
[image:]Název dokumentu
Podtitul dokumentu

	
The text for the course Business Intelligence

Jihočeská univerzita v Českých Budějovicích
Branišovská 1645/31a
370 05 České Budějovice
IČ: 60076658

Content
Content	1
1	Introduction	2
1.1	Software engineering definition	2
2	Software process	4
2.1	Software process definition	4
2.2	Basic types of software process	4
2.3	RUP (Rational Unified Process), its cycles, phases and iteration	6
2.4	Basic and supporting flows of activities	9
2.5	UML	10
3	Business modeling	12
3.1	UML activity and class diagrams	12
3.2	Business Process Modeling (BPM)	16
4	Specification of requirements	22
4.1	Actors and functional specifications through use cases	22
4.2	Use case diagrams	22
4.3	Object definition	24
4.4	Relations between objects and their interactions	25
5	5. Analysis and design	29
5.1	Models and their diagrams	29
5.2	Definition of the term class	29
5.3	Relationships between classes and objects	31
6	The role of business intelligence in enterprises	58
6.1	The concept of BI in a historical context	58
Formátování:	59
7	Nadpis 1	59
7.1	Nadpis 2	59

[bookmark: _Toc27925757][bookmark: _Toc442353312][bookmark: _Toc442353388]Introduction
[bookmark: _Toc27925758]Software engineering definition
Software engineering is an engineering discipline dealing with practical development issues concerning large software systems

By definition, software system development involves a number of factors necessary to successfully create the desired product:
technical aspects including computer infrastructure and software equipment;
Non - technical aspects of the organizational structure of the product development organization; and its economic possibilities;
knowledge of specification of requirements for software product, its analysis, design, implementation, testing and, finally, customer installation;
Human resources capable of applying the above knowledge and applying it to implementation software system;
Management related to the development of the product itself allowing efficient use of all of the above mentioned factors in order to create the product of the required quality.

1.2 Schematic representation of software product development
The development of a software product, as already mentioned in the previous chapter, involves a wide range activities and methods. The basis is the so-called software process, ie the progress of activities necessary to create a software product. According to the regulation set how to create software is then defined projects (referred to as process instances) related to individual orders. Each project is further formed by its implementation, activities linked to the developing your own product, and managing the entire project. Both this technical and non-technical part requires its methodology. In the case of management, it is a project management methodology given system of methods used in project management, while development methodology software system consists of a system of methods used in software development. Diagram described above is visualized using the semantic graph in Figure 1.

[image:]

Figure 1: Semantic graph of software product development
The aim of this text is to focus on the development of software systems with technical activities. The actual management of the software project and related issues is content of specialized course Process and project management.

[bookmark: _Toc27925759]Software process
[bookmark: _Toc27925760]Software process definition
The software process is a portion of a plurality of steps to create or editing the software work.
In relation to this definition, the following should be further noted:

· The step can be an activity or again a thread (hierarchical process decomposition).
· Activities and threads can run concurrently over time, so they are required coordination.
· It is necessary to ensure the repeatability of the use of the process in relation to individual software to ensure its reusability. The goal is to achieve stable high quality results.
· Many activities are carried out by people with certain skills and knowledge, and having the technical means necessary to carry out those activities.
· The software product is implemented in the context of the organization with the given economic possibilities and organizational structure.

The level of definition and utilization of the software process is evaluated according to the SEI (Software Engineering Institute) 1 - 5 expressing the maturity of the company or organization from the given point of view.
This model of evaluating the maturity and capabilities of a software product vendor is called CMM (Capability Maturity Model) and its individual levels can be briefly characterized about thus:
1. Initial - the company has not defined software process and every project is solved case by case (ad hoc).
2. Repeatable - the company identified in individual projects repeatable procedures and is able to reproduce these in every new project.
3. Third Defined (Defined) - software process is defined (and documented) based on integration of previously identified repeatable steps.
4. Fourth Controlled (Managed) - a defined software process company is able its management and monitoring.
5. Optimized - feedback information obtained over the long term The process of monitoring the software process is used in favor of its optimalization.

[bookmark: _Toc27925761]Basic types of software process
Over decades of software system development, a number of models have emerged as they should software process look. To date, however, there is no detailed and well-defined form a software process that could be accepted as a reference. However, it can be said that the basis almost all of them became the waterfall model (Fig. 2.1), which is possible in various modifications and extensions found in most current approaches.

[image:]
Figure 2.1: Waterfall model of software process

This waterfall model is based on dividing the software life cycle into four basic phases: requirements analysis and specification , software system design, implementation (coding) and at the end testing and maintenance of the created product. The principle of a waterfall is that the following set of activities associated with a given phase cannot start before the previous one ends. In other words, the results of the previous phase “flow” as inputs to the next phase. The shortcomings of this basic software process model, which over the years led to its modification are as follows:
• The delay between entering the project and creating the bootable system is too long.
• The result depends on the complete and correct input of the resulting requirements product.
• You cannot detect the resulting product quality given by meeting all requirements until the resulting software system is not complete.
Attempts to remove these fundamental shortcomings led to various modifications of the basic waterfall model. This is, for example, an incremental model built on the principle Gradually build versions of a software system that includes an increasingly wide range of features defined gradually during its creation. It is basically a number of smaller ones waterfalls with a significantly shorter life cycle, each of which corresponds to a new set additional requirements. The spiral model encompasses other phases, such as is to create and evaluate a prototype to verify the functionality of the target system, each the cycle builds up additional requirements specified by the contracting authority.
Before looking at the Rational Unified Process (RUP) software model, which will be considered as a reference in the following as it respects the current level of knowledge in software engineering, we'll show another approach to software development based on so-called “exploratory” programming (Fig. 2.2). This is not a software process in the true sense of the word, unfortunately it is still one of the ways how software develops. Think of this as a deterrent rather than one possible way.
[image:]

Figure 2.2. Exploratory programming

[bookmark: _Toc27925762]RUP (Rational Unified Process), its cycles, phases and iteration
The RUP process is the product of research efforts by a number of large development companies software systems coordinated by Rational (hence the process name). The Process RUP defines a disciplined approach to assigning tasks and responsibilities within development organizations. Its aim is to ensure the creation of the high quality product required customer within a predictable budget and schedule. How is this process different from the above mentioned waterfall model? By what how does it reduce these shortcomings? The answer lies in following several principles:
· the software product is developed iteratively
· the requirements placed on it are managed
· Existing software components are used
· the model of the software system is visualized
· product quality is continuously checked
· System changes are controlled.

Software development in an iterative way
Nowadays, when high-level software systems became the subject of development sophistication, it is impossible to first specify the whole assignment, then propose its solution, create a software product implementing this assignment, test everything and hand it over to the client to use. The only possible solution to such a problem is an iterative approach, allowing to gradually refine the target product through its incremental expansion from the original gross form to the final form. The software system is developed in versions which can be continuously verified with the sponsor and possibly modified for the following iteration. Each iteration ends with the creation of executable code.

Manage requirements
The quality of the resulting product is determined by the degree of satisfaction of the client's requirements. Just a question Correct specification of all requirements is a problem of all software systems. Very often the result of many years of effort by a team of software engineers fails due to insufficient specification specification. The RUP process describes how software system requirements literally to lure them from how to organize them and then document them. Monitoring changes in requirements it becomes an integral part of development as well as properly documented requirements for communication between the client and the team of researchers.

Development using components
The RUP process provides a systematic approach to defining new or existing architecture existing components. These components are interconnected in a well defined architecture either case-by-case (ad-hoc) or component-based architecture Internet, Common Object Request Broker Architecture (CORBA), or COM (Component Object Model). There are already many reusable components already and there are Obviously, the software industry is devoting great efforts to further development in this area. Development software moves to the product folding area of prefabricated components.

Visualization of software system modeling
The RUP software process describes how to visualize a software system model with a goal grasp the structure and behavior of the resulting product architecture and its components. The meaning of this Visualization is to hide details and create code using a graphical language building blocks of the final product.
The basis for successful application of visualization principles is considered as an industry standard Unified Modeling Language (UML) primarily for modeling purposes software systems.
Software product quality verification
The principle of verifying the quality of the created product is part of the software process it is included in all its activities, it concerns all participants in the software solution development. They are used objective measurements and criteria (metrics) quantifying the quality of the final product. Reinsurance
Quality is therefore not considered to be outside the main product development line and it is not a matter of special activity carried out by a special group.
Change management
What we mean by change management: Change management ensures that every change is acceptable and all changes to the system are traceable.
The reason why such an emphasis is put on such an issue lies in the fact that the environment in of which the software system is being developed is subject to frequent and often radical changes must be integrated into the solution itself. The RUP process describes how to manage, monitor, and monitor changes to make it successful iterative development. An integral part of this issue is the creation of a safe working environment an environment that provides maximum possible protection against changes occurring in another work environment.
Example:
Suppose the company develops an information system of the company including the payroll agenda employees. When there is a change in laws in this area, it must be clear which part of the system must be changed and how it will be reflected in other subsystems. Correctly the proposed management system can then locate who will ensure these changes, while it will minimally affected by the surroundings of these workers. E.g. a team of software engineers developing the user interface should not experience such interference at all.
Schematic representation of the RUP process
The software process itself has its static structure in the sense of which it consists flows of activities (to be described below) and activities and, on the other hand, has its own dynamic a page describing how the software product is developed over time (Figure 2.3).

[image:]
Figure 2.3. Schematic representation of the RUP process

How does this approach differ from the previously mentioned waterfall model? Basic difference lies in the fact that activity flows are concurrent, although the figure clearly shows that volume work differs depending on the stage of development of the software system. Obviously, the focus of activities related with business modeling and requirements specification will be in the initial stages while problems of software packages placement on computers interconnected networks (computer infrastructure) will be a matter of final stages. The whole life cycle is then divided into four basic phases (initiation, elaboration, creation and handover), with each of them typical realization of several iterations allowing gradual detailed elaboration of the product.
Cycles, phases and iteration
Each cycle results in a version of the system that can be passed on to users and implements the requirements they specify. As mentioned in the previous chapter, each such development cycle can be divided into four successive phases:
1. Initiation where the original idea is elaborated into a vision of the end product and is defined the framework of how the whole system will be developed and implemented.
2. Elaboration is a phase devoted to detailed specification of requirements and elaboration the resulting product architecture.
3. Creation is focused on complete execution of the desired work. Resulting software is created around the proposed skeleton (architecture) software system.
4. Handing over is the final stage when the product created is put into use. This phase includes other activities such as beta testing, training etc.
Each phase can be further broken down into several iterations. Iteration is a complete development loop to create an executable version of the system representing a subset of the target product being developed and which is gradually extended by each iteration to into the final form.
In other words, within each iteration, business modeling activities will take place, followed by requirements specifications, analysis and design, implementation, testing and deployment (installation). To this end, a number of activities from the support streams (see below) relating to configuration management, project management, and preparation of the environment in which the system is developed and deployed (Fig. 2.4).

[image:]
Figure 2.4. Iteration of product development

Static structure of the process
The purpose of each process, and hence the software, is to specify who is involved in it, what it has create how to create it and when to create it. From this perspective, we are talking about the following elements of the structure of each software process:
· Roles (workers) defining the behavior, competences and responsibilities of individual persons (analyst, programmer, project manager, etc.) or groups of people collaborating in teams. Individuals (human resources) are mapped to the roles required, depending on how the competences required are compatible with abilities of these persons.
· Artifacts representing entities that are created, modified, or modified in the process used (models, documentation, source codes, etc.). The basic artifact, which is essential for software system development is the model:
The model is a simplification of reality allowing a better understanding of the system being developed.
· Activities (activities) performed by workers to create or modify artifacts (compiling source codes, creating a design, etc.).
· Flows (workflow) representing a sequence of operations required generating activities products (business modeling, requirements specification, etc.).

[bookmark: _Toc27925763]Basic and supporting flows of activities
The software system development is given by a number of activities and activities that are organized into flows characterized by their purpose. From this point of view we can talk about the so-called basic ones flows resulting in part of the software product (artifact) and support flows, which do not create value but are necessary for the realization of basic flows. The basic flows that make up your own software product are as follows:
· Business modeling describing the structure and dynamics of a business or organization.
· Specification of requirements defining so-called use cases through specification software system its functionality.
· Analysis and design focused on software product architecture specification.
· Implementations representing custom software creation, component testing and theirs integration.
· Testing for activities related to validation of software solutions throughout its complexity.
· Deployment addressing the issue of configuring the final product to target computer infrastructure.

The outcomes of these basic activity streams are models that look at the system being created from a given perspective abstraction (simplification) (Fig. 2.5).

[image:]

Figure 2.5. Activity flows and models generated by them

The support flows, of course the most important and associated with their own development, are as follows:
· Manage changes and configurations to address versioning issues created artifacts reflecting the evolution of changes in software requirements system.
· Project management covering the issues of staff coordination, assurance and compliance budgeting, planning activity, and reviewing results. An integral part is risk management, ie identification of problematic situations and their solution.
· Environment and its management is a flow of activities providing the development organization with a methodology, tools and infrastructure supporting the development team.

[bookmark: _Toc27925764]UML
The last part of the chapter devoted to the software process is an introduction to the issue of language UML (Unified Modeling Language), which is used to create the above models arising during the implementation of the desired product. Over the years, UML has become Standardized language for drawing documentation (software) system:
UML is a language that allows you to specify, visualize, construct, and document artifacts software system. What do we understand by different characteristics of UML:
· The specification expresses the principle of creating accurate, unambiguous and complete models software process.
· Visualization means that it is a graphic language.
· The design complies with the requirement to connect the language directly to a wide range programming languages.

UML provides a variety of diagrams to build individual system models to cover various aspects of the system. These are a total of four basic views and diagrams assigned to them:
1. Functional view
a. Use case diagram
2. Logical view
a. Class diagram
b. Object diagram
3. Dynamic view describing behavior
a. Status diagram
b. Activity diagram
c. Interaction diagrams
4. Sequence diagrams
5. Diagrams of cooperation
6. Implementation preview
a. Component diagram
b. Deployment diagram

All these diagrams will be presented in the following chapters where they will be described individual basic flows of activities, including artifacts created by them.

Control questions
1. How is the software process defined?
2. Which basic phases is the waterfall model of the software process?
3. What is UML used for?
Tasks
1. Draw a scheme of the RUP process to define what cycle, phase and iteration are!
For thought
Imagine that you own a software company. Try to assemble a team of your colleagues and verbally describe how you would solve the project of the information system of video and DVD rental.

[bookmark: _Toc27925765]Business modeling

The purpose of business modeling is to provide a common language for software engineer communities
and business professionals.
Models that are created within a given activity flow are of two types:
· Business process models describing a set of interrelated procedures and activities leading to meeting the business goal.
· A domain model covering the most important objects occurring in the context system. Domain objects are entities existing in the environment in which the system works.

Before we look at the issue of creating these models, let's define an example where you think we will demonstrate the whole process by developing a software system from a procedural perspective access, and from the perspective of using UML.
Example:
Suppose that the owner of a car showroom is interested in increasing the efficiency of its operation company and decides to invest in building an information system. The goal will be Keep track of customers, cars, their equipment, availability and everything else with this problems. It is also assumed that the system will be able to communicate with the manufacturer's information system to reduce delivery times.

[bookmark: _Toc27925766]UML activity and class diagrams
UML uses two types of diagrams for business model specification:
· An activity diagram describing a business process using its states represented performing activities and transitions between these states caused by termination of these activities. The purpose of the activity diagram is to describe in more detail the flow of activities given by the internal their implementation mechanism.
· The class diagram is a graph made up of workers and static interconnected things (in time (with constant changes). The purpose is to capture, unlike the previous diagram, static aspect of the modeled domain (solution area).

Activity diagram
The activity diagram describes the individual processes using activities representing its (action) states and the transitions between them. What is the notation of this diagram can be demonstrated on a process example car sales (Fig. 3.1.1).
[image:]

Figure 3.1.1: Activity diagram describing car sales

Example (cont.):
The sale of the car begins with the activity of its selection. In case the desired car is in the showroom offer, the flow of activities is divided into two parallel threads related to financing (the diagram for this thread can be solved by a separate diagram) and ordering a car from the warehouse or from the manufacturer. After finishing these fibers, it continues the process of handing the car over to the customer.
The activity diagram defined in this way describes the activity flow, but it is not entirely clear who it carries out these activities and who is responsible for them. For this purpose UML offers the possibility of deployment the so-called individual employee pathways and containing only those activities for which this worker is responsible. Our original diagram then receives a new structure reflecting above (Fig. 3.1.2).

[image:]
Figure 3.1.2. Responsibilities of workers in the activity diagram

Compared to the previous diagram, this was complemented by payment control activity and was obvious defined responsibilities of individual workers implementing this process.
Defining lanes also allows workers to be included in the activity diagram. All that such a diagram is missing, there are entities (referred to as artifacts in the software process), which are created, modified or consumed in its implementation. Even for this extension the activity diagram provides tools in the form of notation modeling such entities. Any such the entity can have in addition to its name also the name of the state it is in (fig. 3.1.3).
[image:]

Figure 3.1.3. Modeling entities and their states in the activity diagram
Example (cont.):
The sale of the car begins with the activity of its selection. In case the desired car is in the showroom offer, the flow of activities is divided into two parallel threads related to financing producing the payment entity. The second thread is triggered by the order entity representing the entry into the activity of ordering a car from the warehouse, or at the manufacturer. Starting the handover activity following the order is allowed when the payment verification activity changes the payment from its original status to a verified status.

Class diagram
The previous diagrams were focused primarily on the description of organizational dynamics (behavior) units. Through the pathways of responsibility and entities were introduced into these diagrams as well structural elements. For further understanding of the issue it is therefore appropriate to capture this static structure using a special diagram - class diagram (Fig. 3.4).
[image:]

Figure 3.1.4. Class diagram

The domain model class diagram consists of two types of elements that actively represent executives identified by the <<worker>> keyword and passive entities identified as <<entity>>. These elements are interconnected by expressing associations conceptual or physical connection of these elements. The multiplicity of these associations expresses element frequency (the asterisk indicates the general frequency n).

Example (cont.):
Car sales need three active actors in the process called Customer, Dealer and Accountant, which in the diagram represents element worker. The customer must communicate with a vendor to define a passive element (entity) called an Order.
This order specifies which car to be handed over to the customer if this one he makes his payment and this payment is checked by the accountant according to the order. Because he can there is also a situation where the customer does not find his car in the car offer, he is at the order multiplicity 0..1 defined. In other words, the product of communication between the customer and seller is a maximum of one order. On the other hand, the accountant does not control only one payment, but all payments made by other customers. Hence general checks the multiplicity of the Entity Payment entity.

[bookmark: _Toc27925767]Business Process Modeling (BPM)
The process model is built using three relatively independent views using the BPM method formed by functional, object and coordination model.
1. The functional model is used to identify the process architecture, including its customers and products. The aim is to find the answer to the question what processes the organization needs to ensuring their business activity and what is their structure.
2. The object model identifies a static structure containing all entities (objects), in the process. In terms of their active participation, we then distinguish between active and passive objects. Active objects are process implementers (people and equipment used by them), while passive objects are manipulated, created or created by the process consumed. Mutual relations document the relationships (interactions) into which objects are entering. If the functional model tries to answer the question what processes in the company exist, then this model tries to reveal who and by what the process is realized.
3. The coordination model is based on the previous two and describes how the process will be implemented by specifying and coordinating activities representing interactions between objects.
Let's look at these individual views in more detail in the following chapters.
Functional model
The main purpose of the functional model is to identify the architecture (framework) of the business process, its customers and products. In terms of the relationship between processes, the BPM method introduces two basic sessions – containment and cooperation . The first is used to identify the threads that are at a particular point in time the second session identifies the possibility of coexistence and implementation two or more processes (Fig. 3.2.1).

[image:]
Figure 3.2.1. Functional model

Example (cont.):
The customer requesting the car is satisfied by the process, ie the product of the process is handed over car, or leaving the show as unsatisfied. Custom car sales process it contains two threads - providing financing and the delivery process of the car. Both threads cooperate because the product of the funding process is necessary as the input of the delivery of the car.
It is quite obvious that both threads having their own are elaborated in the same way customers, products, and possibly also threads (Fig. 3.2.2).

[image:]
Figure 3.2.2. Development of the thread
Object model
The object model identifies the static structure of all objects (active and passive) necessary for the implementation of the process. The object model is compiled for each process defined in the functional model separately.
In our case, we should therefore specify object models for the Sales processes Cars, Securing Financing and Car Delivery. Elements, relations and multiplicities depicted these models have the same meaning as the UML class diagram (Fig. 3.2.3).

[image:]

Figure 3.2.3. Object model of the Car Sales process

Example (cont.):
It is quite obvious that the customer must communicate with the seller. The result of their common An effort can be an order containing all the required information defined by attributes this passive object. In this way, the car ordered by the dealer is specified purchased by the customer. Of course, this model also includes a variant when required car not available. This alternative scenario is captured in the object diagram cardinality 0..1, so the order is either created or will not exist at all, but then the car is not bought.
The funding process will have an object model defined in terms of objects and relations related to this process (Fig. 3.2.4).

[image:]
Figure 3.2.4. Object model of the Financing process

Coordination model
The coordination model expresses how the process will be implemented. The coordination model specifies interaction between objects and defines how they are synchronized. The essence of the coordination mechanism is the fulfillment of the condition that the activity can only be triggered provided that all required objects are ready for entry into the activity. Activity it defines alternative scenarios of its course, each of which has its own costs and predicted implementation time. Based on the process architecture identified by functional the atomic activities of the coordination model are accompanied by thread icons allowing nesting in further, more detailed coordination diagrams (Fig. 3.2.5).
Example (cont.):
The whole process of selling a car is initiated by the activity of choosing a car to launch requires both customer and vendor presence. As can be seen, this activity has two possible scenarios its course. The first (labeled 1) corresponds to the situation that the customer finds the desired one car and the result is a specified order. The second scenario ends the process and the customer leaves as unsatisfied. The continuation of the first scenario is the division of the flow into two parallel branches. Seller attempts based on specified order secure the car directly from the warehouse, or have to ensure delivery directly from the manufacturer.
In parallel with this activity, the customer is trying to secure the financing represented with the appropriate thread. The thread is also elaborated in an analogous way Financing consisting of alternatives to cash, leasing or financing bank loan. Only if all required objects (passive and active) are prepared at the inputs of the last of the car delivery threads, this can be realized and terminated so the whole process of selling cars by customer satisfaction.

[image:]
Figure 3.2.5. Coordination model of the Car Sales process
Similarly, a coordination model can also be compiled for the funding thread (Fig. 3.2.6).

[image:]
Figure 3.2.6. Coordination model of the Financing process

A process defined in this way using the formal, mathematical theory of Petri nets based, approaches allow you to perform analyzes and simulations. The aim is to verify correctness as follows specified processes.
In addition to these methods, there are many other business-related issues modeling. For all the least important, which is the IDEF (Integrated DEFinition developed for the US Air Force and available at http://www.idef.com) and method Professor Scheer called ARIS (Architecture of Integrated Information Systems available) at http://www.ids-scheer.com).

Tasks
1. Describe in your own words what the object model in Figure 3.2.4 represents!
2. Describe in your own words what the coordination model in Figure 3.2.6 expresses!
3. Specify the main video and DVD rental processes using UML!

[bookmark: _Toc27925768]Specification of requirements
The goal of the requirements specification is to describe what the software system should do through specification of its functionality. Requirement specification models are used to reconcile the assignment between the development team and the sponsor.
[bookmark: _Toc27925769]Actors and functional specifications through use cases
The models that are produced in the specification of activities are based on so-called use cases (Use Cases) consisting of:
· Actors defining the users or other systems that will interact with developed software system.
· Use cases specifying behavioral patterns implemented by the software system.

Each use case can be understood as a sequence of related transactions in the dialogue between the actor and the actual software system.
UML uses two types to build request specification models diagrams:
· Use case diagram describing relationships between actors and individual use cases.
· Sequence diagram showing the interaction of participating objects organized by time.

[bookmark: _Toc27925770]Use case diagrams
The purpose of the use case diagram is to define what exists outside the system being developed (actors) and what to be implemented by the system (use cases). The input to the diagram of use cases is the business model, specifically the models business processes. Analysis of these processes results in a list of required functions a software system that supports or even replaces some of these activities through their software implementation.
The notation used by usage case diagrams is made up of graphical symbols representing actors and cases of use in their mutual relations (Fig. 4.1).

[image:]
Figure 4.1: Diagram of use cases

Example (cont.):
The process defined in the previous chapter shows that the activity of ordering a car and its handover to the customer are places that can be provided by the information system. In the first case the dealer will be able to verify whether the selected car is in stock or whether it is necessary order from the manufacturer. Likewise, the handover of the car should be registered with the destination record the name and address of the customer, or any issues that arise with the handover. Control Payment is an activity provided by an accountant. He should be able to consult the list and make sure they are correct. Everything should be monitored by the manager the showroom, which should have attained economic results. From the process analysis sales of the car and the following functions - use cases that the software system implement: Car Order, Car Handover, Payment Control and Tracking results.

It is quite clear that the more and more diverse the business processes the organization will be the more complex and comprehensive the required use cases will be. There is a need for these structure and clarify cases of use. The use case diagram introduces three types relations between individual usage cases (Fig. 4.2):
· A session used by the keyword <<uses>> indicates a situation where a certain one the scenario described in one use case is also used in other use cases.
· The session extends indicated by the keyword <<extends>> to indicate where a particular use case extends the other or represents a variant passage described by it scenario.
· The generalization / specialization relation expresses the relationship between a more general use case and its use a special case.

[image:]
Figure 4.2. Structure of use cases

Example (cont.):
The case of using a car order can be at a certain point when the car is out of stock, extended by ordering scenario in production, whose actor is information system manufacturer automobile. The use cases of ordering and payment checks require the authentication described a separate use case and specified in the form of password authentication user.
In addition to being able to structure use cases, a similar approach can also be applied to the actors themselves. The relation that is used for this is the generalization relation , the purpose of which is assign a set of skills that a given actor has to master.
More general abilities are assigned to a larger group of actors, with their specialization these general skills are complemented by more specific ones (Fig. 4.3).

[image:]
Figure 4.3. Structure of actors

Example (cont.):
The seller and accountant in our example share the ability to sign up for information of the car showroom using their assigned password. Using these diagrams, we were able to specify the functionality represented individual cases of use. The next step that needs to be taken is how this functionality it will be decided who will provide it. At the beginning of the chapter, we mentioned the concept of the object that it interacts with other objects to realize individual scenarios. So the goal will be Identify in our system objects that will be responsible for the performance required functionality by providing its services in communication with other objects (Fig. 4.4).

Figure 4.4. Objects and use cases
Before we show how the above mentioned interaction between objects realizing specified use cases, we have to stop at the concept of object and define it consistently.

[bookmark: _Toc27925771]Object definition
An object is an identifiable individual entity given its:
· identity - uniqueness to distinguish it from others
· Behavior - services provided in interaction with other objects.
In addition to these primary properties expressed in the definition, the object also has a secondary one Features such as:
· attributes - (changing over time) data values describing the object
· time of existence - time interval given by the moment of origin and termination of the object,
· states that reflect the different phases of the object's lifetime.
The view of the object can be twofold: external and internal. By external view we understand a set responsibilities implemented by the services provided by the object. These services are formally specified by the so-called protocol of messages that we can send to the object. Next object it can give the outside world its relations to other objects, as well as some of its own attributes. The inner view then allows you to look at all the attributes that are in front outside the object and the way the individual services are implemented.

Example:
Consider a car as an object. Every single car has its uniqueness, identity, which distinguishes it from others even if it has the same attribute values as color, width, height, wheelbase, etc. The purpose, responsibility, of a car is to transport passengers from point A to point B through the services of driving, starting, stopping, etc. These services it is used by the driver via “messaging” using the steering wheel, pedals and gear lever. External view of The car is the same for all types (they are driven in the same way), but these services are different implemented (internal view). The steering wheel can be with or without power steering, braking can be monitored by ABS and the like. The life of the car begins production and ends with its recycling. Throughout his life, he is going through various states such as rides, stands, garaged, in service and so on.

[bookmark: _Toc27925772]Relations between objects and their interactions
The software system is not made up of a single object, but a whole series of them. These objects in between communicate with each other in order to meet the required functionality. To allow these objects to be in between It is necessary to communicate with each other:
A connection is a physical or conceptual link between objects.
If we look at a book lying on a table, it is a physical connection between the objects book and table. An example of a conceptual connection may be the content of the claim that the student (object) Petr The gifted studies at VŠB - TU Ostrava.
From the point of view of object-oriented approach, it is important to realize that it is the set interconnected objects form a system. Thanks to these connections, mutual relations can occur interaction between objects of leaders:
· the resulting desired behavior of the system as a whole,
· changes in configuration and states of objects and thus of the whole system.
In relation to defined use cases, it is necessary to define such interactions between objects, which will achieve their functionality, the purpose for which they were designed.
UML provides a so-called sequential, sometimes also called interaction diagram. This chart describes what messages (requirements) they are sent between objects in terms of time (Fig. 4.5). The diagram is made up of objects arranged in columns and the arrows between them correspond to each other. Messages can be synchronous or asynchronous. In the case of synchronous messages, the sender waiting for a response from the addressee, in case of asynchronous message the sender does not wait for answer and continue to do its business. Continuous implementation of an activity with in the sequential diagram is a vertically oriented rectangle (example of the seller of the image) 4.5). The recipient's response can again be modeled, in this case by a return message (dashed line). The time flow runs from top to bottom.

[image:]
Figure 4.5. Sequence diagram
Example (cont.):
In our car sales example, one of the possible scenarios of the use case of Ordering car is realized by interaction between the seller (actor) and objects of the order, warehouse, database of cars and selected car. The seller initiates the interaction by entering information about required car to the object order. Request (by sending a message) insert the order responds with a message to find the car (message argument) in the warehouse.
The warehouse passes this request to the database by sending a select message. This picks a car repeat (as an asterisk *) to go through the operation until the specified car not found. The found car is marked as selected and returned via return messages back to object order. The order will first ask you to verify that the car is not already reserved and if not, he will make a reservation by sending a message book. At the end of this operation, the order passes back to the seller via a return message informing you that the car has been booked

There is one obvious shortcoming from this text. That is to capture just one option from a variety of possible interactions. Obviously, the sequence diagram would look different if the required car is not in the car database. A solution to this situation is possible Two ways. The first is to create as many diagrams as there are variants of the scenario or combine all scenarios into a single diagram. The second solution is definitely a more economical solution, however, usually at the cost of reduced diagram readability. For this reason it is it is appropriate to use this approach in situations where the scenario variant is very limited. In our example, Fig. 4.6. describes a variant scenario by a single diagram, while Figure 4.7 describes combining two variants into a single sequence diagram.

[image:]
Figure 4.6: Alternative scenario

Example (cont.):
A variant of a car order scenario may require cooperation from another actor (Manufacturer's information system) if the desired car is not in stock and must be produce.

[image:]
Figure 4.7. Combining scenarios

Tasks
1. Describe in your own words what the sequence diagram in Figure 4.7 shows!
2. Define the videotape and DVD rental processes based on the process diagrams individual use cases!
3. Build sequence diagrams for use in the rental of a videotape from the rental example videotapes and DVDs!

[bookmark: _Toc27925773]Analysis and design
The goal of the software product analysis and design flow is to show what the product will be implemented in the implementation phase.
[bookmark: _Toc27925774]Models and their diagrams
The models that are created during analysis and design are as follows:
· An analysis model that examines specified requirements in terms of objects that can be found in the problem domain.
· The design model further refines the analysis model in the light of the actual implementation environment. The design model thus represents an abstraction of the source code, in other words in other words, it represents the "drawing" documentation that determines how the source code will be structured and written.
· The deployment model specifies the topology of the hardware to be started the resulting software product.
· As in previous workflows, as well as in analysis and design, the above models are using diagrams. In this case it is the following diagrams, the first two of which I have already seen in the previous chapters describing introductory stages of development of software modeling business modeling (class diagram) and requirements specification (sequence diagram):
· Class diagram specifying a set of classes, interfaces, and their relationships. These diagrams are used to express a static view of the system.
· Sequence diagram describing interactions between objects in terms of their time arrangement.
· The collaboration diagram is similar to the previous sequence diagram but in terms of structural organization of objects. In other words, it is not primary aspect of the time sequence of sent messages, but the topology of object placement.
· A state diagram documenting the object's lifecycle in terms of its class states, transitions between these states, and events that make these transitions.
· Deployment diagram describing the configuration (topology) of the hardware to run their own software system.

[bookmark: _Toc27925775]Definition of the term class
In the previous text, we have become familiar with the term class. So let us replace intuitive so far understanding this term by defining the following:
A class is a description of a set of objects having a common structure, behavior, relationships, and semantics .
Classes can be found in a sequential diagram by examining the interactions between protruding objects in sequential diagram. An object can be an instance of just one class (just like an engineering product can only be manufactured according to a single production documentation). Class names we choose to be part of a dictionary describing the domain (reincarnation of the real domain) world into a software system). The terms class instance and object can be confused because they express the same in this context.

[image:]
Figure 5.2.1. Objects and classes

Example (cont.):
In the sequence diagram describing the car sales process, objects that we can appear Describe by classes Automobile, Order, Stock, DatabaseAut etc. These classes (descriptions) then serves as a template for creating specific objects (class instances). In our example, these objects can be named and have two instances of the Automobile class named as selected and mine and one instance of Automobile as nameless. Order class instance is the only one and named as one.

The description of the behavior of objects created according to given classes consists in defining their operations. These operations, like the classes themselves, are searched in sequence diagrams. Message sent from one object (class instance) to another means that the classes of that other object must define how this object will respond to the receipt of this message.

[image:] [image:]
Figure 5.2.2. Operation identification

Example (cont.):
The section of the sequence diagram that describes the process of selling an (unnamed) instance of a class The order sends a search message with an auto argument to an instance of the Warehouse class. From here it is clear that the Warehouse class describes all the objects that it thinks will be created must define the search operation with the input (in) argument auto , which is again instances, this time the Automobile class.

The class structure is represented by its attributes. The attribute lookup is based on exploring the domain and its knowledge. Every object that is then by a given class created, it fills these attributes with unique values. The so-called attributes are an exception classes whose value is common to all instances.

[image:]
Figure 5.2.3. Class Attributes
Example (cont.):
The general knowledge of car sales implies that the order must contain a name customer, selected model and also the price of the selected car. Hence three attributes customer , model, and price that the class must define and fill its instances with specific values.

By defining operations and attributes, we create a complete picture of classes and their instances (objects), which will form the basis of the diagram of the classes of the analysis model and then the design. The important thing is you realize that attribute values are always specific to the instance, the class only defines naming these attributes and their type. The class also defines operations that are common all its objects and therefore it is not explicitly mentioned in the object notation (Fig. 5.2.4).

[image:]
Figure 5.2.4. Operations and attributes

[bookmark: _Toc27925776]Relationships between classes and objects
Relationships between classes specify the way objects can communicate with each other.
The source for defining these relationships between classes is again a sequential diagram, eventually cooperation diagram. If we require the object to be sent a message from another object, then there must be a link between these objects, which is specified in the form links between classes of these objects.
Before proceeding to further categorize the types of relationship between classes, let's show the details sequential and collaborative diagrams as objects communicate with each other. As already As previously noted, the sequence diagram favors the temporal aspect of messaging.

[image:]
Figure 5.3.1. Advanced sequence diagram

By refining the sequence diagram we understand its further detailing in terms of introduction the duration of operations triggered in response to the receipt of a message (rectangles on the object axis), the introduction return values (dashed arrows), introduction of message type in the form of synchronous (pending response from the recipient) or asynchronous (continuing to execute operations without waiting for a response) and the introduction of so-called stereotyped messages such as creating a class instance or destroying it.
The cooperation diagram prefers to describe their communication between objects topology, ie their distribution and mutual connection.

[image:]
Figure 5.3.2: Diagram of cooperation

The cooperation diagram of the car sales example describes the same situation as the previous one sequence diagram. The time sequence of sending messages is expressed by their serial number. The return value is expressed by the assignment operator: =. Repeated sending of the message is given symbol * and in square brackets indicating the cycle repeat condition. Plus this one The diagram also introduces the following types of visibility of interconnected objects:

· <<local>> expresses the situation where an object is created in and after the body of the operation execution is canceled;
· <<global>> specifies a globally visible object;
· <<parameter>> expresses the fact that an object is passed to another as an argument to it sent messages;
· <<association>> specifies a permanent link between objects (sometimes referred to as " acquaintance).

Both diagrams determine the connection between objects in order to ensure the exchange of messages between them. Generalization of all possible configurations of these connections between the objects we then determine the links between their classes.
Example:
Let's try to explain the whole situation using the lines and points given by the intersection of these lines (Fig. 5.3.3). For a given real task, first create a collaboration diagram without specifying messages (these are not important to us at the moment) affecting the configuration. Apparently displacement the line P5 towards B1 will create two new intersections with lines P2 and P3. This will require building a new collaboration diagram. Such possible we have too many configurations to describe them all in a separate diagram cooperation. Therefore, we must proceed to generalization and create such a diagram that affects all variants. This is a class diagram that establishes a link between the Straight and Point classes (association) that affects all possible connections, because every instance of the class A line can be associated with 0 to n instances of the Point class depending on whether it intersects with another straight line or not. Similarly, any instance of the Point class is minimally associated with two Straight instances. Indeed, it follows from these formulations that this diagram using two classes and a single link between them, it can push an infinite number of configurations of our geometric task.

[image:]
Figure 5.3.3: Links and associations

Class diagram generalizing all possible system configurations described by collaboration diagrams classifies links between classes into the following four groups:
· Associations describing a group of links (between objects) having a common structure and semantics. The relationship between association and association is analogous to the relationship between class and object. In other words, this is a two-way connection between classes describing a set of potential connections between instances of associated classes as well describes a set of its potential objects as a class.
· Composition describing the relationship between the whole and its parts, where some objects define components whose composition creates a whole represented by another object.
· Dependency representing a weaker form of client-service relationship.
· Generalization is a taxonomic relationship between a more general element and its a more specific element that is fully consistent with the first of those only adds more specific information to its specification.

The association can be as simple as we saw in the case of a geoemetric task, or it can be represented by the class again. In this second, more complex case, we can assign an association attributes and even operations.

[image:]
Figure. 5.3.4: Association classes

Example (cont.):
Each vendor must place an order sooner or later (instance instances ProductionOrder) into production. Generally there may be up to n. Assuming that the order is solved by means of on-line access to the information system of the car manufacturer, then each order is issued (creating an association between the seller and the order) through authorization. Each of these authorizations has attributes such as user login , his password and session number . The runString operation performs the insert itself orders into the manufacturer's information system. The correctness check is provided by the class instance Users who verify that the vendor with the given login and password is authorized to do so.
The relation of parts into one unit has basically two possible forms (Fig. 5.3.5). This is on so-called aggregation , for which parts may be contained in other units, in other words they are shared. Or it is the exclusive ownership of the parts in total, then we are talking about composition type composition . The latter type of composition has one important property in terms of life cycle of the whole and its parts. The existence of both is identical. Extinction of the whole (composite) leads to the extinction of its parts unlike aggregation, where the parts can survive further as part of other units.

[image:]
Figure Figure 5.3.5: Composition

Dependency is a type of session (binding) that arises only temporarily for the purpose of providing a service to the client object, with the result that this link is then terminated.

[image:]
Figure 5.3.6: Addiction

Example (cont.):
Installing an order class at the time of specifying the desired car creates an instance class Automobile using a temporary dependency session (<<instantiate>>). Similarly, class instances A warehouse at a certain time uses an Automobile class to select it from a database.
Before we show you how to use the last of these sessions, called generalizations, We will introduce three other concepts of role , object type and interface , which are closely related to yet discussed sessions of association and dependency.
The role defines the specific behavior of an object in the context of its use.
Just as in the real world, man performs in different roles depending on the context in which he is currently in the job (in the role of a worker, at home is a wife or husband, in the car driver or passenger, etc.) equally blunts the object relative to others objects with which it is in relation.
The object type specifies a group of operations that can be performed by the object.
Each role in which the object is located then corresponds to the type and vice versa. In other words that is, according to the current role in which the object is located, it can only perform operations given by the corresponding object type.
The interface is the name of a group of externally visible operations.
These definitions imply that the object type and its interface are de facto the same and can therefore be confused arbitrarily. Typically, the type is a concept that the analyst manipulates, while the concept the interface is rather inherent to the programming community. The important thing is to realize that cornering only defines a group of operations, but does not define their implementation. This is the task up to that class implements the interface.
In terms of UML, the type, or interface, is distinguished from its own classes by keyword <<interface>>.

[image:]
Figure 5.3.7: Types and implementation classes

Example (cont.):
Let's have instances of the Order and Automobile classes. The car stands out against the order in two rolls. Once specified as if the order is defined by the customer desired car. In the latter case, the car performs in the role selected , if any found in the car warehouse database. The next step is to define which group of operations can be requested for an instance of Automobile depending on its role. Class automobile they must implement two selected and specified interfaces, which also define corresponding interfaces group of operations. For example, the report reserve can send the object car when finds in the role specified . First, it must be found in the database and selected to be subsequently booked. The graphics language then introduces "connectors" to the interface, which explicitly define which of the operations the associated class (in our example Order) can use.
The question that comes to mind at the moment is: “What is this division for us? specification of operations since their implementation can serve? ”. The answer is simple. We make our code flexible and reusable by enabling implementation classes at any time without having to change the context (other classes) in which these classes exist.

[image:]
Figure 5.3.8: Implementation independence

Example (cont.):
If we want to use our car sales software system also for sale of motorcycles, then in the case of strict adherence to separation of operations specifications from their implementation means that you just need to swap the Automobile class with the Motorcycle class without it we would have to change the Order class. This only requires a defined protocol, a set of operations that will require an object in the specified or selected role.
The relation of generalization (or specialization according to its direction of perception) defines concretization of classes into their subclasses, which inherit (reuse) what their superclass defines for them.

[image:]
Figure 5.3.9: Generalization and specialization

Example (cont.):
The addition in our car sales example is a very general class that introduces only basic properties (price) and a single operation to apply discounts. This general addition is below Specified in Air Conditioning, Alloy Wheels, Interior in Leather and Stereo. Each of these classes inherits all the features of its predecessor of the Supplement class, which are the aforementioned price and operations discount plus they add their new features. This is an attribute for the Air Conditioning class automatic , which is set to true or false, depending on whether it is automatic or manual air conditioning. In addition, the Stereo class itself becomes a superclass for its own other possible instances represented by the CD Player and MCP Player classes.
With the introduction of the principle of generalization to create class hierarchies, we can finally introduce visibility modifiers (in terms of availability) of their attributes, operations and relationships to other classes. These are basically three (Fig. 5.3.10):
· The private modifier allows you to access the values of this attribute, operations or associated objects only an instance of that class.
· A protected modifier extends this access to instances of subclasses that are specialization of the class.
· The public modifier exposes attribute values, operations, and linked objects to everyone objects without restrictions.

[image:]
Figure 5.3.10: Visibility

UML class diagrams
In the previous chapter, we have become familiar with all the basic concepts and their corresponding notation of a graphic language that allows classes, their interfaces, and relationships between them structure into a class diagram. This diagram, as mentioned earlier, defines the basis of a static description of the software system, because it can cover all available object configuration. Let's repeat that the source of information for how the diagram has The classes look like are sequential and collaborative diagrams. These will help us to identify what objects and objects hence the classes need to realize the required functionality in which these classes of relations are, which messages are passed between instances of these classes. Unfortunately these diagrams always affects a particular system configuration and does not describe the structure of classes generally independent of time moment at which the software system is currently located (see the geometric task from the previous one) chapter). For this purpose we compile a class diagram that is universal and time-independent.
It is for this reason that the class diagram is the building block of both the analysis and design model we can not do without it, because its compilation is a necessary condition of subsequent software system implementation using programming language. Class diagrams affecting various aspects of the resulting system we compile a number, although theoretically would for complete disability was enough only. The reason, however, is the limited clarity of such diagram if the software system is made up of hundreds of classes.

[image:]
Figure 5.4.1: Class diagram

Example (cont.):
In our example, car sales is at the heart of the proposed software system class diagram from fig. 5.4.1. The car database generally consists of available cars that are first specified and then selected according to the order. Every car is assigned standardized equipment (luxury and / or sports) or the customer chooses accessories according to yours. Equipment consists of a predefined set of accessories, where, for example, Sports Equipment is made up of alloy wheels only. The compiled class diagram represents a kind of first version. As mentioned in the software process chapter, this diagram over time undergoes a series of modifications and is incrementally expanded and modified to such a form that meets the functional condition defined by the project sponsor.

Specification of dynamic behavior
If we have shown in the previous chapter how to use the class diagram to describe static aspect of the software system, so let's show how to capture its dynamic behaviour. Sequence and collaboration diagrams, as already mentioned, model only certain time frames and it is therefore difficult to describe the entire life cycle of objects from a perspective their dynamic behavior. This is the purpose of using the so-called state diagram , which like Abstract class cannot have its own instance

Class diagram for its information source again uses primarily sequence diagram or cooperation diagram. The state diagram shows the object's life cycle, events that cause transitions from one state to another and the actions that result from this state change.
Another fundamental difference to sequence and interaction diagrams describing interactions between several objects is that this diagram is compiled for each object (more precisely for its class), with only those objects that are really significant dynamic behavior.
The definition of the state diagram implies that we must find the states of the object, the events that cause changes in these states, and ultimately the actions that result from these changes. States we find in the sequence diagram in the form of operations, events are messages that lead to start operations, the actions are then messages that are sent towards the other objects when operation (Fig. 5.5.1).

[image:] [image:]
Figure 5.5.1: Status diagram
Example (cont.):
Creating a state diagram for an Order object is based on sequential analysis diagrams in which this object performs. From a selected part of a particular sequential The diagram shows two states (Initialization and Ordering) into which the object gets on Event- Fill and paste . The second of these states can be further detailed and expressed so better what actions are performed by the object and what are the conditions for the transition to new ones conditions. E.g. in the Check reservation state the action (sending a message) is jReserved , which, in case of a false false answer, will allow you to switch to the new Reservation status This It is linked to the execution of the event reserve .
Because the object is usually more than one in a sequence diagram, a state is required to complete the diagram with the states and events that specify these additional sequence diagrams. Thanks in this way, analogous to the class diagram, the state diagram becomes a generalization (fig. 5.5.2) all possible scenarios described by a series of sequence diagrams.

[image:] [image:]
Figure 5.5.2: Combining scenarios

Structuring the software system
Already in the chapter describing the class diagrams we have stated that a complex system must be described as large number of diagrams. Obviously, it is necessary to respect when modeling the software system principles that allow models to be created appropriately, usually represented in their entirety a series of diagrams to structure and better manage the entire product documentation.
For this purpose, UML introduces the term package which is defined as follows:
A package is a general-purpose mechanism that allows you to organize elements into groups with a goal reduce the complexity of the modeled system.
These packages can group any part of the modeled system. If it will act about parts that are related in terms of ensuring some common functionality or purpose then we are talking about creating so-called subsystems . The models we create are de facto too a special case of a package that expresses simplification of reality, abstraction of the system created to make it easier to understand.

[image:]
Figure 5.6.1: Packages

Example (cont.):
In the case of a car sales system we can create several in terms of functionality provided separate packages (subsystems) dealing with self-sale and warehouse management. Because the resulting application must also provide graphical user interface services we can add another GUI subsystem that can be specified as an interface Windows or UNIX operating system.
However, with the introduction of the GUI subsystem, we are getting to the next one stages of software system modeling, which is the so-called design including implementation environment used to create the resulting application.

The proposal and its objectives
The aim of the design phase within the analysis and design workflow is to create model design. What is a design model can be defined as follows:
The design model further refines the analysis model in the light of the actual implementation environment.
The term implementation environment basically expresses the possibility to map the proposed software components included in the analysis model for the architecture of the system to be operated developed applications with the maximum possible use of existing software services component. The procedure of incorporating the implementation environment into the application being developed is given the following sequence of activities:
· definition of system architecture,
· identification of design patterns and possibilities of reuse of so-called framework solutions,
· definition of software components and their reuse.

[image:]
Figure 5.7.1: Mapping to software components

Example (cont.):
In the analysis model, one of the proposed class diagrams specifies the DatabaseAut class as a whole consisting of 0 to n automobile instances. Mapping to existing software components means that we use the java.util.Vector class to realize this composition contained in the Application Programming Interface (API), or library Java. The DatabaseAut class will be associated with just one instance of the class java.util.Vector, which will contain the elements represented by each instance of the class Automobile. In this way we save the work of programmers who would otherwise have to design a Implement a dynamic field to insert, search, and remove the required fields cars. Because in Java, all classes have a single common java.lang.Object superclass, this is expressed in the class design diagram using a generalization session.

Architecture of the resulting system
The implementation environment consists of software components falling into the following three layers complementing the analysis objects related solely to the domain:
· User interface allowing communication of the developed system with users or other systems.
· Distribution to spread large applications to multiple interconnected applications computational nodes.
· Persistence allowing data content represented by the values of the attributes maintained permanently store objects so that they can persist beyond the runtime program.

The whole situation is illustrated by Fig. 5.8.1 showing how the kernel of the system is created in the stage analysis was completed by the above three layers.

[image:]
Figure 5.8.1: Software system architecture

Worth mentioning is the so-called adapter objects, which have the only task of conveying them interface of analysis objects with operating system services and relational databases. Usually these services are not implemented using object-oriented principles and it is necessary to encapsulate specially designed objects called adapters.
The whole situation is illustrated by an example (Fig. 5.8.2) of the cooperation diagram, where the adapter object (instance of the java.sql.Connection class) allows the application to connect to a relational database to execute SQL query command and based on the result of this query populate in our case instance of the aforementioned class java.util.Vector elements persistently stored in this database.

[image:]
Figure 5.8.2 Example of using a relational database adapter

Design patterns and application frameworks
Design patterns can be understood as an abstraction of imitating useful parts of other software products.
Freely interpreted, if we find that we use a successful solution to solve a problem, which repeats itself in different products from different domain regions, then generalize this the solution becomes a design pattern.
Each such design pattern is described by a set of communicating objects and their classes that they are adapted to the solution of the general design problem in a given context, that is to say already existing surroundings.
We can classify design patterns according to their use into these basic three groups:
• Design patterns constituting intended to solve the problem of creating class instances via delegation of this function to a specially designed class.
• Structural design patterns solving the problems of how objects are structured and theirs classes.
• Design behavior patterns describing algorithms and object collaboration.
Nowadays, there are a large number of design patterns that exceed the number the possibilities of this publication. In the following, only three design patterns will be presented as for example, one of each of said groups. Design patterns themselves will be presented according to the following scheme. First, the intention , the purpose for which it is given will be defined Design pattern serves. There will be a motivational example, otherwise the context in which it will be
Demonstrated design pattern incorporated. Then the solution of the problem will be sent and finally it will be this solution is generalized to its own design pattern.
The first of these patterns The factory belongs to a group of design patterns forming and is defined according to the above scheme as follows.
Intent : The factory provides an interface for creating families of related objects without the need specify their specific classes.
Motivation: Consider the example in Figure 5.9.1. Let's have an instance of the order that reason it will be bound to the instance of the Window and TextField classes. If it will our application will run on MS Windows operating system, then these instances (family of related objects) will be created from the Windows and Windows classes WindowsText Field. By analogy for UNIX, these classes will be Motif Window MotifText Field. The problem is that when switching from one operating system to another, we will have to find the sources where these instances are created and replaced is the appropriate class for the operating system. This does not have to be seen at first sight not seem complicated, but if the family of related objects has dozens of such classes, then this problem becomes significant. The aim is therefore to propose such a solution to: the order may not have known about the specific classes that will create window objects and text box and used for this purpose an intermediary, which will ensure the correct creation right instances.

[image:]
Figure 5.9.1: Motivational Example of the Factory Design Pattern

Solution: The problem of finding an intermediary is to design the Factory with Operations class designed to create specific instances of the required classes (Figure 5.9.2). The factory is called. an abstract class, that is, has no instance, but serves as a superclass for creating specific building factories. In our case, these are Windows and Factory classes MotifTovárna. The actual order is associated with the corresponding factory, according to the operational system, and only this factory sends messages to create a Window or create a Text Box . These the factory-specific operation then creates the required instances of the Window and TextField classes.
The flexibility provided by this solution lies in the fact that if we want to introduce windows and text field for other operating systems, just create a subclass of the class Factory, eg. MacOST Factory, and it is not necessary to change anything else on the source code of our application.

[image:]
Figure 5.9.2: Solution using Factory Design Pattern

Generalization: Because there are such instances when we instantiate classes in an application A whole series, we will try to generalize, ie abstract description of the factory so as to be appropriate by changing the names of the classes, it gave concrete details for solving similar problems. This is completely given the design pattern Factory (fig. 5.9.3).

[image:]
Figure 5.9.3: Factory Design Pattern

Another of these design patterns is Composite , which belongs to the second group of so-called. structural design patterns.
Purpose : The Composite design pattern allows the composition of objects into a tree structure representing the hierarchy of units and their parts. In addition, this design pattern allows clients work with units and their parts in a uniform way. The client does not have to distinguish whether or not it is in whole or in part.
Motivation: Consider the example in Figure 5.9.4. The Automobile class object is on customer request extended by individual accessories or the whole equipment including selected groups of accessories (remember the sporting or luxury equipment from Fig. 5.4.1). The problem is that the class instances the car must maintain a link to n equipment and n accessories. It is therefore desirable Simplification using a design pattern that clears the difference between equipment and accessory, ie the difference between the total and its parts. In addition, we do not have the opportunity to create new equipment formed from other equipment. E.g. the customer will require top equipment that will include both luxury equipment with all the trimmings and sports equipment.

[image:]
Figure 5.9.4: Motivational example of Composite design pattern

Solution: The problem can be solved using the Composite design pattern by introducing it abstract class An accessory that can be specified either in individual equipment features such as Air Conditioning, Alloy Wheels, etc., or into the Equipment Class, which basically forms a whole for inserting accessories, both individual elements and again new equipment (Fig. 5.9.5). From the perspective of the trim instances of the Gear class instance form tree nodes while the trim elements are sheets tree. Thanks to this organization we can create whole hierarchies of units and their parts without limiting the depth of this hierarchy. In addition, the Automobile class maintains one n-propulsion association to the Supplement class, and does not need to be explicitly distinguished if it is only an equipment feature or all the equipment.

[image:]
Figure 5.9.5: Composite Design Pattern Solution

Generalization: Structuring into a tree is an often used method that needs to be done Generalization and define your own composite design pattern (Fig. 5.9.6). The core is class A component that is instantiated into a non-divisible List class or a class Composite as a tool for assembling other components. Recursively we can create a hierarchy of theoretically unlimited depth. Also noteworthy is the joint operation feasible with both sheet and composite. Execute for an instance of the Composite class is that this instance forwards this message to all of its parts composed.
This design pattern is mainly used in the graphical user interface design where the composite is the surface (eg the window or dialogue itself) into which they are inserted other faces or atomic elements such as text boxes, buttons, or sliders. Creating and hierarchies of user interface objects that have, for example, a common display operation rendering their content to the screen. Surfaces will forward this request to all of them components, while atomic elements are rendered according to their algorithm.

[image:]
Figure 5.9.6: Composite Design Pattern

The last of the design patterns that we will present is the Design Pattern Observer, which is one of the most important of the group of design patterns of behavior.
Purpose : Design pattern The observer defines the dependence of generally n objects on a single one in such a way that in case of a change in the state of the observed object, this changes to all dependent objects and these are automatically updated based on this currency.
Motivation: Consider the example in Figure 5.9.7. The Invoice class object implements the operation paid in such a way that when this message is received informs the object manager and vendor by sending a message sent to instances of the SMSGate class and so does display the message on an instance of the MonitorPayments class. The downside is that every invoice needs to know about these observers, remember them and send them the appropriate messages. Introduction another new observer would also mean modifying the Invoice source code.

[image:]
Figure 5.9.7: Motivational Example of the Observer Design Pattern

Solution: The problem of determining n observers on a single observed one can be solved by the Observer design pattern by introducing two new Subject classes observation and Observer (Fig. 5.9.8). The first one introduces add and remove instances class observer and operation notification , which, if executed, sends to all registered observers update the report. The Observer class is therefore introducing an operation update , which is redefined by each subclass to correspondingly individual instances were able to respond correctly - the SMS class instance sends a text message message while the MonitorPayment class instance displays the invoice payment information on screen. The announcement operation is triggered by a subclass of the Subject class, in our case it is the aforementioned Invoice class. The progress of the entire messaging system is documented at cooperation diagram (Fig. 5.9.9).

[image:]
Figure 5.9.8: Solution using the Observer Design Pattern

[image:]
Figure 5.9.9: Cooperation diagram of the Design Pattern Observer

Generalization: Abstraction defining the design pattern The observer (Fig. 5.9.10) is again very often used in various specific situations. It is used in situations based on indirect invocation, where an object that changes its behavior and its observers do not hold each other no links and their interconnection is mediated by their superclasses. The meaning of this indirect invocation consists in the fact that it is not necessary to inform (and thus change) the addition of a new observer source code) of the observed object, but you only need to create a new class that is a specialization add the observer class and its instances to the observing object set via Operations join .
This design pattern forms the basis of all modern graphical user interfaces where changing the state of observed objects leads to events (usually the object passed as Notification operations parameter), which are processed by observing objects using type operations refresh .

[image:]
Figure 5.9.10: Design Pattern Observer

So far, we have learned to consistently follow the principle of reuse in the design patterns useful parts of other software systems. Basically, this principle of reusability we can go even further in the sense that we would reuse almost all of it before created product and we would just modify it. If we follow this principle and we will to systematize it in a similar way to design patterns, we create a so-called framework.
A software framework is a set of abstract and specific classes that are generic together software system.
In contrast to the set of classes contained in libraries, it has its management framework that takes care of triggering operations of the classes we supply specifying the framework for that particular domain area (Fig. 5.9.11).
This implies the necessity of designing an application at a very high level of generality to make it could be elegantly used in other tasks. This is a very challenging task, however in the case of a successful solution it means a significant advantage in competition with other companies dealing with ad hoc software development on a case-by-case basis.

[image:]
Figure 5.9.11: Frame usage example

Deployment diagrams
Deployment diagrams define the third of the models created within the flow of activities involved analysis and design. This model bears the same name as the diagrams that define it, that is deployment model. The purpose of this model is to specify the physical structure of computing resources that will run the resulting software product. From there it can be defined deployment diagram as follows:
The deployment diagram describes how to configure the technical resources to run software system.
At this stage of analysis and design, these diagrams are only rough, but theirs build is important for the next stage of development represented by the flow of activities called implementation. It is in this implementation phase that logical models from analysis and design are needed in the form of software components, physically existing parts of software, and these put on the technical means specified in the deployment diagrams.

[image:]
Figure 5.10.1: Deployment diagram

Example (cont.):
The car sales information system will use a variety of computers to each other computer network. Employees will each have their workstations connected using a local network to the car show server. This server will also be the gateway to the network Internet, which enables connection to the database server of the warehouse or services enterprise information system (ERP - Entreprise Resource Planning) of the manufacturer automobile.

Control questions
1. Why is the class diagram the basis of the software system documentation?
2. What is the difference between analysis model and design?
3. What are design patterns and how are they structured?
Tasks
1. Describe the difference between aggregation and composition of Fig. 5.3.5!
2. Compile the Automotive class status diagram!
3. Complete the class diagram from Fig. 5.4.1. o Interface describing roles selected and specified !
4. Based on the sequence diagrams from the video and DVD rental example, assemble class diagram describing the analysis model of this task!
5. Select at least two classes with significant dynamic behavior from the sequence diagrams
Implementation
The goal of the implementation is to add the program code and the to create a complete system.
The implementation model specifies how individual elements (objects and classes) are created implemented in the design stage in terms of software components, which are the source codes, executable codes, data, and the like.
A software component is defined as a physically existing and interchangeable part of the system satisfying the required set of interfaces and providing their implementation.
Depending on the type of software components we are talking about
· source code, parts of the system written in the programming language,
· binary (translated to processor machine code) and executable code,
· other parts represented by database tables, documents, etc.

If we only worked with documented abstractions in the analysis and design phase in the form of individual diagrams, then during the implementation of their physical realization. Thus, the implementation model also focuses on specifying how these will be components physically organized according to implementation environment and programming language providing a specific structuring and modularization mechanism.
As in previous cases, UML offers the means to meet these goals, which in this case are the following two diagrams:
· Component diagram illustrating the organization and dependencies between software components.
· Deployment diagram refined not only in terms of configuration of technical resources, but especially in terms of deploying the implemented software components on these means.

Mapping logical model elements to components
Consistent and precise specification of objects and their classes at the design stage allows for automatic source code generation according to the following table. The table has two columns, the first one corresponds to UML elements, while the other describes their representation in the programming language, in our case it is Java.

	Analysis and Design (UML)
	Source Code (Java)

	Class
	Class structure

	Roles, Type and Interface
	Interface type structure

	Operation
	Method

	Class attribute
	Static variable labeled static

	Attribute
	Instance variable

	Association
	Instance variable

	Dependency
	The local variable, argument, or message return value

	Interaction between objects
	Calling methods

	Use case
	Sequence of method calls

	Package, Subsystem
	Code located in the given directory specified in source file using package

The table below shows that the only thing that cannot be directly deduced from UML diagrams is bodies methods, the code that is executed in response to the received message, and also what the physical structure is generated files representing software components. Everything else can be done automatically generate literally without the participation of a team of programmers. So that we can do the above To document, consider the class diagram (Figure 6.1.1) representing the outcome of the design stage and let's try to make it the required software components, in our case implemented using Java.

[image:]
Figure 6.1.1: Design result

Source, binary and executable components
The example of creating components will begin with the parts related to the source components, ie files created using the used programming language. The first step will therefore be to decide the physical organization of these resource files defined by the component diagram.

[image:]
Figure 6.2.1: Component diagram: source code

Example (cont.):
From the resulting class diagram specifying the core application of car sales we create component diagram (Fig. 6.2.1). Classes Automobile, Order, Stock, Selected and Specified will each be contained in a separate file of the same name with the extension .java indicating that it is code written in the Java programming language. Hierarchy of classes describing the part of the add-ons (using the composite design pattern) is placed in one file corresponding to its name superclass Supplement. A dependency session called as <<import>> indicates the use of components from other subsystems (packages) while sessions called <<friend>> indicates that the components are part of a common package. IN Java means that their files are in a common directory.
Given the physical structure, the team of programmers can start creating source code. If we have development tools like CASE (Computer Aided Software Engineering), then you can have these source codes generated by such a tool.
The procedure for creating the source code is based on the UML element mapping table to Java source code. The only thing that needs to be added is what cannot be done automatically or simply create, the body of the methods represented by the operation algorithms. These can be at least coarse specify the sequence diagrams defining operations, but above all state diagrams describing in detail the behavior of objects.

[image:]
mport auta.Automobil;
import sklad.Sklad;
public class Objednávka {
protected String zákazník;
protected float cena;
protected Specifikovaný specifikovaný;
protected Vybraný vybraný;
protected Sklad sklad;
// Konstruktor objektu přiřadí za sklad odpovídající instanci
public void vyplň(String model, String extra) {
Specifikovaný specifikovaný = new Automobil(model, extra);
}
public boolean vlož() {
vybraný = sklad.vyhledej(specifikovaný);
if (vybraný.jeRezervován())
return false;
vybraný.rezervuj();
return true;
}
}
Figure 6.2.2: Source code: Order.java

Example (cont.):
The Order class uses the Automobile and Warehouse classes located in the car and warehouse packages . Therefore as specified in the component diagram, these classes must be imported. Customer attributes and price is implemented in the form of instance variables as well as associations on instances other classes named as specified , selected (role names of instance Automobile), and warehouse . The methods, as shown in the class diagram, are two fill and paste .
 [image:]

Figure 6.2.3: Specified.java, Featured.java, and Autom.java

Example (cont.):
It is worth noting in this part of the implementation the way Java implements the interface. The implements keyword specifies which in the class definition interfaces (in our case Selected with Specified) are within the given class implemented. From the point of view of the class itself, it must define the declared methods within the interface, ie the specification from the interface Specified and is Book and reserve from Selected. In the case of missing implementations of these methods, the Java compiler will report an error
[image:]

package auta;
public abstract class Doplněk {
public void přidej(Doplněk d) {}
public void odeber(Doplněk d) {}
public Doplněk potomek(int index) {
return null;
}
public abstract float cena();
}
class Klimatizace extends Doplněk {
public float cena() {
return 2000.0f;
}
}
// ostatní třídy
class Výbava extends Doplněk {
private Doplněk[] doplňky;
public void přidej(Doplněk d) {/* kód */}
public void odeber(Doplněk d) {/* kód */}
public Doplněk potomek(int index) {
return doplněk[index];
}
public float cena() {
float sum=0;
for (int i=0; i < doplňky.length; i++) {
sum = sum + doplňky[i].cena();
}
return sum;
}
}
Figure 6.2.4

Example (cont.):
The last example of the implementation of source components documents the way it is generalization (inheritance) session in Java. This is using a keyword extends , which introduces the superclass of the class. For example, the Equipment class is a subclass of the class Supplement.

Binary components, ie components translated into the machine code of a given processor, have also their component diagrams usually expressing from which source files they are required binary created.

[image:]
Figure 6.2.5: Component diagram: binary code

The executable component diagram specifies all components created by us and those created by us it gives us an implementation environment.
[image:]
Figure 6.2.6: Component diagram: running the program

Example (cont.):
In our example, we need a virtual language engine to run the Car Database class Java (java.exe) and its libraries (rt.jar). The font configuration parameters are saved in a text file (font.properties). The application itself uses database server services (sql.exe) working with a car database structured in relational tables (Cars).

Deployment diagrams
The last task that makes the implementation phase complete is to refine the deployment diagrams. The actual refinement consists in placing executable and data components on individual technical means represented by computers.

[image:]
Figure 6.3.1: Final deployment diagram

Control questions
1. What diagrams does the implementation use to specify the physical organization of the code?
2. How are generalization sessions implemented in the Java programming language?
Tasks
1. Define the term component and what types of components the implementation model contains!
2. How it is expressed in the programming language that the Equipment class consists from generally n instances of the Add-in class!
3. Build a diagram based on the class diagrams from the video and DVD rental example source components!
4. Implement the code of the classes at the core of the video and DVD rental application!

Software product testing and deployment
Testing is performed from the perspective of three basic dimensions represented by quality, functionality and performance of the system. The testing concerns all created models and theirs diagrams.
The principles used in testing are as follows:
· Tests are scheduled for each iteration and include integration and system tests. Integration tests are performed for each product produced during the iteration, while the system test is performed only at the end of the iteration, when the executable version is created product.
· Tests are designed and then implemented in the form of test tasks that clearly define what is to be verified. From this perspective, we are talking about testing procedures that specify how the test is to be performed, or is executable test components to automate the verification process.
· The results of the tests are systematically processed and the defective parts are repeatedly tested and possibly sent back to the flow of activities such as analysis, design or implementations to address the shortcomings.

Objectives of the verification and validation process
Testing of software systems takes place in two ways called verification and validation:
· Verification is a testing process to find out if a software product is available is created correctly. In other words, we are looking for deficiencies in itself software system.
· Validation is a testing process to find out if the software being created is right. In other words, whether it implements the required functionality.
It follows that there may be situations where the system is perfectly verified, but it is is useless, because it does not meet the functionality specified by the client. On the other hand the system fulfills all functions but is unstable or slow.
In addition to verification and validation, we also distinguish between static and dynamic verification (Fig. 7.1.1):
· Static techniques dealing with testing of created models and their diagrams, ie they only allow verification of correspondence between the created system and its specification.
· Dynamic techniques test an already implemented product through its launch and thus they also verify its usefulness and quality.

[image:]
Figure 7.1.1: Static and dynamic application verification

Testing models
Unlike previous models, which were defined by different types of diagrams, for testing has no diagram available in UML. The testing model is given by:
· test tasks defining what to test on the system,
· test procedures specifying procedures for performing test tasks,
· test components that automate test procedures.

The test task specifies how to test the system, including what is to be done test with what inputs and under what conditions. There are basically two types of the most commonly used test tasks:
· Test tasks designed to verify usage cases or specific scenarios. Such tasks verify the results of the actor's interaction with the system. This so-called black-box the test verifies the system's observable behavior from the outside.
· Test tasks specifying how to verify the implementation of use cases. They verify these tasks interactions between components implementing the use case. This so-called white-box test is designed to verify the intrinsic intrusion of the system.
The test procedure specifies how to perform one or more test tasks or parts thereof.
Test procedures can be specified using:
· instructions describing how to manually perform the test task,
· a description of how to create an executable test component,
· specifications on how to use the auto-testing tool.
Test components automate one or more test procedures or parts thereof.
Test components are used to validate the components that make up the implementation model by providing the required inputs, controlling and tracking the component to be verified; and creation of final report on the course of the test. To form the test components, they may be use different scripting languages or automated systems created for this purpose verification.

Deployment of software system
The purpose of an activity flow called deployment is to successfully build and deliver a product its end users.
Deployment of the software system covers a wide range of activities such as:
· creation of the final product or its versions
· completion of the software system
· software system distribution
· installation of the software system at the user's site
· providing assistance to users
· planning and managing beta testing
· Migrate existing data and software products.

Control questions
1. What is the difference between the verification and validation process?
2. What is a test task, procedure, and component?
Tasks
1. Define a black-box test task for the sales use description test and instruction-based procedure for manual execution!
2. Define a white-box test for the same case, including instructions on how to do it!

References
Humphrey, W. Managing The Software Process, Addison-Wesley / SEI series in Software
Engineering, Reading, MA, 1989
Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1994
Icon Computing Object-Oriented Design, Idioms and Architectures, Austin, 1996
Rational Unified Process Whitepaper: Software Development Teams -
Rational Software, 1998
Jacobson, I., Booch, G., and Rumbaugh, J .: The Unified Software Development Process, Addison
Wesley Longman, Inc. 1999
Booch, G., Jacobson, I., Rumbaugh, J .: The Unified Modeling Language User Guide,
Addison Wesley Longman, Inc. 1999
Schmuller, J.: Teaching Yourself UML in 24 Hours, Sams, 1999

[bookmark: _Toc27925779]Formátování:
Normální text
Silné
[bookmark: _Toc442353313][bookmark: _Toc442353389][bookmark: _Toc27925780]Nadpis 1
[bookmark: _Toc442353314][bookmark: _Toc442353390][bookmark: _Toc27925781]Nadpis 2
[bookmark: _Toc442353315]Nadpis 3
Citace
hypertextový odkaz
Poznámka/návodný text
Odrážky 1
· Odrážky 2
· Odrážky 3
· Odrážky 4
Poznámka/ZDROJ

tabulka:
	Tabulka
	Tabulka
	Tabulka
	Tabulka

	Tabulka
	Tabulka
	Tabulka
	Tabulka

	Tabulka
	Tabulka
	Tabulka
	Tabulka

	Tabulka
	Tabulka
	Tabulka
	Tabulka

	Tabulka
	Tabulka
	Tabulka
	Tabulka

[bookmark: _GoBack]
[image:]

9

66

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf

image35.emf

image36.emf

image37.emf

image38.emf

image39.emf

image40.emf

image41.emf

image42.emf

image43.emf

image44.emf

image45.emf

image46.emf

image47.emf

image48.emf

image49.emf

image50.emf

image51.emf

image52.emf

image53.emf

image54.emf

image55.emf

image56.emf

image57.emf

image58.emf

image59.emf

image60.emf

image61.emf

image62.emf

image63.emf

image64.emf

image65.emf

image66.emf

image67.emf

image68.emf

image69.emf

image1.gif
Jihoceska univerzita

v Ceskych Budé&jovicich
University of South Bohemia
in Ceské Budé&jovice

image2.jpeg

image70.png
Jihoceska univerzita

... v Ceskych Budgjovicich

University of South Bohemia
.. in Ceské Budé&jovice

image71.jpg
EVROPSKA UNIE
Evropské strukturdini a investiéni fondy
‘Operaéni program Viyzkum, vyvoj a vzdélavani

