza that acts along the prop-
erty hasTopping with a filler of MozzarellaTopping to specify that a MargheritaPizza has
at least one MozzarellaTopping

1. Make sure that MargheritaPizza is selected in the class hierarchy.

2. Select the “Subclass Of” header in the ‘Class Description View’, as we want to
create and add a necessary condition.

3. Use the ‘Add Class’ button on the ‘Class Description view’ (Figure 4.31) to open
a text box.

4. Type hasTopping as the property to be restricted in the text box.
5. Type ‘some’ to create the existential restriction.

6. Type the class MozzarellaTopping as the filler for the restriction — remember that
this can be achieved by typing the class name MozzarellaTopping into the filler edit
box, or by using drag and drop from the class hierarchy.

7. Press ‘Enter’ to create the restriction — if there are any errors, the restriction will
not be created, and the error will be highlighted in red.

46

Equivale
Subclas
NamedPizza
hasTopping some MozzarellaTopping
hasTopping some TomatoTopping
Inferred/Inherited anonymeous descriptions (Necessary criteria)
hasBase some PizzaBase

Figure 4.36: The Class Description View Showing A Description Of A MargheritaPizza

Now specify that MargheritaPizzas also have TomatoTopping.

Exercise 20: Create a existential restriction (some) on MargheritaPizza that acts along the property
hasTopping with a filler of TomatoTopping to specify that a MargheritaPizza has at least
one TomatoTopping

1. Ensure that MargheritaPizza is selected in the class hierarchy.

2. Select the “Subclass Of” header in the ‘Class Description View’, as we want to
create and add a necessary condition.

3. Use the ‘Add class’ button on the ‘Class Description View’ (Figure 4.31) to display
open the text box.

4. Type hasTopping as the property to be restricted.
5. Type ‘some’ to create the existential restriction.
6. Type the class TomatoTopping as the filler for the restriction.

7. Click ‘Enter’ to create restriction dialog to create the restriction.

The ‘Class Description View’ should now look similar to the picture shown in Figure 4.36.

MEANING
77,7? We have added restrictions to MargeritaPizza to say that a MargheritaPizza is
Pl a NamedPizza that has at least one kind of MozzarellaTopping and at least one

kind of TomatoTopping.

More formally (reading the class description view line by line), if something is a
member of the class MargheritaPizza it is necessary for it to be a member of the
class NamedPizza and it is necessary for it to be a member of the anonymous class
of things that are linked to at least one member of the class MozzarellaTopping
via the property hasTopping, and it is necessary for it to be a member of the
anonymous class of things that are linked to at least one member of the class
TomatoTopping via the property hasTopping.

47

=]

Equivalent Class (Necessary & Sufficient Criteria)

Subclass OF (Necessary Criteria)
NamedPizza
hasTopping some MozzarellaTopping
hasTopping some PepperoniTopping
hasTopping some TomatoTopping

Inferred/Inherited anonymous descriptions (Necessary criteria)
hasBase some PizzaBase

Figure 4.37: The Class Description View displaying the description for AmericanaPizza

Now create the class to represent an Americana Pizza, which has toppings of pepperoni, mozzarella
and tomato. Because the class AmericanaPizza is very similar to the class MargheritaPizza (i.e. an
Americana pizza is almost the same as a Margherita pizza but with an extra topping of pepperoni) we
will make a clone of the MargheritaPizza class and then add an extra restriction to say that it has a
topping of pepperoni.

Exercise 21: Create AmericanaPizza by cloning and modifying the description of MargheritaPizza

1. Select the class MargheritaPizza in the class hierarchy on the Classes tab.

2. Select “’Duplicate selected class from the ‘Edit’ menu. This will create a copy of the
class MargheritaPizza named MargheritaPizza_2, that has exactly the same conditions
(restrictions etc.) as MargheritaPizza.

3. Rename the MargheritaPizza 2 to AmericanaPizza using the ‘Rename...” option
‘Refactor’ menu.

4. Ensuring that AmericanaPizza is still selected, select the “Subclass of” header in the
class description view, as we want to add a new restriction to the necessary conditions
for AmericanaPizza.

5. Press the ‘Add class’ button on the class description view to open a text box.
Type the property hasTopping as the property to be restricted.

Type ‘some’ to create the existential restriction.

® N>

Specify the restriction filler as the class PepperoniTopping by either typing
PepperoniTopping into the text box, or by using drag and drop from the class hier-
archy.

9. Press Enter to create the restriction.

48

Class Description: AmericanHotPizza MEEE
[@][®]e][=

Equivalent Class (Necessary & Sufficient Criteria)
Subclass Of (Necessary Criteria)
NamedPizza

hasTopping some Jal

P PepperTopping

hasTopping some M llaTopping
hasTopping some Pepp iTopping
hasTopping some Ti Topping

Inferred/Inherited anonymous descriptions (Necessary criteria)
J=! hasBase some PizzaBase

Figure 4.38: The Class Description View displaying the description for AmericanHotPizza

GIEILE

Equivalent Class (Necessary & Sufficient Criteria)
Subclass OF (Necessary Criteria)
NamedPizza

hasTopping some llaTopping
= hasTopping some OliveTopping
hasTopping some Par Topping
hasTopping some T T

Inferred/Inherited anonymous descriptions (Necessary criteria)
hasBase some PizzaBase

Figure 4.39: The Class Description View displaying the description for SohoPizza

The ‘Class Description View’ should now look like the picture shown in Figure 4.37.

Exercise 22: Create an AmericanHotPizza and a SohoPizza

1. An AmericanHotPizza is almost the same as an AmericanaPizza, but has Jalapeno
peppers on it — create this by cloning the class AmericanaPizza and adding an exis-

tential restriction along the hasTopping property with a filler of JalapenoPepperTop-
ping.

. A SohoPizza is almost the same as a MargheritaPizza but has additional toppings
of olives and and parmezan cheese — create this by cloning MargheritaPizza and

adding two existential restrictions along the property hasTopping, one with a filler of
OliveTopping, and one with a filler of ParmezanTopping.

For AmericanHot pizza the class description view should now look like the picture shown in Figure 4.38.
For SohoPizza the class description view should now look like the picture shown in 4.39.

49

Having created these pizzas we now need to make them disjoint from one another:

Exercise 23: Make subclasses of NamedPizza disjoint from each other

1. Select the class MargheritaPizza in the class hierarchy on the ‘Classes’ tab.

2. Press the ‘Add all siblings’ button on the ‘Disjoints view’ to make the pizzas
disjoint from each other.

4.9 Using A Reasoner

4.9.1 Determining the OWL Sub-Language

As mentioned in section 3.1, OWL comes in three flavours (or sub-languages): OWL-Lite, OWL-DL
(DL stands for Description Logics) and OWL-Full. The exact definitions of these sub-languages can be
found in the OWL Overview, which is available on the World Wide Web Consortium website”. Protégé
4 features a species validation facility, which is able to determine the sub-language of the ontology being
edited. To use the species validation facility, use the ‘Determine OWL Species...” option on the
‘Tools menu’. This will report the sub-language of the ontology.

One of the key features of ontologies that are described using OWL-DL is that they can be processed by
a reasoner. One of the main services offered by a reasoner is to test whether or not one class is a subclass
of another class®. By performing such tests on the classes in an ontology it is possible for a reasoner to
compute the inferred ontology class hierarchy. Another standard service that is offered by reasoners is
consistency checking. Based on the description (conditions) of a class the reasoner can check whether or
not it is possible for the class to have any instances. A class is deemed to be inconsistent if it cannot
possibly have any instances.

Vocabulary

Reasoners are also known as classifiers.

4.9.2 Invoking The Reasoner

Protégé 4 allows different OWL reasoners to be plugged in, the reasoner shipped with Protégé is called
Fact++. The ontology can be ‘sent to the reasoner’ to automatically compute the classification hierarchy,
and also to check the logical consistency of the ontology. In Protégé 4 the ‘manually constructed’ class
hierarchy is called the asserted hierarchy. The class hierarchy that is automatically computed by the
reasoner is called the inferred hierarchy. To automatically classify the ontology (and check for incon-
sistencies) the ‘Classify...” action should be used. This can be invoked via the ‘Classify...” button in
the Reasoner drop down menu shown in Figure 4.40. When the inferred hierarchy has been computed,

"http://www.w3.org/TR/owl-features/
8Known as subsumption testing — the descriptions of the classes (conditions) are used to determine if a super-
class/subclass relationship exists between them.

50

GOEL L Tools Ri

Classify... :®|T
v Pellet 1.4

DIC 1.1 Reasoner

None

Figure 4.40: Classify the ontology from the reasoner menu

Asserted Class Hierarchy: CheesyPizza mEmE |8 Inferred class hierarchy: CheesyPizza DEEE
%] v ® Thing

v @ Thing v @ Pizza
¥) Pizza ¥ &) CheesyPizza
& CheesyPizza) AmericanaPizza
¥ O NamedPizza) AmericanHotPizza
@ AmericanaPizza i MargheritaPizza

@ AmericanHotPizza) SohoPizza

@ MargheritaPizza ¥ & NamedPizza
@ SohoPizza) AmericanaPizza

>) PizzaBase) AmericanHotPizza
b O PizzaTopping @ MargheritaPizza
) SohoPizza
b 0 PizzaBase
b 0 PizzaTopping

Figure 4.41: The Inferred Hierarchy Pane alongside the Asserted Hierarchy Pane after classification has taken
place. Note the inferred subclasses of CheesyPizza

an inferred hierarchy window will pop open on top the existing asserted hierarchy window as shown in
Figure 4.41. If a class has been reclassified (i.e. if it’s superclasses have changed) then the class name
will appear in a blue colour in the inferred hierarchy. If a class has been found to be inconsistent it’s icon
will be highlighted in red.

Vocabulary

The task of computing the inferred class hierarchy is also know as classifying the
ontology.

51

[#]

Equivalent Class (Necessary & Sufficient Criteria)
Subclass OF (Necessary Criteria)
CheeseTopping
VegetableTopping

Inferred/Inherited anonymous descriptions (Necessary criteria)

Figure 4.42: The Class Description View Displaying ProbelnconsistentTopping

4.9.3 Inconsistent Classes

In order to demonstrate the use of the reasoner in detecting inconsistencies in the ontology we will create
a class that is a subclass of both CheeseTopping and also VegetableTopping. This strategy is often used
as a check so that we can see that we have built our ontology correctly. Classes that are added in order
to test the integrity of the ontology are sometimes known as Probe Classes.

Exercise 24: Add a Probe Class called ProbelnconsistentTopping which is a subclass of both
CheeseTopping and VegetableTopping

1. Select the class CheeseTopping from the class hierarchy on the Classes tab.
2. Create a subclass of CheeseTopping named ProbelnconsistentTopping.

3. Add a comment to the ProbelnconsistentTopping class that is something along the
lines of, “This class should be inconsistent when the ontology is classified.”. This will
enable anyone who looks at our pizza ontology to see that we deliberately meant the
class to be inconsistent.

4. Ensure that the ProbelnconsistentTopping class is selected in the class hierarchy, and
then select the “Subclass Of” header in the ‘Class Description View’.

5. Click on the ‘superclasses’ button on the ‘Class Description View’. This will dis-
play a dialog containing the class hierarchy from which a class may be selected. Select
the class VegetableTopping and then press the OK button. The class VegetableTop-
ping will be added as a superclass, so that the class description view should look like
the picture in Figure 4.42.

52

(1]] =]

v Thing
> Pizza
> PizzaBase
\ J PizzaTopping
v CheeseTopping
MozzarellaTopping
ParmezanTopping
ProbelnconsistentTopping
» MeatTopping
SeafoodTopping
v VegetableTopping
CaperTopping
MushroomTopping
OliveTopping
OnionTopping
| 2 PepperTopping
ProbelnconsistentTopping
TomatoTopping

v

Figure 4.43: The Class ProbelnconsistentTopping found to be inconsistent by the reasoner

MEANING
?
7

? 7=

If we study the class hierarchy, ProbelnconsistentTopping should appear as a
subclass of CheeseTopping and as a subclass of VegetableTopping. This means
that ProbelnconsistentTopping is a CheeseTopping and a VegetableTopping.
More formally, all individuals that are members of the class ProbelnconsistentTop-
ping are also (necessarily) members of the class CheeseTopping and (necessarily)
members of the class VegetableTopping. Intuitively this is incorrect since some-
thing can not simultaneously be both cheese and a vegetable!

Exercise 25: Classify the ontology to make sure ProbelnconsistentTopping is inconsistent

1. Press the ‘Classify...” button on the Reasoner drop down menu to classify the ontol-

ogy.

After a few seconds the inferred hierarchy will have been computed and the inferred hierarchy window
will pop open (if it was previously closed). The hierarchy should resemble that shown in Figure 4.43
— notice that the class ProbelnconsistentTopping is highlighted in red, indicating that the reasoner has

found this class to be inconsistent (i.e. it cannot possibly have any individuals as memebers).

53

MEANING

7?,7? Why did this happen? Intuitively we know something cannot at the same time
Pt be both cheese and a vegetable. Something should not be both an instance of

CheeseTopping and an instance of VegetableTopping. However, it must be re-
membered that we have chosen the names for our classes. As far as the reasoner is
concerned names have no meaning. The reasoner cannot determine that something
is inconsistent based on names. The actual reason that ProbelnconsistentTopping
has been detected to be inconsistent is because its superclasses VegetableTopping
and CheeseTopping are disjoint from each other — remember that earlier on we
specified that the four categories of topping were disjoint from each other. There-
fore, individuals that are members of the class CheeseTopping cannot be members
of the class VegetableTopping and vice-versa.

—

IP

/f*‘” To close the inferred hierarchy use the small white cross on a red background
button on the top right of the inferred hierarchy window.

Exercise 26: Remove the disjoint statement between CheeseTopping and VegetableTopping to see
what happens

1. Select the class CheeseTopping using the class hierarchy.

2. The ‘Disjoints view’ should contain CheeseTopping’s sibling classes: VegetableTop-
ping, SeafoodTopping and MeatTopping. Select VegetableTopping in the Disjoints

view.

3. Press the ‘Delete selected row’ button on the Disjoints view (shown in Figure ?77?)
to remove the disjoint axiom that states CheeseTopping and VegetableTopping are
disjoint.

4. Press ‘Classify...” on the Reasoner drop down menu to send the ontology to the
reasoner. After a few seconds the ontology should have been classified and the results
displayed.

54

MEANING

7?,7? It should be noticeable that ProbelnconsistentTopping is no longer inconsistent!
Pl This means that individuals which are members of the class Probelnconsistent-

Topping are also members of the class CheeseTopping and VegetableTopping —
something can be both cheese and a vegetable!

This clearly illustrates the importance of the careful use of disjoint axioms in
OWL. OWL classes ‘overlap’ until they have been stated to be disjoint from each
other. If certain classes are not disjoint from each other then unexpected results
can arise. Accordingly, if certain classes have been incorrectly made disjoint from
each other then this can also give rise to unexpected results.

Exercise 27: Fix the ontology by making CheeseTopping and Vegetable disjoint from each other

1. Select the class CheeseTopping using the class hierarchy.
2. The ‘Disjoints view’ should contain MeatTopping and SeafoodTopping.

3. Press the ‘Add disjoint class’ button on the disjoint classes view to display a dialog
which classes may be picked from. Select the class VegetableTopping and press the
OK button. CheeseTopping should once again be disjoint from VegetableTopping.

4. Test that the disjoint axiom has been added correctly — Press ‘Classify...” on the
Reasoner drop down menu to send the ontology to the reasoner. After a few seconds
the ontology should have been classified, and ProbelnconsistentTopping should be
highlighted in red indicating that it is once again inconsistent.

4.10 Necessary And Sufficient Conditions (Primitive and De-
fined Classes)

All of the classes that we have created so far have only used mecessary conditions to describe them.
Necessary conditions can be read as, “If something is a member of this class then it is necessary to
fulfil these conditions”. With necessary conditions alone, we cannot say that, “If something fulfils these
conditions then it must be a member of this class”.

Vocabulary

A class that only has necessary conditions is known as a Primitive Class.

Let’s illustrate this with an example. We will create a subclass of Pizza called CheesyPizza, which will

55

[#]

Equivalent Class (Ne

Subclass OF (Ne
Pizza
hasTopping some CheeseTopping

Inferred/Inherited anonymous descriptions (Necessary criteria)

cessary & Sufficient Criteria)

ssary Criteria)

Figure 4.44: The Description of CheesyPizza (Using Necessary Conditions)

be a Pizza that has at least one kind of CheeseTopping.

Exercise 28: Create a subclass of Pizza called CheesyPizza and specify that it has at least one
topping that is a kind of CheeseTopping

1. Select Pizza in the class hierarchy on the ‘Classes’ tab.
2. Press the ‘Add subclass’ button to create a subclass of Pizza. Name it CheesyPizza.

3. Make sure that CheesyPizza is selected in the class hierarchy. Select the “Subclass
of” header in the class description view.

4. Press the ‘Add class’ button on the class description view to open the restriction text
box.

5. Type hasTopping as the property to be restricted.
6. Type ‘some’ to create the existential restriction.

7. Finally type CheeseTopping or drag the class from the class hierarchy. Press ‘Enter’
to close the dialog and create the restriction.

The ‘Class Description View’ should now look like the picture shown in Figure 4.44.

MEANING
77,7? Our description of CheesyPizza states that if something is a member of the class
Pt CheesyPizza it is necessary for it to be a member of the class Pizza and it is
necessary for it to have at least one topping that is a member of the class Cheese-
Topping.

Our current description of CheesyPizza says that if something is a CheesyPizza it is necessarily a Pizza
and it is mecessary for it to have at least one topping that is a kind of CheeseTopping. We have used
necessary conditions to say this. Now consider some (random) individual. Suppose that we know that
this individual is a member of the class Pizza. We also know that this individual has at least one kind of
CheeseTopping. However, given our current description of CheesyPizza this knowledge is not sufficient
to determine that the individual is a member of the class CheesyPizza. To make this possible we need to
change the conditions for CheesyPizza from necessary conditions to necessary AND sufficient conditions.
This means that not only are the conditions necessary for membership of the class CheesyPizza, they
are also sufficient to determine that any (random) individual that satisfies them must be a member of

56

=]

Equivalent Class (Necessary & Sufficient Criteria)
Pizza
hasTopping some CheeseTopping
Subclass OF (Necessary Criteria)

Inferred/Inherited anonymous cescriptions (Necessary criteria)
hasBase some PizzaBase

Figure 4.45: The Description of CheesyPizza (Using Necessary AND Sufficient Conditions)

the class CheesyPizza.

Vocabulary

Vocabulary

a Defined Class.

A class that has at least one set of necessary and sufficient conditions is known as

known as ‘complete’ classes.

Classes that only have necessary conditions are also known as ‘partial’ classes.
Classes that have at least one set of necessary and sufficient conditions are also

In order to convert necessary conditions to necessary and sufficient conditions, the conditions must be
moved from under the “NECESSARY” header in the class description view to be under the “NECESSARY
AND SUFFICIENT” header. This can be accomplished by dragging and dropping the conditions one-

Exercise 29: Convert the necessary conditions for CheesyPizza into nhecessary & sufficient condi-

tions

. Ensure that CheesyPizza is selected in the class hierarchy.

. On the ‘Class Description View’ select the hasTopping some CheeseTopping re-
striction.

. Drag the hasTopping some CheeseTopping restriction from under the “Subclass of”
header to on top of the “Equivalent class” header.

. Select the class Pizza.

. Drag the class Pizza from under the “Subclass of” header to on top of the hasTopping
some CheeseTopping restriction (note not on top of the “Equivalent class” header
this time).

The ‘Class Description View’ should now look like the picture shown in Figure 4.45.

57

MEANING
?
27

? 7=

A

NECESSARY CONDITIONS

[Condition]
implies [Condition]

NamedClass -
RN Condition]
[Condition]

If an individual is a member of ‘NamedClass’ then it must satisfy the conditions.
However if some individual satisfies these necessary conditions, we cannot say
that it is a member of ‘Named Class’ (the conditions are not ‘sufficient’ to be able
to say this) - this is indicated by the direction of the arrow.

NECESSARY & SUFFICIENT CONDITIONS

[Condition |
NamedClass) <g—m2lies o [Condition I
[Condition]
[Condition |

If an individual is a memeber of ‘NamedClass’ then it must satisfy the conditions.
If some individual satisfies the condtions then the individual must be a member
of ‘NamedClass’- this is indicated by the double arrow.

Figure 4.46: Necessary And Sufficient Conditions

We have converted our description of CheesyPizza into a definition. If something
is a CheesyPizza then it is necessary that it is a Pizza and it is also necessary
that at least one topping that is a member of the class CheeseTopping. Moreover,
if an individual is a member of the class Pizza and it has at least one topping that
is a member of the class CheeseTopping then these conditions are sufficient to
determine that the individual must be a member of the class CheesyPizza. The
notion of necessary and sufficient conditions is illustrated in Figure 4.46.

If you accidentally dropped Pizza onto the “Equivalent class” header (rather that
onto the hasTopping some CheeseTopping) in Exercise 29 the class description
view will look like the picture shown in Figure 4.47. In this case, a new neces-
sary and sufficient condition has been created, which is not what we want. To
correct this mistake, drag Pizza on top of the hasTopping some CheeseTopping
restriction.

[#]

Equivalent Class (N

Equivalent Class (Necessary & Sufficient Criteria)

Subclas

Inferred/Inherited anonymous descriptions (Necessary criteria)

ecessary & Sufficlent Criteria)
hasTopping some CheeseTopping

Pizza

Of (Necessary Criteria)

Figure 4.47: An INCORRECT description of CheesyPizza

58

—

IP

/’ Conditions may also be transferred from “Subclass of” to “Equivalent class” and
vice versa using Cut and Paste. Right click (ctrl click on a Mac) on a condition
and select Cut or Paste from the popup menu.

To summarise: If class A is described using necessary conditions, then we can say that if an individual
is a member of class A it must satisfy the conditions. We cannot say that any (random) individual that
satisfies these conditions must be a member of class A. However, if class A is now defined using necessary
and sufficient conditions, we can say that if an individual is a member of the class A it must satisfy the
conditions and we can now say that if any (random) individual satisfies these conditions then it must be
a member of class A. The conditions are not only necessary for membership of A but also sufficient to
determine that something satisfying these conditions is a member of A.

How is this useful in practice? Suppose we have another class B, and we know that any individuals that
are members of class B also satisfy the conditions that define class A. We can determine that class B is
subsumed by class A — in other words, B is a subclass of A. Checking for class subsumption is a key
task of a description logic reasoner and we will use the reasoner to automatically compute a classification
hierarchy in this way.

In OWL it is possible to have multiple sets of necessary & sufficient conditions.
NOTE This is discussed later in section 7.5

4.10.1 Primitive And Defined Classes

Classes that have at least one set of necessary and sufficient conditions are known as defined classes —
they have a definition, and any individual that satisfies the definition will belong to the class. Classes
that do not have any sets of necessary and sufficient conditions (only have necessary conditions) are
know as primitive classes. In Protégé 4 defined classes have a class icon with an orange background.
Primitive classes have a class icon that has a yellow background. It is also important to understand that
the reasoner can only automatically classify classes under defined classes - i.e. classes with at least one
set of necessary and sufficient conditions.

4.11 Automatic Classification

Being able to use a reasoner to automatically compute the class hierarchy is one of the major benefits of
building an ontology using the OWL-DL sub-language. Indeed, when constructing very large ontologies
(with upwards of several thousand classes in them) the use of a reasoner to compute subclass-superclass
relationships between classes becomes almost vital. Without a reasoner it is very difficult to keep large
ontologies in a maintainable and logically correct state. In cases where ontologies can have classes that
have many superclasses (multiple inheritance) it is nearly always a good idea to construct the class
hierarchy as a simple tree. Classes in the asserted hierarchy (manually constructed hierarchy) therefore
have no more than one superclass. Computing and maintaining multiple inheritance is the job of the
reasoner. This technique® helps to keep the ontology in a maintainable and modular state. Not only

9Sometimes know as ontology normalisation.

59

I:I:‘ D D v ® Thing

v Thing v Pizza
v Pizza ¥ = CheesyPizza

CheesyPizza AmericanaPizza
A 4 NamedPizza AmericanHotPizza
AmericanaPizza MargheritaPizza

AmericanHotPizza SohoPizza

MargheritaPizza A NamedPizza
SohoPizza AmericanaPizza

> PizzaBase AmericanHotPizza
» PizzaTopping MargheritaPizza
SohoPizza
> PizzaBase
> PizzaTopping

Figure 4.48: The Asserted and Inferred Hierarchies Displaying The Classification Results For CheesyPizza

does this promote the reuse of the ontology by other ontologies and applications, it also minimises human
errors that are inherent in maintaining a multiple inheritance hierarchy.

Having created a definition of a CheesyPizza we can use the reasoner to automatically compute the
subclasses of CheesyPizza.

Exercise 30: Use the reasoner to automatically compute the subclasses of CheesyPizza

1. Press the ‘Classify...” button on the Reasoner drop down menu (See Figure 4.40).

After a few seconds the inferred hierarchy should have been computed and the inferred hierarchy window
will pop open (if it was previously closed). The inferred hierarchy should appear similar to the picture
shown in Figure 4.48. Figures 4.49 and 4.50 show the OWLViz display of the asserted and inferred
hierarchies respectively. Notice that classes which have had their superclasses changed by the reasoner
are shown in blue.

60

MargheritaPizza AmericanHotPizza

Figure 4.49: OWLViz Displaying the Asserted Hierarchy for CheesyPizza

CheesyPlzza NameP|zza

Oy

SohoPlzza MargherltaPlzza AmencanaPlzza

AmerlcanHotPlzza

Figure 4.50: OWLViz Displaying the Inferred Hierarchy for CheesyPizza

61

MEANING

7’?,’? The reasoner has determined that MargheritaPizza, AmericanaPizza, American-
Pl HotPizza and SohoPizza are subclasses of CheesyPizza. This is because we

defined CheesyPizza using necessary and sufficient conditions. Any individual
that is a Pizza and has at least one topping that is a CheeseTopping is a member
of the class CheesyPizza. Due to the fact that all of the individuals that are
described by the classes MargheritaPizza, AmericanaPizza, AmericanHotPizza
and SohoPizza are Pizzas and they have at least one topping that is a Cheese-
Topping® the reasoner has determined that these classes must be subclasses of
CheeseTopping.

2QOr toppings that belong to the subclasses of CheeseTopping

A It is important to realise that, in general, classes will never be placed as sub-
classes of primitive classes (i.e. classes that only have necessary conditions) by the
reasoner®.

%The exception to this is when a property has a domain that is a primitive class. This can
coerce classes to be reclassified under the primitive class that is the domain of the property —
the use of property domains to cause such effects is strongly discouraged.

4.11.1 Classification Results

After the reasoner has been invoked, computed superclass-subclass relationships and inconsistent classes
are displayed in the ‘Classification Results’ pane shown in Figure 4.51. The ‘Classification Results’
pane pops open after classification at the bottom of the Protégé application window. The ‘spanner icon’
on the left hand side of the pane is the ‘Assert Selected Change(s)’ button. Pressing this button
takes the superclass-subclass relationships that have been found by the reasoner and puts them into
the asserted (manually constructed) hierarchy. For example, if the ‘Assert Selected Changes’ button
was pressed with the selection shown in Figure 4.51, CheesyPizza would be added as a superclass of
AmericanaPizza.

A Despite that fact that this facility exists, it is generally considered a bad idea to
put computed/inferred relationships into the ‘manually constructed’ or asserted
model whilst an ontology is being developed — we therefore advise against using
this button during the development of an ontology.

4.12 Universal Restrictions

All of the restrictions we have created so far have been existential restrictions (some). Existential restric-
tions specify the existence of at least one relationship along a given property to an individual that is a
member of a specific class (specified by the filler). However, existential restrictions do not mandate that
the only relationships for the given property that can exist must be to individuals that are members of

62

Class
ProbelnconsistentTopping Inconsistent
AmericanaPizza Added CheesyPizza
AmericanHotPizza Added CheesyPizza
MargheritaPizza Added CheesyPizza
SohoPizza Added CheesyPizza

Figure 4.51: The Classification Results Pane

the specified filler class.

For example, we could use an existential restriction hasTopping some MozzarellaTopping to describe the
individuals that have at least one relationship along the property hasTopping to an individual that is
a member of the class MozzarellaTopping. This restriction does not imply that all of the hasTopping
relationships must be to a member of the class MozzarellaTopping. To restrict the relationships for a
given property to individuals that are members of a specific class we must use a universal restriction.

Universal restrictions are given the symbol V. They constrain the relationships along a given property
to individuals that are members of a specific class. For example the universal restriction V hasTopping
MozzarellaTopping describes the individuals all of whose hasTopping relationships are to members of the
class MozzarellaTopping — the individuals do not have a hasTopping relationships to individuals that
aren’t members of the class MozzarellaTopping.

Vocabulary
Universal restrictions are also know as AllValuesFrom Restrictions.

A The above universal restriction V hasTopping MozzarellaTopping also describes
the individuals that do not participate in any hasTopping relationships. An indi-
vidual that does not participate in any hasTopping relationships what so ever, by
definition does not have any hasTopping relationships to individuals that aren’t
members of the class MozzarellaTopping and the restriction is therefore satisfied.

A For a given property, universal restrictions do not specify the existence of a rela-
tionship. They merely state that if a relationship exists for the property then it
must be to individuals that are members of a specific class.

Suppose we want to create a class called VegetarianPizza. Individuals that are members of this class
can only have toppings that are CheeseTopping or VegetableTopping. To do this we can use a universal

63

restriction.

Exercise 31: Create a class to describe a VegetarianPizza

Create a subclass of Pizza, and name it VegetarianPizza.

. Making sure that VegetarianPizza is selected, click on the “Subclass Of” header in

the ‘Class Description View’.

Press the ‘Add class’ button on the ‘Class Description View’ to text box.
Type hasTopping as the property to be restricted.

Type ‘only’ in order to create a universally quantified restriction.

For the filler we want to say CheeseTopping or VegetableTopping. We place this
inside brackets so write a open bracket followed by the class CheeseTopping either by
typing CheeseTopping into the filler box, or by using drag and drop from the class
hierarchy. We now need to use the unionOf operator between the class names. We
can add this operator by simply typing or®. Next insert the class VegetableTopping
either by typing it or by using drag and drop. You should now have hasTopping only
(CheeseTopping or VegetableTopping) in the text box.

Press ‘Enter’ to close the dialog and create the restriction — if there are any errors
(due to typing errors etc.) they will be highlighted in red.

%See section 77 for more information about union classes.

At this point the class description view should look like the picture shown in Figure 4.52.

MEANING

7

]
? 7=

Topping.

members of the class CheeseTopping or VegetableTopping.

participate in any hasTopping relationships.

This means that if something is a member of the class VegetarianPizza it is nec-
essary for it to be a kind of Pizza and it is necessary for it to only (V universal
quantifier) have toppings that are kinds of CheeseTopping or kinds of Vegetable-

In other words, all hasTopping relationships that individuals which are members
of the class VegetarianPizza participate in must be to individuals that are either

The class VegetarianPizza also contains individuals that are Pizzas and do not

64

=]

Equivalent Cla

(Necessary & Sufficient Criteria)

Subclass OF (Necessary Criteria)
Pizza
hasTopping only (VegetableTopping or CheeseTopping)

Inferred/Inherited anonymous descriptions (Necessary criteria)

Figure 4.52: The Description of VegetarianPizza (Using Necessary Conditions)

A In situations like the above example, a common mistake is to use an intersec-
tion instead of a union. For example, CheeseTopping M VegetableTopping. This
reads, CheeseTopping and VegetableTopping. Although “CheeseTopping and
Vegetable” might be a natural thing to say in English, this logically means some-
thing that is simultaneously a kind of CheeseTopping and VegetableTopping. This
is obviously incorrect as demonstrated in section 4.9.3. If the classes CheeseTop-
ping and VegetableTopping were not disjoint, this would have been a logically
legitimate thing to say — it would not be inconsistent and therefore would not be
‘spotted’ by the reasoner.

A In the above example it might have been tempting to create two universal re-
strictions — one for CheeseTopping (V hasTopping CheeseTopping) and one for
VegetableTopping (V hasTopping VegetableTopping). However, when multiple
restrictions are used (for any type of restriction) the total description is taken
to be the intersection of the individual restrictions. This would have therefore
been equivalent to one restriction with a filler that is the intersection of Moz-
zarellaTopping and TomatoTopping — as explained above this would have been
logically incorrect.

Currently VegetarianPizza is described using necessary conditions. However, our description of a Veg-
etarianPizza could be considered to be complete. We know that any individual that satisfies these
conditions must be a VegetarianPizza. We can therefore convert the necessary conditions for Vegetari-
anPizza into necessary and sufficient conditions. This will also enable us to use the reasoner to determine

65

[#]

Equivalent Class (Necessary & Sufficient Criteria)
Pizza
hasTopping only (VegetableTopping or CheeseTopping)
155 OF (N

Inferred/Inherited anonymous descriptions (Necessary criteria)

ecessary Criteria)

Figure 4.53: The Class Description View Displaying the Definition of VegetarianPizza (Using Necessary and
Sufficient Conditions)

the subclasses of VegetarianPizza.

Exercise 32: Convert the necessary conditions for VegetarianPizza into necessary & sufficient
conditions

1. Ensure that VegetarianPizza is selected in the class hierarchy.

2. On the ‘Class Description View’ select the (universal) restriction on the hasTopping
property.

3. Drag the hasTopping restriction from under the “Subclass of” header to on top of the
“Equivalent class” header.

4. Select the class Pizza.

5. Drag the class Pizza from under the “Subclass of” header to on top of the hasTopping
restriction (note not on top of the “Equivalent class” header this time).

The ‘Class Description View’ should now look like the picture shown in Figure 4.53.

MEANING
7?,7? We have converted our description of VegetarianPizza into a definition. If some-
Pl thing is a VegetarianPizza, then it is necessary that it is a Pizza and it is also

necessary that all toppings belong to the class CheeseTopping or VegetableTop-
ping. Moreover, if something is a member of the class Pizza and all of it’s toppings
are members of the class CheeseTopping or the class VegetableTopping then these
conditions are sufficient to recognise that it must be a member of the class Veg-
etarianPizza. The notion of necessary and sufficient conditions is illustrated in
Figure 4.46.

4.13 Automatic Classification and Open World Reasoning

We want to use the reasoner to automatically compute the superclass-subclass relationship (subsumption
relationship) between MargheritaPizza and VegetarianPizza and also, SohoPizza and VegetarianPizza.
Recall that we believe that MargheritaPizza and SohoPizza should be vegetarian pizzas (they should

66

be subclasses of VegetarianPizza). This is because they have toppings that are essentially vegetarian
toppings — by our definition, vegetarian toppings are members of the classes CheeseTopping or Veg-
etableTopping and their subclasses. Having previously created a definition for VegetarianPizza (using
a set of necessary and sufficient conditions) we can use the reasoner to perform automatic classification
and determine the vegetarian pizzas in our ontology.

Exercise 33: Use the reasoner to classify the ontology

1. Press the ‘Classify...” button in the Reasoner Drop Down menu.

You will notice that MargheritaPizza and also SohoPizza have not been classified as subclasses of Veg-
etarianPizza. This may seem a little strange, as it appears that both MargheritaPizza and SohoPizza
have ingredients that are vegetarian ingredients, i.e. ingredients that are kinds of CheeseTopping or
kinds of VegetableTopping. However, as we will see, MargheritaPizza and SohoPizza have something
missing from their definition that means they cannot be classified as subclasses of VegetarianPizza.

Reasoning in OWL (Description Logics) is based on what is known as the open world assumption (OWA).
Tt is frequently referred to as open world reasoning (OWR). The open world assumption means that we
cannot assume something doesn’t exist until it is explicitly stated that it does not exist. In other words,
because something hasn’t been stated to be true, it cannot be assumed to be false — it is assumed that
‘the knowledge just hasn’t been added to the knowledge base’. In the case of our pizza ontology, we
have stated that MargheritaPizza has toppings that are kinds of MozzarellaTopping and also kinds of
TomatoTopping. Because of the open world assumption, until we explicitly say that a MargheritaPizza
only has these kinds of toppings, it is assumed (by the reasoner) that a MargheritaPizza could have other
toppings. To specify explicitly that a MargheritaPizza has toppings that are kinds of MozzarellaTopping
or kinds of MargheritaTopping and only kinds of MozzarellaTopping or MargheritaTopping, we must add
what is known as a closure aziom'® on the hasTopping property.

4.13.1 Closure Axioms

A closure axiom on a property consists of a universal restriction that acts along the property to say that
it can only be filled by the specified fillers. The restriction has a filler that is the union of the fillers that
occur in the existential restrictions for the property'!. For example, the closure axiom on the hasTopping
property for MargheritaPizza is a universal restriction that acts along the hasTopping property, with a
filler that is the union of MozzarellaTopping and also TomatoTopping. i.e. V hasTopping (Mozzarel-

10 Also referred to as a closure restriction.
11 And technically speaking the classes for the values used in any hasValue restrictions (see later).

67

[#]

Equivalent Class
Subclass OF (Necessary Criteria)
NamedPizza
hasTopping some MozzarellaTopping
hasTopping some TomatoTopping
hasTopping only (TomatoTopping or MozzarellaTopping)
Inferred/Inherited anonymous cescriptions (Necessary criteria)

(Necessary & Sufficient Criteria)

Figure 4.54: Class Description View: Margherita Pizza With a Closure Axiom for the hasTopping property

laTopping LI TomatoTopping).

Exercise 34: Add a closure axiom on the hasTopping property for MargheritaPizza

1. Make sure that MargheritaPizza is selected in the class hierarchy on the ‘Classes’
tab.

2. Select the “Subclass of” header in the ‘Class Description View’.

3. Press the ‘Add class’ button on the class description view to display open the edit
text box.

4. Type hasTopping as the property to be restricted.
5. Type ‘only’ to create the universal restriction.
6. Open brackets and type MozzarellaTopping or TomatoTopping close bracket.

7. Press Enter to create the restriction and add it to the class MargheritaPizza.

The class description view should now appear as shown in Figure 4.54.

68

MEANING

7?_7? This now says that if an individual is a member of the class MargeritaPizza then
Pt it must be a member of the class Pizza, and it must have at least one topping

that is a kind of MozzarellaTopping and it must have at least one topping that
is a member of the class TomatoTopping and the toppings must only be kinds of
MozzarellaTopping or TomatoTopping.

A A common error in situations such as above is to only use universal restrictions in
descriptions. For example, describing a MargheritaPizza by making it a subclass of
Pizza and then only using V hasTopping (MozzarellaTopping LI TomatoTopping)
without any existential restrictions. However, because of the semantics of the
universal restriction, this actually means either: things that are Pizzas and only
have toppings that are MozzarellaTopping or TomatoTopping, OR, things that are
Pizzas and do not have any toppings at all.

Exercise 35: Add a closure axiom on the hasTopping property for SohoPizza

1. Make sure that SohoPizza is selected in the class hierarchy on the ‘Classes’ tab.
2. Select the “Subclass of” header in the ‘Class Description View’.

3. Press the ‘Add class’ button on the class description view to display open the edit
text box.

4. Type hasTopping as the property to be restricted.
5. Type ‘only’ to create the universal restriction.

6. Open brackets and type MozzarellaTopping or TomatoTopping or ParmezanTopping
close bracket.

7. Press Enter to create the restriction and add it to the class SohoPizza.

For completeness, we will add closure axioms for the hasTopping property to AmericanaPizza and also
AmericanHotPizza. At this point it may seem like tedious work to enter these closure axioms by hand.

69

Fortunately Protégé 4 has the capability of creating closure axioms for us.

Exercise 36: Automatically create a closure axiom on the hasTopping property for AmericanaPizza

1. Select AmericanaPizza in the class hierarchy on the Classes tab.

2. In the ‘Class Description View’ select one of the existing hasTopping restrictions
so its all highlighted. Now simply click the add closure axiom button from the class
description view see figure 4.31. A closure restriction (universal restriction) will be
created along the hasTopping property, which contains the union of the existential
hasTopping fillers.

Exercise 37: Automatically create a closure axiom on the hasTopping property for AmericanHot-
Pizza

1. Select AmericanHotPizza in the class hierarchy on the Classes tab.

2. In the ‘Class Description View’ right click (Ctrl click on the Mac) on one of the
existential hasTopping restrictions. Select ‘Add closure axiom’ from the pop up
menu that appears.

Having added closure axioms on the hasTopping property for our pizzas, we can now used the reasoner
to automatically compute classifications for them.

Exercise 38: Use the reasoner to classify the ontology

1. Press the ‘Classify...” button on the reasoner drop down menu. to invoke the rea-
soner.

After a short amount of time the ontology will have been classified and the ‘Inferred Hierarchy’ pane
will pop open (if it is not already open). This time, MargheritaPizza and also SohoPizza will have
been classified as subclasses of VegetarianPizza. This has happened because we specifically ‘closed’ the
hasTopping property on our pizzas to say eractly what toppings they have and VegetarianPizza was
defined to be a Pizza with only kinds of CheeseTopping and only kinds of VegetableTopping. Figure
4.55 shows the current asserted and inferred hierarchies. It is clear to see that the asserted hierarchy is
simpler and ‘cleaner’ than the ‘tangled’ inferred hierarchy. Although the ontology is only very simple at
this stage, it should be becoming clear that the use of a reasoner can help (especially in the case of large
ontologies) to maintain a multiple inheritance hierarchy for us.

70

Asserted Hierarchy

Inferred Hierarchy

G-
A v x <z

Figure 4.55: The asserted and inferred hierarchies showing the “before and after” classification of Pizzas into
CheesyPizzas and VegetarianPizzas.

4.14 Value Partitions

In this section we create some Value Partitions, which we will use to refine our descriptions of various
classes. Value Partitions are not part of OWL, or any other ontology language, they are a ‘design pattern’.
Design patterns in ontology design are analogous to design patterns in object oriented programming —
they are solutions to modelling problems that have occurred over and over again. These design patterns
have been developed by experts and are now recognised as proven solutions for solving common modelling
problems. As mentioned previously, Value Partitions can be created to refine our class descriptions, for
example, we will create a Value Partition called ‘SpicinessValuePartition’ to describe the ‘spiciness’ of
PizzaToppings. Value Partitions restrict the range of possible values to an exhaustive list, for example, our
‘SpicinessValuePartition’ will restrict the range to ‘Mild’, ‘Medium’, and ‘Hot’. Creating a ValuePartition
in OWL consists of several steps:

1. Create a class to represent the ValuePartition. For example to represent a ‘spiciness’ ValuePartition
we might create the class SpicinessValuePartition.

2. Create subclasses of the ValuePartition to represent the possible options for the ValuePartition.
For example we might create the classes Mild, Medium and Hot as subclasses of the SpicynessVal-
uePartition class.

3. Make the subclasses of the ValuePartition class disjoint.
4. Provide a covering aziom to make the list of value types exhaustive (see below).

5. Create an object property for the ValuePartition. For example, for our spiciness ValuePartition,
we might create the property hasSpiciness.

71

Create New Pattern

Name

SpicinessValuePartition

Property Functionalg

~ 'hasSpiciness
Values
Mild
Medium
Hot

Figure 4.56: Patterns plugin tab

6. Make the property functional.

7. Set the range of the property as the ValuePartition class. For example for the hasSpiciness property
the range would be set to SpicinessValuePartition.

It should be relatively clear that due to the number of steps and the complexity of some of the steps,
it would be quite easy to make a mistake. It could also take a significant amount of time to create
more than a few ValuePartitions. Fortunately, the OWL plugins package contains a plugin for creating
ValuePartitions.

Let’s create a ValuePartition that can be used to describe the spiciness of our pizza toppings. We will
then be able to classify our pizzas into spicy pizzas and non-spicy pizzas. We want to be able to say
that our pizza toppings have a spiciness of either ‘mild’, ‘medium’ or ‘hot’. Note that these choices are
mutually exclusive — something cannot be both ‘mild’ and ‘hot’, or a combination of the choices.

Exercise 39: Create a ValuePartition to represent the spiciness of pizza toppings

1. You will need the Patterns tab, if the plugin is already installed you can open the
Patterns tab in the Protégé menu under Tabs drop down.

2. Select the ‘Create new partition’ button a pop up window will appear. Type in
SpicinessValuePartition for the name.

3. Now enter hasSpiciness for the ValuePartition property name, we want to make this
property functional so check the tick box.

4. We now need to specify the values for the value type. In the text area type Mild and
press return, type Medium and press return, and type Hot. Your window should look
like figure 4.56 .

5. Press ‘OK’ and you will return to the patterns tab. You will see a pie chart depicting
the SpicinessValuePartition you just created.

72

Asserted Class Hierarchy: SpicinesValuePartitic IEEE

RESITIE

¥ & Thing

b O Pizza

» 0 PizzaBase

» 0 PizzaTopping

¥ & ValuePartition

¥ (SpicinesValuePartition

@ Hot
@ Medium
o Mild

Figure 4.57: Classes Added by the ‘Create ValuePartition’ Wizard

Class Description: SpicinesValuePartition

[][@]e] [

Equivalent Class (Necessary & Sufficient Criteria)
/= Hot or Mild or Medium

Subclass OF (Necessary Criteria)
ValuePartition
Inferred/Inherited anonymous descriptions (Necessary criteria)

Figure 4.58: The Class Description View Displaying the Description of the SpicinessValuePartition Class

Let’s look at what the wizard has done for us (refer to Figure 4.57 and Figure 4.58):

1. A ValuePartition class has been created as a subclass of Thing. All value partitions are created
under a ValuePartition Class by default.

A SpicinessValuePartition class has been created as a subclass of ValuePartition.
The classes Mild, Medium, Hot have been created as subclasses of SpicinessValuePartition.

The classes Mild, Medium and Hot have been made disjoint from each other.

AN B S

A class that is the union of Mild, Medium and Hot has been created as the subclass of Spiciness-
ValuePartition (see Figure 4.58).

6. A hasSpiciness object property has been created.
7. The hasSpiciness property has been made functional

8. SpicinessValuePartition has been set as the range of the hasSpiciness property.

4.14.1 Covering Axioms

As part of the ValuePartition pattern we use a covering ariom. A covering axiom consists of two parts:
The class that is being ‘covered’, and the classes that form the covering. For example, suppose we have

73

three classes A, B and C. Classes B and C are subclasses of class A. Now suppose that we have a covering
axiom that specifies class A is covered by class B and also class C. This means that a member of class A
must be a member of B and/or C. If classes B and C are disjoint then a member of class A must be a
member of either class B or class C. Remember that ordinarily, although B and C are subclasses if A an
individual may be a member of A without being a member of either B or C.

In Protégé 4 a covering axiom manifests itself as a class that is the union of the classes being covered,
which forms a superclass of the class that is being covered. In the case of classes A, B and C, class A
would have a superclass of B U C. The effect of a covering axiom is depicted in Figure 4.59.

Without a covering axiom With a covering axiom
(B and C are subclasses of A) (B and C are subclasses of A
and A is a subclass of B union C)

Figure 4.59: A schematic diagram that shows the effect of using a Covering Axiom to cover class A with classes

B and C

Our SpicinessValuePartition has a covering axiom to state that SpicinessValuePartition is covered by the
classes Mild, Medium and Hot — Mild, Medium and Hot are disjoint from each other so that an individual
cannot be a member of more than one of them. The class SpicinessValuePartition has a superclass that
is Mild LI Medium U Hot. This covering axiom means that a member of SpicinessValuePartition must be
a member of either Mild or Medium or Hot.

The difference between not using a covering axiom, and using a covering axiom is depicted in Figure 4.60.
In both cases the classes Mild, Medium and Hot are disjoint — they do not overlap. It can be seen that in
the case without a covering axiom an individual may be a member of the class SpicinessValuePartition
and still not be a member of Mild, Medium or Hot — SpicynessValuePartition is not covered by Mild,
Medium and Hot. Contrast this with the case when a covering axiom is used. It can be seen that if an
individual is a member of the class SpicinessValuePartition, it must be a member of one of the three
subclasses Mild, Medium or Hot — SpicinessValuePartition is covered by Mild, Medium and Hot.

4.15 Using the Matrix Wizard

We can now use the SpicinessValuePartition to describe the spiciness of our pizza toppings. To do this
we will add an existential restriction to each kind of PizzaTopping to state it’s spiciness. Restrictions will
take the form, hasSpiciness some SpicynessValuePartition, where SpicinessValuePartition will be one
of Mild, Medium or Hot. As we have over twenty toppings in our pizza ontology this could take rather a
long time. Fortunately, the Matriz Plugin can help to speed things up. The matrix plugin can be used

74

SpicinessValuePartition SpicinessValuePartition

Without a covering axiom With a covering axiom
(SpicinessValuePartition is covered by
Mild, Medium, Hot)

Figure 4.60: The effect of using a covering axiom on the SpicinessValuePartition

to add existential restrictions along specified properties to many classes in a quick and efficient manner.

Exercise 40: Use the matrix plugin to specify the spiciness of pizza toppings

1. If you already have the matrix plugin installed you can find it under the ‘Tabs’ drop
down in the Protégé menu bar. Open the matrix tab.

2. In the Matrix Tab select the ‘Class Existential Restrictions’ view as shown in
figure 4.61. You should be able to see your class hierarchy as well as the property
view.

3. Create a new property called hasSpiciness in the ‘Object Properties’ view.

4. Drag and drop the new hasSpiciness property into the centre of the ‘Class Ex-
istential Restriction’ view. You should see a new column created with the title
hasSpiciness.

5. For each pizza topping in the class hierarchy enter a spiciness value as shown in Figure
4.62. Remember you can use the auto completion to help fill in the values for you.

6. Return to the ‘Classes’ tab and browse

To complete this section, we will create a new class SpicyPizza, which should have pizzas that have spicy
toppings as its subclasses. In order to do this we want to define the class SpicyPizza to be a Pizza
that has at least one topping (hasTopping) that has a spiciness (hasSpiciness) that is Hot. This can be
accomplished in more than one way, but we will create a restriction on the hasTopping property, that

(0]

0606 http: / /www. om/pizza.owl - [[Users/simon/ontologies/owl/pizza_tutorial /pizza.owl]

El: (@ http://www.myexample.com/pizza.owl B @

— | Active Ontology ~ Classes = Object Properties Data Properties Annotation Properties Patterns = OWLViz DL Query Matrix - — —
Class Existential Matrix: VegetableTop me=aE il Object Properties: hasSpiciness LELE]
[=T=] ==[=] =]

¥ @ Thing = hasAngle
& Country == hasCountryOfOrigin
» © Pizza » mm hasingredient
» O PizzaBase wm hasSide
v @ PizzaTopping = hasSpiciness
¥ @ CheeseTopping - hasSwe;lnessf
© MozzarellaTopping » mm isingredientO!
@ ParmezanTopping
v @ MeatTopping
© HamTopping
@ PepperoniTopping
@ SalamiTopping
© SpicyBeefTopping
¥ @ SeafoodTopping
@ AnchovyTopping
© PrawnTopping

® TunaTopping
¥ @ VegetableTopping
@ CaperTopping
® MushroomTopping
@ OliveTopping
@ OnionTopping
» @ PepperTopping
@ TomatoTopping
» © Polygon
» © ValuePartition

[Class Existential Restrictions

Class Existential Restrictions

Figure 4.61: Property Matrix Wizard:

0006 http: fwww. om /pizza.owl - [/Users/simon/ontologies/owl/pizza_tutorial /pizza.owl]

» ® Thing

Class Selection Page

El: [® http:/ jwww.myexample.com/pizza.owl

B =

— [Active Ontology = Classes Object Properties ~ Data Properties ~ Annotation Properties | Individuals =~ Matrix ~ Patterns ~ OWLViz = DL Query
Class Existential Mat CheeseTopping mEme il Object Properties: hasSpi mEEE
[==] === @]

hasSpiciness == hasAngle
¥ @ Thing 'mm hasCountryOfOrigin
© Country » mm hasingredient
» @ Pizza = hasSide

» © PizzaBase
¥ © PizzaTopping
v © CheeseTopping

@ MozzarellaTopping Mild
@ ParmezanTopping Mild
¥ © MeatTopping
@ HamTopping Mild
@ PepperoniTopping Medium
@ SalamiTopping Medium
© SpicyBeefTopping Hot
v © SeafoodTopping
© AnchovyTopping Mild
@ PrawnTopping Mild
@ TunaTopping Mild
¥ © VegetableTopping
@ CaperTopping Mild
@ MushroomTopping Mild
@ OliveTopping Mild
@ OnionTopping Mild
» @ PepperTopping
© TomatoTopping Mild

» @ Polygon
» @ ValuePartition

[Class Existential Restrictions

Figure 4.62: Property Matrix Wizard:

76

' hasSpiciness
» mm isingredientOf

Ghjedt Properties]

» @ Thing

Property Selection Page

[#]

Equivalent Class (Necessary & Sufficient Criteria)
Pizza
hasTopping some (PizzaTopping that (hasSpiciness some Hot))

Subclass OF (Necessary Criteria)

Inferred/Inherited anonymous cescriptions (Necessary criteria)
hasBase some PizzaBase

Figure 4.63: The definition of SpicyPizza

has a restriction on the hasSpiciness property as its filler.

Exercise 41: Create a SpicyPizza as a subclass of Pizza

1. Create a subclass of Pizza called SpicyPizza.

2. With SpicyPizza selected in the class hierarchy, select the “Equivalent Class” header
in the class description view.

3. Press the ‘Add class’ button on the class description view to open a text box.
4. Type hasTopping as the property to be restricted.
5. Type ‘some’ as the type of restriction.

6. The filler should be: PizzaTopping and hasSpiciness some Hot. This filler describes
an anonymous class, which contains the individuals that are members of the class
PizzaTopping and also members of the class of individuals that are related to the
members of class Hot via the hasSpiciness property. In other words, the things that
are PizzaToppings and have a spiciness that is Hot. To create this restriction in the text
box type,* (PizzaTopping and (hasSpiciness some Hot)), including the brackets.

7. Finally, drag Pizza from under the “Subclass Of” header to on top of the newly created
restriction.

The class description view should now look like the picture shown in Figure 4.63

7

MEANING

7’?? Our description of a SpicyPizza above says that all members of SpicyPizza are
8P
Pt Pizzas and have at least one topping that has a Spiciness of Hot. It also says that

anything that is a Pizza and has at least one topping that has a spiciness of Hot
is a SpicyPizza.

In the final step of Exercise 41 we created a restriction that had the class ex-
NOT pression (PizzaTopping and hasSpiciness some Hot) rather than a named class
as its filler. This filler was made up of an intersection between the named class
PizzaTopping and the restriction hasSpiciness some Hot. Another way to do
this would have been to create a subclass of PizzaTopping called HotPizzaTopping
and define it to be a hot topping by having a necessary condition of hasSpiciness
some Hot. We could have then used hasTopping some HotPizzaTopping in our
definition of SpicyPizza. Although this alternative way is simpler, it is more ver-
bose. OWL allows us to essentially shorten class descriptions and definitions by
using class expressions in place of named classes as in the above example.

We should now be able to invoke the reasoner and determine the spicy pizzas in our ontology.

Exercise 42: Use the reasoner to classify the ontology

1. Press ‘Classifiy...” in the Reasoner drop down menu to invoke the reasoner and classify
the ontology.

After the reasoner has finished, the ‘Inferred Hierarchy’ class pane will pop open, and you should find
that AmericanHotPizza has been classified as a subclass of SpicyPizza — the reasoner has automatically
computed that any individual that is a member of AmericanHotPizza is also a member of SpicyPizza.

4.16 Cardinality Restrictions

In OWL we can describe the class of individuals that have at least, at most or exactly a specified number
of relationships with other individuals or datatype values. The restrictions that describe these classes are
known as Cardinality Restrictions. For a given property P, a Minimum Cardinality Restriction specifies
the minimum number of P relationships that an individual must participate in. A Mazimum Cardinality
Restriction specifies the maximum number of P relationships that an individual can participate in. A
Cardinality Restriction specifies the exact number of P relationships that an individual must participate
in.

Relationships (for example between two individuals) are only counted as separate relationships if it can
be determined that the individuals that are the fillers for the relationships are different to each other. For
example, Figure 4.64 depicts the individual Matthew related to the individuals Nick and the individual
Hai via the worksWith property. The individual Matthew satisfies a minimum cardianlity restriction of

78

worksWith

Matthew Nick

O/;f 6 l/Vl'th

< Hai

Figure 4.64: Cardinality Restrictions: Counting Relationships

2 along the worksWith property if the individuals Nick and Hai are distinct individuals i.e. they are
different individuals.

Let’s add a cardinality restriction to our Pizza Ontology. We will create a new subclass of Pizza called
InterestingPizza, which will be defined to have three or more toppings.

Exercise 43: Create an InterestingPizza that has at least three toppings

1.
2.
3.
4

ot

© »®» N @

Switch to the Classes tab and make sure that the Pizza class is selected.
Create a subclass of Pizza called InterestingPizza.

Select the “Equivalent class” header in the class description view.

. Press the ‘Add class’ button to open a text box.

Type hasTopping as a property to be restricted.

Type ‘min’ to create a minimum cardinality restriction.

Specify a minimum cardinality of three by typing 3 into the text box.
Press the ‘Enter’ to close the dialog and create the restriction.

The class description view should now have a “Subclass of” condition of Pizza, and a
“Equivalent class” condition of hasTopping min 3. We need to make Pizza part of the
necessary and sufficient conditions. Drag Pizza and drop it on top of the hasTopping
min 3 condition.

The class description view should now appear like the picture shown in Figure 4.65.

79

[#]

Equivalent Class (Necessary & Sufficient Criteria)
Pizza
hasTopping min 3 Thing

Subclass OF (Necessary Criteria)

Inferred/Inherited anonymous descriptions (Necessary criteria)
hasBase some PizzaBase

Figure 4.65: The Class Description View Displaying the Description of an InterestingPizza

MEANING
77,7? What does this mean? Our definition of an InterestingPizza describes the set
P of individuals that are members of the class Pizza and that have at least three

hasTopping relationships with other (distinct) individuals.

Exercise 44: Use the reasoner to classify the ontology

1. Press ‘Classify...” in the Reasoner drop down menu.

After the reasoner has classified the ontology, the ‘Inferred Hierarchy’ window will pop open. Expand
the hierarchy so that InterestingPizza is visible. Notice that InterestingPizza now has subclasses Ameri-
canaPizza, AmericanHotPizza and SohoPizza — notice MargheritaPizza has not been classified under
InterestingPizza because it only has two distinct kinds of topping.

4.17 Qualified Cardinality Restrictions

In the previous section we described cardinality restrictions - specifies the exact number of P relationships
that an individual must participate in. In this section we focus on Qualified Cardinality Restrictions
(QCR), which are more specific than cardinality restrictions in that they state the class of objects within
the restriction. Let’s add a Qualified Cardinality Restriction to our pizza ontology. To do this, we will
create a subclass of NamedPizza, called Four Cheese Pizza, which will be defined as having exactly four

80

Figure 4.66: Describing a FourCheesePizza using a Qualified Cardinality Restriction

cheese toppings.

Exercise 45: Create a Four Cheese Pizza that has exactly four cheese toppings (Figure 4.66)

1. Switch to the Classes tab and make sure the NamedPizza class is selected
2. Create a subclass of Pizza called FourCheesePizza

Select the ’Superclasses’ header in the class description view

- W

Press the '+’ button to open a text box

o

Type hasTopping for the property
Type exactly to create an exact cardinality restriction
Specify a QCR of four by typing 4 into the text box

Type CheeseTopping to specify the type of topping

© »®» N @

Click OK and create the restriction

Our definition of a FourCheesePizza describes the set of individuals that are members of the class Named-
Pizza and that have exactly four hasTopping relationships with individuals of the CheeseTopping class.
With this description a FourCheesePizza can still also have other relationships to other kinds of toppings.
In order for us to say that we just want it to have four cheese toppings and no other toppings we must
add the keyword ’only’ (the universal quantifier). This means that the only kinds of topping allowed are
cheese toppings.

81

Chapter 5

Datatype Properties

In Section 4.4 of Chapter 4 we introduced properties in OWL, but only described object properties—that
is, relationships between individuals. In this chapter we will discuss and show examples of Datatype
properties. Datatype properties link an individual to an XML Schema Datatype value or an rdf literal.
In other words, they describe relationships between an individual and data values. Most of the property
characteristics described in Chapter 4 cannot be used with datatype properties. We will describe those
characteristics of properties that are applicable to data properties later in this chapter.

Datatype properties can be created using the ‘Datatype Properties’ tab shown in Figure 5.1.
We will use datatype properties to describe different sizes of pizza - small, medium and large. A large
pizza will be defined as a pizza that has a diameter greater than or equal to 12 inches; a medium pizza

less than 12 inches, but more than or equal to 7 inches; and a small pizza is less than 7 inches in diameter.
In order to do this we need to complete the following steps:

e Create a datatype property hasDiameter, which will be used to restrict the size of a pizza.

e Create four classes describing different sizes of pizza.

Now let us do this in Protégé .

Exercise 46: Create a datatype property called hasDiameter

1. Switch to the ‘Datatype Properties’ tab. Use the ‘Add Datatype Property’
button to create a new Datatype property.

2. Name the property to hasDiameter using the ‘Property Name Dialog’ that pops
up (The ‘Property Name Dialog’.

82

® O O http://www.semanticweb.org/ logies/2007/9/Ontology1192469355322.0wl - [/Users/simon/ logies/Oi
File Edit Reasoner Tools Refactor Tabs View Window Help

1192469355322 /0ntology1192469355322.0wl]

< & | © http://www.semanticweb.org/ontologies/2007/9/Ontology1192469355322.owl }:] 88
! Active Ontol Entities Classes Object Properties Data Properties | Individuals = SKOS view = OWLViz |
Data Properties: mEEE il Data Prop Annotations: [ECE]
Data Property characteristics: 1588
] Functional Domains Domains
Ranges Ranges

Equivalent properties
Super properties

Disjoint properties

Figure 5.1: A snapshot of the Datatype Properties tab in Protégé

Exercise 47: Create classes PizzaSize, LargePizzaSize, MediumPizzaSize and SmallPizzaSize

1. Ensure the ‘Classes Tab’ is selected
2. Press the ‘Add subclass’ button and create the PizzaSize class

3. Make the LargePizzaSize, MediumPizzaSize and SmallPizzaSize classes, subclasses
of the PizzaSize class

Using the datatype property, we can add a restriction to the class LargePizzaSize that states that
all individuals of the LargePizzaSize class must have at least one relationship along the hasDiameter

83

property to a integer value greater than or equal to 12.

Exercise 48: Add a restriction to LargePizzaSize that specifies a LargePizzaSize must have a di-
ameter greater than 12 (inches)

1. Ensure the ‘Classes Tab’ is selected
2. Select LargePizzaSize in the class hierarchy
3. On the Equivalent Classes Header click the ‘4’ button to add a new restriction

4. In the class expression editor, type ‘PizzaSize that hasDiameter some int[>=
12]’ and click ‘OK’

MEANING
7’?,7? We have described a LargePizzaSize to be a subclass of Food and it is also nec-
Pt essary for it to have a Diameter greater than 12. Moreover, if an individual is a

member of the class LargePizzaSize and it has at least a diameter that is greater
than 12 then this is sufficient to determine that the individual must be a member
of the class LargePizzaSize.

Finally, think about how many sizes can be held by an invididual pizza. More precisely, ask yourself how
many diameters are held by any one pizza? Of course, the answer is only one. Remember that there is
a property characteristic that states that the property with that characteristic can only be held by an
individual once. By describing a object property as functional it is being said that an individual can only
have that property once. So, if we say that Pizza hasBase PizzaBase and make hasBase functional,
we are saying that any instance of pizza can only ever have one hasBase property.

We can also use the functional characteristic on data properties. This is the only characteristic it is

possible to use on data properties. By making hasDiameter functional we are saying that any one pizza
individual can only ever have one hasDiameter property and hence only one diameter.

Exercise 49: Making the hasDiameter datatype property functional

1. Go to the ‘Datatype Properties’ tab and select hasDiameter

2. In the ‘Data Type Characteristics’ pane, click the ‘functional’ radio button.

84

Creating some Pizzas of Different Sizes

Now let us create some different sized pizzas in our ontology. We will start by adding a ‘LargePizza’
and describing it using the classes (created above) and creating a new object property hasPizzaSize.

Exercise 50: Create a subclass of Pizza called LargePizza and a new Object Property hasPizzaSize

1. Select the class Pizza from the class hierarchy on the ‘Classes’ tab
2. Using the ‘Add subclass’ button, create a class LargePizza

3. Move to the ‘Object Properties’ tab and create a new property called hasPizzaSize

We will now use the new property to add an existential restriction to the LargePizza class.

Exercise 51: Add an existential (some) restriction on LargePizza that acts along the property
hasPizzaSize with a filler of LargePizzaSize to specify that a LargePizza has at least
one PizzaSize that is a kind of LargePizzaSize

1. Select the class ‘Pizza’ from the class hierarchy on the classes tab

2. In the ‘Restriction creator’ tab,

On the Equivalent Classes Header click the ‘4’ button to add a new restriction
In the class expression editor, type ‘Pizza that’

5. Type ‘hasPizzaSize’ has the property to be restricted

6. Type ‘some’ to create the existential restriction

7. Finally type ‘LargePizzaSize’ and click ‘OK’

We have added restrictions to LargePizza to say that a LargePizza is a Pizza that has at least one
relationship to LargePizzaSize, which is defined as having a diameter greater than 12. Now let us check
the consistency of the ontology and the specified properties hasDiameter and hasPizzaSize by running
the classifier.

Now create the classes MediumPizza and SmallPizza in the same way that we created the LargePizza.

Having created the classes that represent LargePizza, MediumPizza and SmallPizza, compute classifica-
tions using the reasoner (Figure ?7).

85

Chapter 6

More On Open World Reasoning

The examples in this chapter demonstrate the nuances of Open World Reasoning.

We will create a NonVegetarianPizza to complement our categorisation of pizzas into VegetarianPizzas.
The NonVegetarianPizza should contain all of the Pizzas that are not VegetarianPizzas. To do this
we will create a class that is the complement of VegetarianPizza. A complement class contains all of
the individuals that are mot contained in the class that it is the complement to. Therefore, if we create
NonVegetarianPizza as a subclass of Pizza and make it the complement of VegetarianPizza it should
contain all of the Pizzas that are not members of VegetarianPizza.

Exercise 52: Create NonVegetarianPizza as a subclass of Pizza and make it disjoint to Vegetarian-
Pizza

1. Select Pizza in the class hierarchy on the ‘Classes’ tab. Press the ‘Add subclass’
button to create a new class as the subclass of Pizza.

2. Name the new class NonVegetarianPizza.

3. Make NonVegetarianPizza disjoint with VegetarianPizza — while NonVegetarian-
Pizza is selected, press the ‘Add disjoint class’ button on the disjoint classes view
(Figure ?77).

86

(o] [#]e,] [

Equivalent Class (Necessary & Sufficient Criteria)
Pizza
not Vegeta
VegetableTopping
VegetarianPizza

Subclass O
Inferred/ln

Figure 6.1: Class Description View: Inline Expression Editor Auto Completion

We now want to define a NonVegetarianPizza to be a Pizza that is not a VegetarianPizza.

Exercise 53: Make VegetarianPizza the complement of VegetarianPizza

1. Make sure that NonVegetarianPizza is selected in the class hierarchy on the ‘Classes
tab’.

2. Select the “Equivalent class” header in the ‘Class Description View’.

3. Press the ‘Add class’ button, and in the text box that appears type not Vegetarian-
Pizza.

4. Press the return key to create and assign the expression. If everything was entered
correctly then the inline expression editor will close and the the expression will have
been created. (If there are errors, check the spelling of “VegetarianPizza”).

—
—
\3

A very useful feature of the expression editor is the ability to ‘auto complete’ class
names, property names and individual names. The auto completion for the inline
expression editor is activated using the tab key. In the above example if we had
typed Vege into the inline expresion editor and pressed the tab key, the choices
to complete the word Vege would have poped up in a list as shown in Figure 6.1.
The up and down arrow keys could then have been used to select VegetarianPizza
and pressing the Enter key would complete the word for us.

The class description view should now resemble the picture shown in 6.2. However, we need to add Pizza
to the necessary and sufficient conditions as at the moment our definition of NonVegetarianPizza says
that an individual that is not a member of the class VegetarianPizza (everything else!) is a NonVege-
tarianPizza.

87

Class Description: NonVegetarianPizza MEEE

GEEDIE

Equivalent Class (Necessary & Sufficient Criteria)
/= not VegetarianPizza
Subclass Of (Necessary Criteria)
= Pizza

Inferred/Inherited anonymous descriptions (Necessary criterla)
hasBase some PizzaBase

Figure 6.2: The Class Description View Displaying the Intermediate Step of Creating a Definition
forNonVegetarianPizza

Class Description: NonVegetarianPizza DEEE

[«] [®] [

Equivalent Class (Necessary & Sufficient Criteria)

= Pizza
not VegetarianPizza
Subclass OF (Necessary Criteria)

Inferred/Inherited anonymous descriptions (Necessary criteria)
hasBase some PizzaBase

Figure 6.3: The Class Description View Displaying the Definition forNonVegetarianPizza

Exercise 54: Add Pizza to the necessary and sufficient conditions for NonVegetarianPizza

. Make sure NonVegetarianPizza is selected in the class hierarchy on the ‘Clases’ tab.

2. Select Pizza in the ‘Class Description View’.

. Drag Pizza from under the “Subclass of” header, and drop it onto the ‘not Vegetari-

anPizza’ condition to add it to the same set of necessary and sufficient conditions as
not VegetarianPizza.

The ‘Class Description View’ should now look like the picture shown in Figure 6.3.

88

MEANING
?
??7

? 7=

The complement of a class includes all of the individuals that are not members of
the class. By making NonVegetarianPizza a subclass of Pizza and the comple-
ment of VegetarianPizza we have stated that individuals that are Pizzas and are
not members of VegetarianPizza must be members of NonVegetarianPizza. Note
that we also made VegetarianPizza and NonVegetarianPizza disjoint so that if an
individual is a member of VegetarianPizza it cannot be a member of NonVege-
tarianPizza.

Exercise 55: Use the reasoner to classify the ontology

1. Press the ‘Classify...” button in the Reasoner toolbar. After a short time the reasoner
will have computed the inferred class hierarchy, and the inferred class hierarchy pane
will pop open.

The inferred class hierarchy should resemble the picture shown in Figure 6.4. As can be seen, Margher-
itaPizza and SohoPizza have been classified as subclasses of VegetarianPizza. AmericanaPizza and
AmericanHotPizza have been classified as NonVegetarianPizza. Things seemed to have worked. How-

ever, let’s add a pizza that does not have a closure axiom on the hasTopping property.

Exercise 56: Create a subclass of NamedPizza with a topping of Mozzarella

1. Create a subclass of NamedPizza called UnclosedPizza.

2. Making sure that UnclosedPizza is selected in the ‘Class Description View’ select
the “Subclass of” header.

3. Press the ‘Add class’ button to display restriction text box.

4. Type hasTopping as the property to be restricted.

5. Type ‘some’ in order to create an existential restriction.

6. Type MozzarellaTopping into text box to specify that the toppings must be individ-
uals that are members of the class MozzarellaTopping.

7. Press ‘Enter’ to close the dialog and create the restriction.

89

v Thing
L 4 Pizza
> CheesyPizza
[= InterestingPizza
> NamedPizza
v NonVegetarianPizza
AmericanaPizza
AmericanHotPizza
[SpicyPizza
v VegetarianPizza
MargheritaPizza
SohoPizza
[2 PizzaBase
(2 PizzaTopping
= ValuePartition

Figure 6.4: The Inferred Class Hierarchy Showing Inferred Subclasses of VegetarianPizza and NonVegetarian-

Pizza
MEANING
77,’? If an individual is a member of UnclosedPizza it is necessary for it to be a Named-
P Pizza and have at least one hasTopping relationship to an individual that is a

member of the class MozzarellaTopping. Remember that because of the Open
World Assumption and the fact that we have not added a closure axiom on the
hasTopping property, an UnclosedPizza might have additional toppings that are
not kinds of MozzarellaTopping.

Exercise 57: Use the reasoner to classify the ontology

7

1. Press ‘Classify...” in the Reasoner drop down menu.

Examine the class hierarchy. Notice that UnclosedPizza is neither a VegetarianPizza or NonVegetari-
anPizza.

90

MEANING
?
??7

? 7=

As expected (because of Open World Reasoning) UnclosedPizza has not been
classified as a VegetarianPizza. The reasoner cannot determine UnclosedPizza is
a VegetarianPizza because there is no closure axiom on the hasTopping and the
pizza might have other toppings. We therefore might have expected Unclosed-
Pizza to be classified as a NonVegetarianPizza since it has not been classified
as a VegetarianPizza. However, Open World Reasoning does not dictate that
because UnclosedPizza cannot be determined to be a VegetarianPizza it is not
a VegetarianPizza — it might be a VegetarianPizza and also it might not be a
VegetarianPizza! Hence, UnclosePizza cannot be classified as a NonVegetarian-
Pizza.

91

Chapter 7

Creating Other OWL Constructs In
Protégé 4

This chapter discusses how to create some other owl constructs using Protégé 4 . These constructs are
not part of the main tutorial and may be created in a new Protégé 4 project if desired.

7.1 Creating Individuals

OWL allows us to define individuals and to assert properties about them. Individuals can also be used
in class descriptions, namely in hasValue restrictions and enumerated classes which will be explained in
section 7.2 and section 7.3 respectively. To create individuals in Protégé 4 the ‘Individuals Tab’ is used.

Suppose we wanted to describe the country of origin of various pizza toppings. We would first need to
add various ‘countries’ to our ontology. Countries, for example, ‘England’, ‘Italy’, ‘America’, are typically
thought of as being individuals (it would be incorrect to have a class England for example, as it’s members
would be deemed to be, ‘things that are instances of England’). To create this in our Pizza Ontology we

92

000 http://www.myexample.com/pizza.owl - [fUsers/simon/Desktop/pizza_demo.owl]

File Edit Reasoner Tools Refactor Tabs View Window Help

E‘@ © http:/ fwww. om/pizza.owl M =

I Active Ontology = Entities Classes Object Properties Data Properties Individuals

Individuals: mE=E il Individual Annotations: MEEE
lz‘ X Annotations

Description: [WEEE i Property assertions: DEEE

Types Object property assertions

Same individuals Data property assertions

Different individuals Negative object property assertions ([————————————

Negative data property assertions

Figure 7.1: The Individuals Tab

will create a class Country and then ‘populate’ it with individuals:

Exercise 58: Create a class called Country and populate it with some individuals

1. Create Country as a subclass of Thing.
2. Switch to the ‘Individuals Tab’ shown in Figure 7.1.

3. Press the ‘Add individual’ button shown in Figure 7.2. (Remember that ‘Individual’
is another name for ‘Instance’ in ontology terminology).

4. Name the new Individual ltaly.

5. Select the ‘Select and add class’ button from the ‘Individual Types View’ located
in the centre of the Individual tab. Choose country from the class hierarchy, this will
make Italy and individual of the class Country.

6. Use the above steps to create some more individuals that are members of the class
Country called America, England, France, and Germany.

Recall from section 3.2.1 that OWL does not use the Unique Name Assumption (UNA). Individuals
can therefore be asserted to be the ‘Same As’ or ‘Different From’ other individuals. In Protégé 4 these
assertions can be made using the ‘SameAs’ and ‘DifferentFrom’ tabs shown in Figure 7.3, which are

93

Show usages

Delete individual

Figure 7.2: Instances Manipulation Buttons

Add same as Add different from

Delete individual Delete individual

mE=E |l Different From:

¥ie ¥ ¥

Figure 7.3: The SameAs and DifferentFrom Views

located with the ‘Name’ view on the ‘Individuals’ tab.

Having created some individuals we can now use these individuals in class descriptions as described in
section 7.2 and section 7.3.

7.2 hasValue Restrictions

A hasValue restriction, denoted by the symbol 3, describes the set of individuals that have at least one
relationship along a specified property to a specific individual. For example, the hasValue restriction
hasCountryOfOrigin > Italy (where ltaly is an individual) describes the set of individuals (the anonymous
class of individuals) that have at least one relationship along the hasCountryOfOrigin property to the
specific individual Italy. For more information about hasValue restrictions please see Appendix ?7.

Suppose that we wanted to specify the origin of ingredients in our pizza ontology. For example, we might

want to say that mozzarella cheese (MozzarellaTopping) is from Italy. We already have some countries
in our pizza ontology (including ltaly), which are represented as individuals. We can use a hasValue

94

[#]

Eguivalent Class (Ne

cessary & Sufficient Criteria)

Subclass OF (Necessary Criteria)
CheeseTopping
hasSpiciness some Mild
hasCountryOfOrigin value Italy

Inferred/Inherited anonymous descriptions (Necessary criteria)

Figure 7.4: The Class Description View Displaying The hasValue Restriction for MozzarellaTopping

restriction along with these individuals to specify the county of origin of MozzarellaTopping as ltaly.

Exercise 59: Create a hasValue restriction to specify that MozzarellaTopping has ltaly as its country
of origin.

1. Switch to the ‘Object Properties’ tab. Create a new object property and name it
hasCountryOfOrigin.

2. Switch to the ‘Classes’ tab and select the class MozzarellaTopping.
3. Select the “Subclass of” header in the ‘Class Description View’.

4. Press the ‘Create restriction’ button on the ‘Class Description View’ to open a
text box.

5. Type hasCountryOfQOrigin as the property to be restricted.
6. Type value as the type of restriction to be created.

7. Enter ltaly as the individual to complete the restriction. You can either type this in
or drag and drop from the individuals window.

8. Press ‘Enter’ to close the dialog and create the restriction.

The ‘Class Description View’ should now look similar to the picture shown in Figure 7.4.

MEANING
77,7? The conditions that we have specified for MozzarellaTopping now say that: in-
Pt dividuals that are members of the class MozzarellaTopping are also members of

the class CheeseTopping and are related to the individual Italy via the hasCoun-
tryOfOrigin property and are related to at least one member of the class Mild
via the hasSpiciness property. In more natural English, things that are kinds of
mozzarella topping are also kinds of cheese topping and come from Italy and are
mildly spicy.

95

A With current reasoners the classification is not complete for individuals. Use in-
dividuals in class descriptions with care — unexpected results may be caused by
the reasoner.

7.3 Enumerated Classes

As well as describing classes through named superclasses and anonymous superclasses such as restrictions,
OWL allows classes to be defined by precisely listing the individuals that are the members of the class. For
example, we might define a class DaysOfTheWeek to contain the individuals (and only the individuals)
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday and Saturday. Classes such as this are known

as enumerated classes.

In Protégé 4 enumerated classes are defined using the ‘Class Description View’ expression editor — the
individuals that make up the enumerated class are listed (separated by spaces) inside curly brackets. For
example {Sunday Monday Tuesday Wednesday Thursday Friday Saturday}. The individuals must first
have been created in the ontology. Enumerated classes described in this way are anonymous classes — they
are the class of the individuals (and only the individuals) listed in the enumeration. We can attach these
individuals to a named class in Protégé 4 by creating the enumeration as a “Equivalent class” condition.

Exercise 60: Convert the class Country into an enumerated class

1. Switch the the ‘Classes’ tab and select the class Country.
2. Select the “Equivalent class” header in the ‘Class Description View’.
3. Press the ‘Add class’ button, a text box will appear.

4. Type {America England France Germany Italy} into the text box. (Remember to
surround the items with curly brackets). Remember that the auto complete function
is available — to use it type the first few letters of an individual and press the tab key
to get a list of possible choices.

5. Press the enter key to accept the enumeration and close the expression editor.

The ‘Class Description View’ should now look similar to the picture shown in Figure 7.5.

[#]

Equivalent Class (Necessary & Sufficient Criteria)
{ltaly Germany France America England }

Subclass OF (Necessary Criteria)
Thing

Inferred/Inherited anonymous descriptions (Necessary criteria)

Figure 7.5: The Class Description View Displaying An Enumeration Class

96

MEANING

7?_7? This means that an individual that is a member of the Country class must be one
Eat of the listed individuals (i.e one of America England France Germany Italy.* More

formally, the class country is equivalent to (contains the same individuals as) the
anonymous class that is defined by the enumeration — this is depicted in Figure
7.6.

2This is obviously not a complete list of countries, but for the purposes of this ontology (and
this example!) it meets our needs.

Enumerated Class
(dashed line)

England
<

Oltaly

< America

< France

& Germany

Country (solid line)

Figure 7.6: A Schematic Diagram Of The Country Class Being Equivalent to an Enumerated Class

TIP

P The enumerated classes wizard is available for creating enumerated classes in the
’ above fashion.

7.4 Annotation Properties

OWL allows classes, properties, individuals and the ontology itself (technically speaking the ontology
header) to be annotated with various pieces of information/meta-data. These pieces of information may
take the form of auditing or editorial information. For example, comments, creation date, author, or,
references to resources such as web pages etc. OWL-Full does not put any constraints on the usage
of annotation properties. However, OWL-DL does put several constraints on the usage of annotation
properties — two of the most important constaints are:

e The filler for annotation properties must either be a data literal', a URI reference or an individual.

e Annotation properties cannot be used in property axioms — for example they may not be used
in the property hierarchy, so they cannot have sub properties, or be the sub property of another
property. The also must not have a domain and a range set for them.

OWL has five pre-defined annotation properties that can be used to annotate classes (including anony-
mous classes such as restrictions), properties and individuals:

LA data literal is the character representation of a datatype value, for example, “Matthew”, 25, 3.11.

97

1. owlversionInfo — in general the range of this property is a string.

2. rdfs:label — has a range of a string. This property may be used to add meaningful, human readable
names to ontology elements such as classes, properties and individuals. rdfs:label can also be used
to provide multi-lingual names for ontology elements.

3. rdfs:comment — has a range of a string.
4. rdfs:seeAlso — has a range of a URI which can be used to identify related resources.

5. rdfs:isDefinedBy — has a range of a URI reference which can be used to reference an ontology that
defines ontology elements such as classes, properties and individuals.

For example the annotation property rdfs:comment is used to store the comment for classes in Protégé
4 . The annotation property rdfs:label could be used to provide alternative names for classes, properties
etc.

There are also several annotation properties which can be used to annotate an ontology. The ontology
annotation properties (listed below) have a range of a URI reference which is used to refer to another
ontology. It is also possible to the use the owl:VersionInfo annotation property to annotate an ontology.

e owl:priorVersion — identifies prior versions of the ontology.

¢ owl:backwardsCompatibleWith — identifies a prior version of an ontology that the current ontology
is compatible with. This means that all of the identifiers from the prior version have the same
intended meaning in the current version. Hence, any ontologies or applications that reference the
prior version can safely switch to referencing the new version.

e owl:incompatibleWith — identifies a prior version of an ontology that the current ontology is not
compatible with.

Property Value Lang
comment

Figure 7.7: An annotations view

To create annotation properties use the appropriate annotation property view in each of the ‘Active
Ontology’, ‘Classes’, ‘Object Property’ and ‘Datatype Property’ Tabs. You can manage your
annotation using the ‘Annotations Properties’ Tab, new annotation properties can be created by
pressing the ‘create Annotation Property’ button on the ‘Annotation Property’ Tab. To use
annotation properties the annotations views shown in Figure 7.7 is used. An annotations view is located on
the Classes, Properties, Individuals and Active Ontology tab for annotation classes, properties, individuals
and the ontology respectively. Annotations can also be added to restrictions and other anonymous classes
by right clicking (ctrl click on a Mac) in the class description view and selecting ‘Edit annotation
properties... .

98

7.5 Multiple Sets Of Necessary & Sufficient Conditions

In OWL it is possible to have multiple sets of necessary and sufficient conditions as depicted in Figure 7.8.
In the ‘Class Description View’, multiple sets of necessary and sufficient conditions are represented
using multiple “Equivalent class” headers with necessary and sufficient conditions listed under each header
as shown in Figure 7.8. To create a new set of necessary and sufficient conditions, any “Equivalent
class” header (any that is visible) should be selected and then the condition created (for example using
the ‘Create Restriction dialog’). Alternatively, a condition should be dragged and dropped onto a
“Equivalent class” header to create a new set of necessary and sufficient conditions and move the condition
to that new set. To add to an ezisting set of necessary and sufficient conditions, one of the conditions in the
set should be selected and then the condition created (for example using ‘Create Restrictions dialog’),
or an existing condition may be dragged and dropped onto the existing set (below the “Equivalent class”
header) to add the condition to the existing set.

NECESSARY & SUFFICIENT CONDITIONS
implies [Condition]
> —
NamedClass |: | Condition |
Moy

NECESSARY & SUFFICIENT CONDITIONS

|: [Condition]

[Condition |
NECESSARY CONDITIONS

|: [Condition |

[Condition]

Figure 7.8: Necessary Conditions, and Multiple Sets of Necessary And Sufficient Conditions

99

[#]

Equivalent Class (Necessary & Sufficient Criteria)
Polygon
hasAngle exactly 3 Thing

Equivalent Class (Necessary & Sufficient Criteria)
Polygon
hasSide exactly 3 Thing

Subclass OF (Necessary Criteria)

Inferred/Inherited anonymous descriptions (Necessary criteria)

Figure 7.9: The Definition of a Triangle Using Multiple Necessary & Sufficient Conditions

Exercise 61: Create a class to define a Triangle using multiple sets of Necessary & Sufficient con-
ditions

1. Create a subclass of Thing named Polygon.
2. Create a subclass of Polygon named Triangle.

Create an object property named hasSide.

L

Create an object property named hasAngle.

5. On the ‘Classes’ tab select the Triangle class. Select the “Equivalent class” header
in the ‘Class Description View’. Press the ‘Add class’ button on the ‘Class
Description View’ to open a text box.

Type hasSide for the property.
Type exactly to create the restriction.

Type 3 and press Enter to exit the text box and create the restriction.

© »®» N @

Select the “Equivalent class” header in the ‘Class Description View’. Press the
‘Add class’ button on the ‘Class Description View’ to open a text box.

10. Type hasAngle for the property.
11. Type exactly to create the restriction.
12. Type 3 and press Enter to exit the text box and create the restriction.

13. Drag Polygon from under the “Subclass of” header and drop it onto the hasSide
exactly 3 restriction.

14. Select the hasAngle exactly 3 restriction. Click the ‘Add class’ button to display
a dialog containing the class hierarchy. Select the Polygon class and click the ‘OK’
button to close the dialog.

The ‘Class Description View’ should now look like the picture shown in Figure 7.9.

100

Figure 7.10: A role-chain using the properties hasLocation and hasPart

Figure 7.11: Creating a role chain in the Pizza Ontology in Protégé

7.6 Role Chains

We have already used the property characteristic of transitivity (see Section 4.6.3). This characteristic,
however, only works along properties of the same kind. Sometimes, however, we do wish to have some
transfer along properties of different kinds. This effect is achieved by using Role Chains. A role chain
is best explained using an example. In Figure 7.10, we define a role chain using the object properties
hasLocation and hasPart. We can use such properties, for instance, to describe an injury to a hand. We
also describe that a hand is part of an arm. We know that an injured hand is also an injured arm. By
creating a role chain of these two properties we can make such an inference. In other words what we are
saying is: if any injury hasLocation hand, it is also an injury of the arm as there is a role chain between
hasLocation and hasPart.

In the pizza ontology we can define a role chain using the object properties hasTopping and hasSpiciness.

Exercise 62: Creating a Role Chain using the properties hasTopping and hasSpiciness (Figure 7.11)

1. Go to the ‘Object Properties’ Tab and ensure that hasSpiciness is highlighted

2. Go to the ‘Property Chains’ Heading in the ‘Description’ pane and click on the
‘Add’ button

3. In the text box, type hasTopping, for the first property in the chain

4. Then type ‘0’, which represents the role composition order (i.e., the two properties we
wish to link)

5. Type hasSpiciness and then click ‘OK’.

Exercise 63: Creating a HotPizza class

1. Go to the ‘Classes’ Tab and ensure that the Pizza class is highlighted
2. Create a subclass HotPizza

3. Add a restriction in the ‘Class Description’ pane as an Equivalent class by typing
‘Pizza that hasTopping some Hot ’

101

MEANING

7?,7? Very simply, what we are describing by doing this role chain is that a topping
Eat that is spicy makes the pizza that uses it as a topping is spicy. By describing the

spiciness of toppings, you should be able to define a class of spicy pizza.

102

