

Jihočeská univerzita
 v Českých Budějovicích
 University of South Bohemia
 cs in České Budějovice

Linear Optimization with Solver

Jana Klicnarová

Faculty of Economics, University of South Bohemia

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Ekonomická lihočeská univerzita v Českých Buděiovicích in České Buděiovice

Prototype Example

< ロト < 同ト < ヨト < ヨト

The Best Glass CO. plan to use the remaining time of their production lines to start with the production of two new types of windows – let us call them Windows 1 and Window 2. All of these windows must go through three production lines, where the capacities of the lines are 60, 60, 85 hours. The unit of the first window type needs 2 hours at the first production line, 6 at the second one and 10 hours at the last production line. The unit of Windows 2 needs 10 hours at the first production line, 6 at the second one and 5 hours at the last production line.

The marketing division considers that the company could sell as much of either product as could be produced and it is supposed that the profit from each unit of Windows 1 would be 30 thousand dollars and from each unit of Windows 2 45.

It is not clear which mix of these two products would be most profitable.

Prototype Example – Mathematical Model

イロト イボト イヨト イヨト

Jihočeská univerzita v Českých Budějovicích University of South Bohemi s in České Budějovice

> $\max 30x_1 + 45x_2$ subject to $2x_1 + 10x_2 \leq 60$, $6x_1 + 6x_2 \leq 60$, $10x_1 + 5x_2 \leq 85$, $x_1, x_2 \geq 0$.

First, we need to prepare the data in the Excel sheet. In the first step we rewrite the data of our example in the following way.

	windows 1	windows 2		capacity
line 1	2	10		60
line 2	6	6		60
line 3	10	5		85
profit	30	45		

< - □ > <

Now, we need to add variables. In our prototype example, we have two variables; hence we need to cells for them – we choose two cells and set them to be variables. We put the starting points into them – 0s.

	windows 1	windows 2		capacity
line 1	2	10		60
line 2	6	6		60
line 3	10	5		85
profit	30	45		
variables	0	0		

Then, we need to prepare all the functions which we use in the model – objective function and all left-hand sides of the constraints.

	windows 1	windows 2	used capacity			capacity	
line 1	2	10		`=SUMPRO	DUCT(B2:C2	2 <mark>;\$B\$8:\$C\$8</mark>)	
line 2	6	6		`=SUMPRODUCTÍ(B3:C <mark>3;\$B\$8:\$C\$</mark> 8			
line 3	10	5		`=SUMPRODUCT(B4:C <mark>4;\$B\$8:\$C\$</mark> 8			
profit	30	45		`=SUMPRO	DUCT(B6:C6	5;\$B\$8:\$C\$8)	
variables	5	5					

Ekonomická Jihočeská univerzita v Českých Budějovicích

			С	D	E	F	G	H I J K L M N O P
1		windows 1	windows 2	u	sed capacit	Y .	capacity	Solver Parameters ×
2 li	ne 1	2	10		60		60	
3 li	ne 2	6	6		60		60	
4 li	ne 3	10	5		75		85	Set Objective: SES6
5								T0: May O Min O Value Of
6 p	rofit	30	45		375			To: Max O Min O Value Of: 0
7								By Changing Variable Cells:
8 v a	ariables	5	5					\$B\$8:\$C\$8
9								2020/2020
10								Subject to the Constraints:
11								SES2:SES4 <= SGS2:SGS4 ^ Add
12								
13								Change
14								
15								Delete
16								
17								Beset All
18								V Load/Save
19								
20								Make Unconstrained Variables Non-Negative
21								Select a Solving Simplex LP V Options
22								Method:
23								Solving Method
24								Solving Method Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP
25								Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
26								problems that are non-smooth.
27								
28								
29								Help Solve Close
30								

Ekonomická Jihočeská univerzita fakulta v Českých Budějovicích Faculty University of South Bohem of Economics in České Budějovice

To possible ends of the Solver are:

- Solver found an optimal solution,
- Solver did not find an optimal solution.

イロト イヨト イヨト イヨト

Solver Results

Solver found a solution. All Constraints and c conditions are satisfied.	ptimality Re <u>p</u> orts	
 Keep Solver Solution Restore Original Values 	Answer Sensitivity Limits	
Return to Solver Parameters Dialog	O <u>u</u> tline Reports	
<u>O</u> K <u>C</u> ancel		<u>S</u> ave Scenario
Reports Creates the type of report that you specify, and workbook	d places each report on a sep	arate sheet in the

ペロト 4日 ト 4 日 ト 4 日 ト 4 日 ト 3 の 0 0 0

Х

Ekonomická lihočeská univerzita v Českých Buděiovicích in České Buděiovice

イロト イポト イヨト イヨ

Questions as

fakulta

- what does happen if the DM decides to produce a non-optimum product,
- in which price is advantageous to buy more supplies,
- in which price is advantageous to sell a part of supplies,
- if the profit of some product will be changed, will it change the result.
- and so on.

can be often answered without any new optimisation.

Ekonomická Jihočeská univerzita v Českých Buděiovicích of Economics in České Budějovice

Answer Report

Microsoft Excel 16.0 Answer Report Worksheet: [lp.xlsx]Example Report Created: 3/6/2019 10:05:59 AM Result: Solver found a solution. All Constraints and optimality conditions are satisfied. Solver Engine Engine: Simplex LP Solution Time: 0.031 Seconds. Iterations: 2 Subproblems: 0

Solver Options

Max Time Unlimited. Iterations Unlimited. Precision 0.000001. Use Automatic Scaling Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)

Cell	Name	Original Value	Final Value	
\$E\$6	profit used capacity	375	375	

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$8	variables windows 1	5	5	Contin
\$C\$8	variables windows 2	5	5	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$2	line 1 used capacity	60	\$E\$2<=\$G\$2	Binding	0
\$E\$3	line 2 used capacity	60	\$E\$3<=\$G\$3	Binding	0
\$E\$4	line 3 used capacity	75	\$E\$4<=\$G\$4	Not Binding	10

E 99€

Ekonomická Jihočeská univerzita v Českých Budějovicích

Sensitivity Report

Microsoft Excel 16.0 Sensitivity Report Worksheet: [lp.xlsx]Example Report Created: 3/6/2019 10:05:59 AM

Variable Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$8 var	iables windows 1	5	0	30	15	21
\$C\$8 var	iables windows 2	5	0	45	105	15

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$2	line 1 used capacity	60	1.875	60	40	16
\$E\$3	line 2 used capacity	60	4.375	60	5.3333333333	24
\$E\$4	line 3 used capacity	75	0	85	1E+30	10