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Preface 

This volume began as an idea for a conference. The idea was that the goals of 
archaeological predictive modeling needed to be reexamined in light of then-current 
criticisms, such as: site location cannot be modeled because ancient cultures cannot be 
modeled; site location cannot be modeled on the basis of known site locations because 
the population of known sites is biased by sampling errors; and, site models based on 
environmental factors are environmentally deterministic and therefore fatally flawed. 

At the same time, advances in GIS (geographic information systems) software and 
personal-computing power had put sophisticated tools in the hands of archaeologists with 
an interest in predictive modeling. In other disciplines, GIS was being employed to model 
species diversity in forests, predict wetland dynamics, model health-care availability, and 
a host of other useful tasks. Surely these other disciplines had provoked profound 
criticism of their “fatal flaws.” Yet they persisted and were doing something useful 
nevertheless. Perhaps there might be something useful to be done in archaeology by using 
GIS in service of predictive modeling if only we could see our way through the criticisms 
and neutralize our flaws. 

True, it is unlikely that archaeologists will successfully model ancient society because 
it is too remote and too many mysteries remain. Also true, we are unlikely to predict the 
location of the next important site in the region of our choice because computers cannot 
be expected to perform a task that we are unable to formulate with our minds. And yet, 
other disciplines were using GIS methods and data to make useful models. 

Our conference was inspired by the knowledge that some archaeologists were actually 
producing useful models—models that helped land managers and resource planners make 
better informed and more reasonable decisions. Other archaeological scholars were 
developing new methods and improving old ones. Decision support was a tacit if not 
proclaimed goal, the fatal flaws of societal modeling or site prospection notwithstanding. 
It seemed like a good time to assemble a broad range of experts to establish a baseline for 
site-location models. 

And it was a good time, too. The response to our call for papers was gratifying. 
Responses came from Australia, Austria, Belgium, France, Greece, The Netherlands, 
Slovenia, the United Kingdom, and throughout the U.S. The international enthusiasm was 
especially welcome because the Wescott and Brandon (2000) edited volume was due out 
and had primarily emphasized the Western Hemisphere. 

The conference center at Argonne National Laboratory’s Advanced Photon Source 
was an outstanding venue. Its seclusion, security, and excellent facilities no doubt added 
to the freedom allowing ideas to readily flow. Our schedule offered plenty of time for 
discussion in addition to paper delivery. The discussion time was well used by the 
audience, who offered generous responses with lively give and take. After the papers 
were delivered, most of the participants were able to stay for an extended discussion 
about the immediate future of the modeling endeavor. This, too, was a lively exchange 



with an overtone not unlike what you might expect in the first full meeting of a newly 
formed organization. Well, we did not actually create a new organization, but I have 
noticed that some of the new notions we kicked around are now, 4 years later, mentioned 
more often in the literature—notions like “decision-support” and “baseline 
establishment.” 

Almost all of the presenters followed through by submitting papers for publication. 
That is why this is such a hefty volume. Each contribution was well conceived and 
professionally written, as I am sure you will agree. 

MWM  
DeKalb, Illinois 
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1  
There and Back Again: Revisiting 

Archaeological Locational Modeling  
Kenneth L.Kvamme 

1.1 Introduction 

Predictive modeling—the practice of building models that in some way indicate the 
likelihood of archaeological sites, cultural resources, or past landscape use across a 
region—has its roots in the 1960s and earlier. Such models were implicit in the earliest 
expressions of settlement archaeology (e.g., Willey 1953) and in later work that actually 
formulated explicit statements about prehistoric location (e.g., Williams et al. 1973). The 
First Age of Modeling, in the early to mid-1980s, saw many stumbling blocks to be 
overcome: ways of thinking that concentrated more on difficulties and sources of 
variation that seemed to dictate why archaeological models could not be developed, the 
“processualist school” that advocated deductive or “lawlike” behavioral statements as a 
basis for modeling and decried uses of statistical methodologies based on simple 
correlations, and a lack of effective computer technology for the application of models 
across regions. Yet, despite these disadvantages, real progress was made, largely in 
university research settings made possible by cultural resource management 
(CRM)funded projects. Some of these advances included recognition of sampling biases 
in archaeological databases, procedures for characterization of background environments, 
applications of univariate and multivariate statistical tests and models, the use of 
independent test samples for model performance assessments, and the pioneering 
applications of geographic information system (GIS) technology in the discipline (see 
Judge and Sebastian 1988; for historical overviews see Kvamme 1995; Wheatley and 
Gillings 2002:165–181). 

The Second Age of Modeling, now ongoing, is very different in form and orientation. 
Readily available digital data and ease of GIS software application facilitate the entire 
modeling process, and ample funding has created incentive. There is now a multimillion 
dollar archaeological modeling industry, but based almost entirely within CRM settings. 
One key benefit of this work has been the collation and standardization of archaeological 
knowledge within modeling regions into computer databases; another has been the 
building of diverse GIS layers for those regions (Mink et al., Chapter 10, this volume). 
Both are of great use to the archaeological community. Yet, given the volume of work 
and its scope—archaeological models have been developed for entire states and large 
segments of Canadian provinces (e.g., Dalla Bona and Larcombe 1996; Hobbs 1996; 
Madry et al., Chapter 15, this volume)—shortcomings exist. Funding agencies may be 
willing to support development of modeling applications, but not new research into 



methods or more-anthropological interests revolving around the interpretation of results 
and the incorporation of findings into the knowledge base of archaeology. Moreover, 
much of this work does not get published, and there has been a sameness to approaches 
that suggests a lack of innovation beyond basic procedures established during the First 
Age. In other words, advances in archaeological location modeling have not generally 
kept pace with new methodologies developed in such diverse fields as GIS, satellite 
remote sensing, economic geography, and wildlife biology. Fortunately, the chapters that 
follow in this volume serve to correct many of these deficiencies. 

In this chapter I examine some of the key issues in the First Age of Modeling that yet 
impact and impinge on the conduct of modeling today. I hope to clear up several sticky 
issues. Being somewhat of a fossil from the First Age, I necessarily digress and offer 
some historical background from my own experience in the growth of modeling. Beyond 
this, I present a theoretical justification for the practice of archaeological location 
modeling, review several important new methodologies that have arisen in the past 
decade, and discuss how they might be incorporated within our modeling tool kits. 

1.2 Not So in Bongo-Bongo: Cultural Variation and Modeling 

Most North American archaeologists are trained within departments of anthropology. The 
province of that field claims the full range of variability among all peoples, in all places, 
in all times (Hoebel 1966). Such tremendous variation in cultures and behaviors is mind-
boggling to contemplate, and I believe it structures how the anthropologically trained 
view the world and approach their research. Focus tends to be placed on variation or 
differences between cultures, and in archaeology, the unique artifacts, sites, or dates; the 
spectacular find; the oldest; the richest, and the extraordinary tend to receive focus. 

In stark contrast, scientific practice in most disciplines focuses on regularities or 
patterns, on commonalities, on recognizing order in the chaos of the natural world by 
formulating generalizations or rules (laws, principles) of increasing specificity. The 
anthropological tendency to concentrate on differences and contrasts among phenomena 
stifles such progress, resulting in little more than a compendium of variation. In spite of 
this, a large anthropological movement did arise in the mid-20th century that examined 
systematic cultural patterns, hoping to elucidate regularities underlying human behaviors. 
Known as “cross-cultural methodology” and culminating in such endeavors as the Cross-
Cultural Survey and the Human Relations Area Files, countless cultural patterns and 
causal and functional relationships were investigated between such phenomena as types 
of social organization and warfare, or form of residence, or environmental type, or 
religious practices, and other factors (e.g., see Murdock 1949, 1967). As is always the 
case with anthropological data, exceptions to general rules were frequent: a culture or 
cultures could be found that did not “fit the pattern.” I am reliably informed that when 
George Peter Murdock, a central figure in cross-cultural methodology, was confronted 
with the unique society once too often, he exclaimed in exasperation “not so in Bongo-
bongo,” a theme relevant here. 

About 15 years ago I decided to investigate this penchant for the unique, this focus on 
chaos rather than pattern, by having students in my anthropological statistics class at the 
University of Arizona (where I was then employed) undertake an experiment with the 
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help of the larger student body. Each student interviewed ten individuals—upper class 
undergraduates, graduate students, or faculty—who would have well-inculcated modes of 
thought according to their fields of study. Each interviewed five from anthropology and 
five from physical sciences like physics, engineering, chemistry, or astronomy. The 
interviewees were asked to write a descriptive statement about two similar objects, in this 
case a common wooden pencil and a Bic pen.1 The results in no way constitute a random 
sample, but I think they are enlightening. About two-thirds of the anthropologists asserted 
contrasts or differences in their responses, with statements like “one is green, the other 
white,” “one has a metal tip, the other a graphite one,” “one cross-section is octagonal, 
the other is circular,” and so on. In the more science-based group, nearly the opposite 
occurred, with almost three-quarters seeing commonalities like “both are roughly 
cylindrical,” “both have about the same mass,” or “both have a conical tip.” 

These perspectives on anthropological thinking are relevant to many of the difficulties 
that I and others faced in developing approaches to archaeological locational modeling 
nearly a quarter-century ago, and they may even apply today. Instead of focusing on 
problem-oriented solutions to modeling human locational behavior, much energy gets 
diverted to complaining about the many problems, difficulties, and “deficiencies” of the 
archaeological record, or to variations in human behavioral practices, or to insufficient 
digital representations or algorithms in GIS, or to the inadequacies of contemporary 
maps, and on and on. A list of some of the sources of variation that have been used as 
arguments against modeling is given in Table 1.1. (Ironically, most of it comes from the 
pioneering collection on archaeological predictive modeling edited by Judge and 
Sebastian 1988; more on this volume below.) These many difficulties and dimensions of 
variation have served to deflect our attentions away from pathways that might lead to 
successful models; they also emphasize the many challenges one is faced with in 
modeling past human locational behaviors. 

To give a sense of balance, I formulated a similar list containing reasons why we can 
pursue models of archaeological location, but it came down to only three simple points. 

1. Human behavior is patterned with respect to the natural environment and to social 
environments created by humanity itself. 

2. We know or can learn something about how people interacted with these environments 
by observing relationships between human residues (i.e., the archaeological record) 
and environmental features. 

3. GIS provides a tool for mapping what we know. 

TABLE 1.1 A Few Sources of Variation Posing 
Difficulties in the Archaeological Modeling Process 

Archaeological 

• Many archaeological sites are buried, and we cannot model them because we do not and cannot 
know about their distributions 

• Known site distributions in extant government files and databases are biased because of (a) the 
haphazard way in which many were discovered and (b) variations in obtrusiveness, visibility, 
and preservation 

• Many known sites are inaccurately located on maps and in databases 

GIS and archaeological site location modeling       4



• One cannot model archaeological site distributions because “site” is a meaningless concept; 
human behavior did not occur in discrete bounded areas but formed a continuum over the 
landscape 

• Functional, temporal, or cultural site types cannot be readily determined for most sites in an 
archaeological database, yet profound locational differences must exist between the types 

• We must be able to model and understand the archaeological formation process, both natural and 
cultural, before we can model where sites might be found 

Environmental 

• Past environments were very different from present ones, so we cannot model the past based on 
the present 

• Models based on landscape variables are meaningless 

• We do not know the locations of resources important in past times, such as water sources, 
springs, edible-species distributions, lithic raw material sources, and the like 

Behavioral 

• Human behavior is too idiosyncratic to be modeled; one cannot model the unique 

• One must understand and model complete behavioral systems before archaeological models can 
be built 

• Site location is more a function of unknown (and frequently unknowable) social environments 
representing dimensions that we cannot map 

• The most interesting sites are the (idiosyncratic) ones that do not fit the pattern 

• Environmental variables shown to be important to site locations may only be proxies for 
variables that were actually important 

Technical 

• Blue-line features on topographic maps are frequently arbitrary and unreliable indicators of 
water 

• Modern soil types are meaningless because they are changed from the past and, in any case, are 
frequently irrelevant to past farming practices 

• GIS data have insufficient resolution and poorly represent the real world 

• GIS data are inaccurate 

• Linear distances computable in GIS are meaningless 

• Models based on statistics cannot meet random-sampling assumptions because most extant data 
were not obtained by random sampling 

• Models derived from random cluster sampling are misspecified because they do not adjust for 
underestimated variances 

• Grouping sites of many types into a single, site-present class creates too much variability to be 
modeled 

• Models based on site presence-absence criteria are misspecified because one cannot assume site 
absence 
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1.3 The First Age of Modeling: A Personal Narrative 

As a master’s candidate in the mid-1970s, I was excited by the possibilities of the New 
Archaeology and assumed that knowledge of statistical methods would go a long way 
toward solving the problems of archaeology, as were many of my fellow students. 
(Fortunately, we were blessed with a rather good agricultural statistics department at 
Colorado State University, in which many of us took classes.) I remember working with 
discriminant functions on a lithics problem when a fellow student, Jim Chase (now with 
the U.S. Bureau of Land Management, Wyoming), asked me if I thought they might be 
applied to environmental variables map-measured at known sitepresent and site-absent 
samples to develop a model that might ultimately be employed to make predictions about 
archaeological locations. I replied that I thought it a splendid idea, and fortunately 
remembered it. 

A few years later, while working for a small archaeological company, a proposal 
request by the U.S. Bureau of Land Management (BLM) called for (1) a large Class 2 
survey (a random sample survey) in the central Rocky Mountains and (2) the mapping of 
likely locations of archaeological sites for management purposes, based on patterns in the 
sample data. At that time, such maps were typically composed of giant polygons 
corresponding to broad environmental tracts like valley bottoms, open grasslands, or 
juniper forests, and “predictive” guidance was typically given by estimates of site density 
per zone based on survey sample data (Figure 1.1 a). Environmental types with high 
estimated archaeological densities were deemed “more sensitive” for management and 
planning purposes than zones of low densities (e.g., Camilli 1984; Ebert 1978; Plog 
1983). 

Our successful proposal, for what became known as the Glenwood project, employed 
canonical discriminant functions and, without belaboring details, we generated a model 
that appeared on the basis of jackknifed validation tests on the sample data, plus a second 
independent data set (also a random sample survey), to offer good performance in the 
range of 80 to 85% correct (Kvamme 1980). It is emphasized that all this occurred before 
GIS or even personal computers (PCs) were available, so mapping results in the form of a 
probability surface was not easily undertaken. 

Instead, I programmed the discriminant functions into a Texas Instruments TI-59 
calculator, an amazing gizmo that read from or wrote to tiny magnetic strips, and this 
program was given to the BLM in lieu of predictive maps. To assess a property about the 
potential for archaeological resources, the land manager would go to the proper map, 
hand-measure the six relevant environmental variables (e.g., slope, elevation, local relief, 
height above river), enter them into the calculator by pressing preprogrammed function 
keys, and it would spit out a p-value for that locality (i.e., an estimated probability of 
archaeological site-presence conditional on the environmental measurements). This 
methodology was actually employed by the BLM to  
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FIGURE 1.1 Early archaeological 
“prediction” maps, (a) A map based on 
gross environmental zones with 
estimates of likely site density (after 
Plog 1983). (b) An early, precompiler 
age, hand-drafted archaeological 
probability surface (after Kvamme 
1980). (c) The first archaeological 
probability surface derived completely 
through computer measurement of map 
variables (after Kvamme 1983). 

assist in property assessments for a number of years. It was of some significance that this 
model could be applied to characteristics associated with a point on a map, because 
previously the resolution of most models was at the level of the environmental zone or 
community, typically many hectares (or even square kilometers) in area (Figure 1.1a). 

The idea of producing a mappable archaeological probability surface was in my mind, 
however, and our team was bent on including one in our final report (Kvamme 1980). We 
did so by enlarging a single quarter-section (quarter of a square mile; about 800×800 m) 
that contained three archaeological sites independently discovered by another project. We 
superimposed a 50×50-m grid, producing a 16×16 matrix of 256 cells, and in each we 
hand-measured the six predictor variables of the model, for 1536 measurements. Lacking 
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a PC, and with the nearest mainframe computer more than 150 km away, we elected to 
spend an afternoon with our TI-59 and entered the six measurements for each cell by 
hand to generate the 256 p-values. Finally, we hand-drafted a probability surface that, 
pleasingly, corresponded well with our notions about the most likely places where 
archaeological sites would be found (based on years of experience in the area), and with 
the known site locations (Figure 1.1b). 

This exercise convinced me that (1) our archaeological modeling methodology was far 
superior to any other approach then available; (2) the model itself, the statistical analyses 
leading up to it, and its mapping offered great potential for understanding human-
environmental interactions; and (3) an automated mechanism was absolutely necessary to 
map the model functions over broad regions. In 1980 I returned to graduate school for a 
doctorate at the University of California at Santa Barbara to study with Michael Jochim, 
whose then-recent book Hunter-Gatherer Subsistence and Settlement: A Predictive 
Model (1976) was of prime relevance (this work offers a rare example of an 
archaeological model derived through mathematical deduction); with Albert Spaulding, 
the founder of statistical reasoning in archaeology; and to study in the university’s 
Department of Geography, then leading the country in quantitative geography and 
computerized map handling, later to grow into GIS. 

Without GIS software in 1980–1983, we employed a computer system for handling 
satellite data known as VICAR (video imaging communication and retrieval) that was 
connected with something called IBIS (image-based information system), which allowed 
special-purpose FORTRAN subroutines to be linked through horrendous IBM JCL (job 
control language), all on punch cards. I became a programmer. Without scanning 
technology and no readymade digital maps, I first learned to communicate with digitizers 
so that digital representations of elevation contour lines could be produced, and 
ultimately a DEM (digital elevation model) after interpolation. FORTRAN routines were 
written for computing slope, aspect, local relief, ridge and drainage lines, terrain 
variance; generating distance surfaces from stream vectors; and other operations. While 
working on this embryonic GIS, I was able to computer-generate my first archaeological 
probability surface, presented at the annual meeting of the Society for American 
Archaeology (SAA) in 1981, with improvements in subsequent meetings (published in 
Kvamme 1983; Figure 1.1c). 

At those SAA meetings, I made two important contacts. One was Sandra Scholtz (now 
Parker) of the Arkansas Archeological Survey, who had been independently developing a 
nearly identical modeling methodology in their Sparta Mine project, in Arkansas. Their 
big stumbling block was also the lack of an automated means to measure map variables, 
but with a circumscribed area, they were able to hand-measure a suite of relevant 
environmental variables within grid cells 200 m in size (to reduce the number of 
measurements), from which they generated prehistoric- and historic-site probability 
surfaces using SAS statistical software (Scholtz 1981; Parker 1985). They were using a 
relatively new and more robust classification algorithm known as logistic regression 
(based on the recommendation of James Dunn, Department of Mathematics, University 
of Arkansas), which proved fortuitous, because Alan Strahler, who pioneered 
applications of logistic regression in remote sensing (Maynard and Strahler 1981), held a 
visiting professorship at UC-Santa Barbara the following year. My second important 
contact was Bob Hasenstab, then a student at the University of Massachusetts (now at the 
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University of Illinois-Chicago), who had also programmed a GIS from scratch, in 
FORTRAN, to enable cultural resource modeling studies of high resolution in the Passaic 
River area of New Jersey (Hasenstab 1983). These and other associations led to the first 
GIS and archaeology symposium, held at the 1985 SAA meeting and quaintly titled: 
“Computer-Based Geographic Information Systems and Archaeology: A Tool of the 
Future for Solving Problems of the Past.” 

Post-doctorate employment took me to the University of Denver, where I became 
involved in the volume Quantifying the Present and Predicting the Past: Theory, Method, 
and Application of Archaeological Predictive Modeling (edited by Judge and Sebastian 
and completed by 1985, but not published until 1988). Government-sponsored project 
authors (often part of consulting firms) had to be part of successful proposals in a 
national competition, a fact that was certainly one ingredient that contributed to ensuing 
problems, because individuals who should have been part of it either did not bid (they did 
not know about it) or did not submit competitive proposals. Ironically, many that 
ultimately joined the project had little or no previous experience in archaeological 
location modeling. The result was considerable chaos, leading to its many-year delay to 
publication and to issues still influencing contemporary work that warranted closer 
scrutiny. 

Several editors and authors of Quantifying the Present and Predicting the Past were 
ardent followers of the processualist school of archaeology (devoted to understanding 
elements of culture process or change), who informed us that only models generated 
through deductive reasoning were “good” and potentially “explanatory,” while models 
utilizing statistical methods were not only “inductive” (a bad word at the time), but 
“merely correlative” and incapable of explanatory insight. Furthermore, it was asserted 
that “models must span the entire explanatory framework rather than simply 
concentrating on those things we want to predict…. It is human organizational systems 
that must be modeled, as well as all those complicating factors between the highest level 
of human behavior and the archaeological record” (Ebert and Kohler 1988:105). This 
seemed a tall (and naïve) order to fill that, if followed, left archaeological modeling dead 
in the water before it could even leave port. I was stunned because not only had I and 
others already developed “successful” models by 1984 (e.g., Kvamme 1980, 1983; Parker 
1985; Scholtz 1981) (Figure 1.1b and Figure 1.1c), but I believed (and still do) that (1) 
the type of lawlike or rule-based statements that were advanced as “deductive” models 
are practical for understanding only relatively trivial cultural processes, (2) such simple 
models are unsuitable for applications owing to their comparatively low power (and in 
any case none existed that could be applied), and (3) that there was a complete 
misunderstanding of the role of statistical methods in applied research settings, points 
that I tried to convey in my principal chapter (Kvamme 1988a). Since its publication, 
along with several papers a few years later (Kvamme 1990a, 1990b, 1992), my interests 
in modeling have only recently been rekindled by an unlikely source: working with 
students of biology, I have become aware of a tremendous renaissance in modeling 
approaches made possible by the GIS revolution, as the following sections will 
demonstrate. 
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1.4 Perspectives on “Correlative” and “Deductive” Models 

Critics of archaeological models derived through statistical methods such as discriminant 
functions or regression are wrong in assuming they are based solely on “mere 
correlations.” This can rarely be the case because even the simple act of selecting 
variables for analysis demands an a priori theoretical perspective that comes from 
previous work, training, and exposure to the theoretical currents of a discipline. Statistical 
models should most properly be viewed as a means of estimating appropriate weights for 
theoretically derived variables. Without such a mechanism it is unlikely that robust 
weights can be derived, resulting in models of lower power. A deductive model based on 
anthropological theory, previous findings, or ethnographic analogs might define variables 
relevant to past location behaviors. But without recourse to statistical calibration based on 
sample data, how those variables might be combined, weighted, or thresholded to achieve 
a GIS mapping becomes something of an art. A simple Boolean combination, for 
example, means that each variable receives an equal and arbitrary weight of unity; 
altering those weights in a more complex model implies a level of theoretical knowledge 
not generally possible. Moreover, such models must perform suboptimally compared 
with those with weights derived from statistical theory and suitably constructed random 
samples. Making claims about the superiority of the former is therefore ironic. Dalla 
Bona and Larcombe (1996) deduced an excellent suite of variables through ethnohistoric 
and contemporary native informant accounts concerning prehistoric settlement in 
northwestern Ontario, for example, but their GIS mapping was only possible after close 
calibration of model weights against empirical archaeological distributions. 

Wildlife biologists utilize GIS to map models of species distributions and habitat 
(analogous to archaeological sites) with the advantage of a more mature view of the 
modeling process (being firmly wedded to empirical data and possessing a statistical 
tradition that goes back to the 19th century). Most biological models begin with theory, 
usually meaning a list of variables relevant to the locations or habitat of the species of 
interest derived from prior knowledge and work. Based on species locations observed in 
field data, the resultant models, including discriminant and logistic regression functions, 
give insights into interactions between variables, identify significant relationships, 
confirm or refute hypothetical associations, and expose relative strengths of relationships. 
Additionally, GIS mappings in the form of species probability or abundance surfaces 
prove insightful because relationships between species and environment become 
graphically clear, revealing the relative clumping, dispersion, or patchiness of the result 
(e.g., see Bian and West 1997; Clark et al. 1993; various papers in Scott et al. 2002). 
Khaemba and Stein (2000:836), for example, state outright that their models are 
deductively derived because they begin with the prior knowledge that “elephants 
generally prefer tall grassland and shrubby vegetation.” 

How is the foregoing different from deducing that settlements of a farming culture 
should be situated in well-watered valley bottomlands, near level fields with good soils? 
Wheatley and Gillings (2000:166) observe that 

A distinction between data and theory [driven models] is not universally 
recognized, and most archaeologists accept that the two are not 
independent—data is collected within a theoretical context, and so may be 
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regarded as theory-laden, while theories are generally based to some 
extent on empirical observations…. It is impossible in any practical sense 
to implement a predictive modeling method that is based entirely on either 
of these tactics. 

The archaeological dichotomy that has arisen claiming distinct correlative and deductive 
approaches to modeling is an unfortunate historical accident; they need not be different 
but can and should be one and the same. 

1.5 Theoretical Justification of Archaeological Location Modeling 

1.5.1 Background Concepts 

In developing models, we need to be clear whether we are trying to model the systemic 
context or the archaeological context, as originally codified by Schiffer (1972). The 
former refers to the living, behavioral state of a human group or society. The latter refers 
to the static, nonbehavioral state of archaeological materials, the physical record that 
archaeologists study. Even a perusal of the literature on modeling suggests that it is 
frequently unclear which context is being modeled, despite critical differences in 
assumptions, approaches, likely difficulties, and possible outcomes. Explanatory or 
deductive models appear to be generally concerned with the systemic context, but from a 
cultural resource management standpoint the goal clearly seems to be the modeling of the 
archaeological context. 

In approaching the latter, we must first recognize that if a goal of modeling is the 
mapping of locations where archaeological resources are likely to occur, then logically 
the equivalent is the mapping of locations where such resources are unlikely to exist. The 
elimination of portions of a region that are unlikely to contain archaeological resources 
becomes a useful way of approaching the modeling problem. 

The definition of the niche of a species, as defined in quantitative ecology, provides a 
second vital perspective. The niche can be defined as the total range of conditions in the 
environment under which a population lives and replaces itself (Pianka 1974:186). In a 
landmark paper, Hutchinson (1957) emphasized that the niche can be determined 
empirically by measuring the location of individuals of the population along multiple 
dimensions of environment, with the range defining a niche space in a “hypervolume” of 
measurements. That space can be visualized as a variable probability density function 
(PDF), with certain locations within it more ideal for the species than others. In fact, the 
“ideal habitat” of a species can be represented by the mean vector of measurements on 
each variable, as indicated by the locations of the species itself. Less desirable habitat is 
then inferred as any deviation from the mean vector. (This perspective forms the basis of 
an important modeling approach discussed in Section 1.7.3.) The obvious application of 
this perspective to ideas of human niche spaces and settlement distributions was first 
extended to the field of geography by Hudson (1969). Of more importance are the 
implications it offers as a logical basis for archaeological modeling (see Kvamme, 1985 
for an early attempt). 
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1.5.2 A Deductive Model 

Let us begin with three observations: 

Observation 1: The human organism lives within the natural environment. 
Observation 2: The environmental variation within any circumscribed 

region is large. 
Observation 3: The niche of the human organism is that portion of the 

environment that it utilizes or to which it has access. 

The human niche, N, may correspond with the entire environmental range, E, of a region, 
where the niche space equals the environmental space, N= E. The niche space, however, 
may typically include only a subset of the total environmental space, N<E, because areas 
of steep slopes, cliff faces, water bodies, lava fields, glaciers, wetlands, high altitudes, 
dense vegetation, and other contexts may be inaccessible or unutilized (Figure 1.2). The 
level of niche space accessibility may also be partially dependent on technological level, 
other cultural circumstances, and resource distributions. For example, cliff faces might 
harbor an important food resource (bird eggs) that become accessible only with 
appropriate technology (sturdy ropes). 

Corollary 1. If N<E, then locational modeling must be productive if N can 
be defined. 

The analysis of empirical archaeological distributions through a host of statistical or other 
means (e.g., Kellogg 1987; Kvamme 1990c) can potentially indicate favorable and 
unfavorable localities. Favorable places generally correspond with specific classes of 
activity, fitting well with the idea that the PDF is multimodal. 

Observation 5: If we do not include simple travel between locations, then 
activities are tied to places. Various types of human activity are frequently 
associated with particular environmental circumstances. 

Fishing occurs in or adjacent to streams or lakes and nut gathering where nuts grow, for 
example. 

Corollary 3. The association between particular activity classes with 
specific environmental contexts dictates that modeling specific sitetype 
distributions must be productive. These activity-specific “niches“comprise 
small subsets, Ai, within the human niche space, N (Figure 1.2). Each are 
determined by relatively few environmental dimensions according to 
specific activity needs. 
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FIGURE 1.2 The human niche, 
activity, and habitation spaces can be 
viewed as subsets of increasing 
specificity within the total 
environmental range of a region. 

The creation of distinct models for individual types of archaeological sites (functional, 
temporal, or other) is something rarely undertaken in the literature of modeling, yet it 
forms an area of certain improvement. 

Corollary 4. The sum or union of all places where people concentrate 
activity forms an activity space, A=ΣAi, that is smaller than the human 
niche space (i.e., A<N) if simple travel between places is disallowed 
(Figure 1.2). This forms the logical basis of Corollary 2. 

Observation 6: Places of human habitation or settlement, with long-
term needs and variable activities represented, must be sited according to 
many dimensions of environment dictated by the many needs of 
community. 
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A long-term settlement might be located according to its needs for defensibility and 
proximity to water and quality of agricultural soils and level slope and fuel resources, 
etc. 

Corollary 5. Habitation activities with many location requirements may 
be more predictable than sites of specialized activities with relatively few, 
defining a comparatively small “niche.” Owing to this fundamental 
difference, a habitation space, H, is defined, where H<A (Figure 1.2). 

If a simple activity, Ai, requires only environmental condition e1 to occur, but H requires 
e1∩e2∩e3∩e4, then generally H<Ai. 

Observation 7: People also construct a social environment that influences 
locational behavior. If the natural environment defines a possible range of 
conditions for the placement of activities, then the social environment 
imposes further restrictions and order. Road networks and the necessity of 
intersettlement spacing, for example, further alter the PDF within the 
human niche space. 

Corollary 6. Consideration of variables of the social environment must 
be productive because the range of variation within suitable areas or 
favorable spaces in the natural environment becomes further reduced. 

1.5.3 Summary 

The foregoing suggests that if we can view human uses of space in terms of subsets of 
environmental variation, and identify those subsets as a basis for modeling, then 
archaeologically useful results must be possible if we consider “useful” to mean the 
elimination of regions unlikely to contain archaeological resources. Consideration of 
individual site types and variables of the social environment will allow models to focus 
on narrower ranges of variation, improving performance, and long-term habitations or 
settlements should be highly predictable owing to their more restrictive environmental 
requirements. To achieve the full potential of this perspective, a number of continuing 
issues and methodological improvements must first be addressed. 

1.6 The Second Age of Modeling: Continuing Issues 

With nearly a quarter-century of serious work in archaeological location modeling, it is 
clear that several issues, some of which may be insurmountable, remain at the forefront 
of difficulties. They include the problems of modeling multiple site types, 
paleoenvironmental reconstructions, and sampling issues. Lack of resolution in these 
areas continues to affect the power and specificity of models and, indeed, what we are 
able to model. 
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1.6.1 Archaeological Site Types 

A handful of lithics, a couple of sherds, or a few tools gained through a limited surface 
reconnaissance does not usually allow reliable reconstruction of the kinds of activities 
that occurred at an archaeological site, identification of the culture(s) that used or 
produced the artifacts, or accurate estimates of the amount of activity that occurred, 
length of occupation, or dates of use. This dilemma, typical of the vast majority of sites in 
any region, has forced modelers to throw them into one large “pot” that can only be 
labeled “human activity present,” or to ignore them, relying solely on well-dated and 
understood sites. The latter tactic is undesirable because the sample size of known 
archaeological locations becomes so reduced that meaningful statistical analyses become 
untenable. The former is the principal reason why most models remain dichotomous (i.e., 
site-present versus site-absent). 

Ethnography and common sense indicate that sites associated with various functions 
are located differently: a fishing spot, a plant-gathering location, a hunter’s kill and 
butchering site, and a long-term settlement will generally be located in unlike places. 
Moreover, different cultural groups may have unique responses to the same environment, 
with large variations in locational behavior. Finally, temporal differences between sites 
may correlate with vastly changed environmental circumstances. It seems obvious that 
when placing all sites in a single group for modeling, the enormous variation associated 
with all human activity yields models of lower power and specificity What we end up 
modeling is the sum total of the human “activity space” of Figure 1.2. In defense, it must 
be noted that models of surprising power have nevertheless been created following this 
simple site-presence–absence approach. Brandt et al. (1992), for example, lumped sites of 
all types and periods in the Netherlands into a single class (representing a remarkable 
breadth of functions, cultures, and chronology) and achieved models that performed 
surprisingly well (suggesting some sort of commonality to locational behaviors or 
perhaps site visibility). 

Defining meaningful site types and modeling each as a separate class is probably the 
greatest potential improvement to the quality of archaeological models (see Stančič and 
Veljanovski 2000 for an excellent example). Aside from better recording, more field 
time, increased funding, retrieval of larger samples of artifacts, better analysis methods, 
and improved theory that might point to site function, there appears to be few ways out of 
this quandary. Larger, more permanent settlements are sometimes more visible, enabling 
models of settlement location (i.e., the “habitation space” of Figure 1.2) as opposed to all 
site locations (the “activity space”), a useful undertaking. 

One certain area of improvement lies in removing rock shelters or cave sites from 
consideration in the modeling equation. These kinds of sites were invariably utilized for a 
range of activities, yet unlike all other archaeological sites, their placement in the 
landscape is not dictated by human choice. Rather, the loci of rock shelters and caves are 
determined by a peculiar and idiosyncratic set of geological variables, including rock 
type, exposure, hydrology, terrain shape, and other factors. We can model human choices 
that placed other kinds of sites in the landscape, but to model the use of rock shelters and 
caves, complex geological models and variables must be pursued that undoubtedly open 
up other problems. These sites should therefore not be considered with other site types in 
combined modeling operations because the larger range of locational variance introduced 
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will upset model performance. The best approach for handling them may simply lie in 
improved mapping that locates caves and rock shelters. 

1.6.2 The Paleoenvironment 

Research has demonstrated significant empirical and theoretical relationships between 
environment and archaeological distributions. Yet, in nearly all cases, it has been modern 
environmental conditions instead of past circumstances that have been investigated. In 
most regions, contemporary conditions are very different from those of the past, 
especially the distant past, raising the question of just how well models based on the 
present situation can predict the past. After all, it was then-contemporaneous conditions 
that were relevant to locational decisions and choices made by past peoples. While it can 
be argued that terrain form (and its many derivative measures) is relatively stable through 
time, it is well-known that plant communities migrate up and down altitudinal clines with 
climatic change and that rivers and streams wildly meander within valleys over relatively 
short periods, for example. 

It would seem that reconstruction of paleoenvironments is a necessary first step in the 
archaeological modeling enterprise (see Kamermans, Chapter 5, this volume). 
Paleoclimatic data from tree rings and other sources might be employed to model life-
zone altitudinal changes, pollen data could point to former environmental compositions, 
and erosion and hydrological models could be used to reconstruct past landforms and 
stream channels, for example. 

When one considers that paleoenvironmental reconstructions are potentially necessary 
for each time period relevant to the archaeological sites in a region, however, such a task 
becomes daunting and has rarely been undertaken (for exceptions, see Boaz and Uleberg 
2000; Gillings 1995; van Leusen 1993; Nunez et al. 1995). Moreover, 
paleoenvironmental and paleoclimatic reconstructions are difficult and capable of only 
very broad generalizations, with little specificity in terms of the point-by-point 
requirements of GISbased models. (We ideally want representations of the 
paleoenvironment on a pixel-by-pixel basis.) Also raised is the question of error budgets 
in GIS models based on such data. Recent work has shown significant levels of error, 
even in present-day maps (see Goodchild and Gopal 1989). Past reconstructions of an 
environment will likely contain huge errors owing to their imprecision. Because error is 
cumulative in a multidimensional model, it is quite likely that results could be unusable. 
For example, even assuming an unrealistic 90% level of accuracy (however accuracy 
might be defined), with only five reconstructed environmental layers, the overall 
accuracy becomes .95=.59, dismal indeed. Unless reliable paleoenvironmental 
reconstructions can be generated, it is clear that we must proceed with caution. At the 
same time, it might also be argued that any paleoenvironmental reconstruction, however 
poor it might be, must be better than using present-day data. 

Most practitioners will continue to employ present-day maps and digital data sets as a 
basis for modeling, if only because of ready availability. One benefit is that map error is 
at least known and quantifiable. Focus should be given to variables less sensitive to 
change, such as landform characteristics. Other tactics might also be employed to 
mitigate the effects of change. For example, instead of using distance measures to current 
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rivers or streams (assuming proximity to water is a meaningful criterion), distance to the 
edge of the floodplain might instead be considered to eliminate the effects of meandering. 

1.6.3 Sampling 

Most regional models necessarily employ extant records of archaeological sites from the 
region of interest. Sampling biases that exist in these data sets are well-known and arise 
from such circumstances as (1) the tendency of archaeologists to discover sites where 
they believe they should be or in places with easier access (near roads, towns), (2) the 
arbitrary but nonrandom locations of development projects that have required cultural 
resource surveys, or (3) the greater obtrusiveness of larger sites and settlements (e.g., 
sites with mounds or earthworks). Models based on these kinds of databases are biased, 
and entire archaeological contexts may not be well represented (see Kvamme 1988b for 
ways to reduce or mitigate such biases; Wescott, Chapter 3, this volume, discusses 
sampling issues). 

Some archaeological projects have had the luxury and budgets to employ random 
sampling designs and pedestrian surveys to procure unbiased samples for model 
development (e.g., Thomas 1975; Warren and Asch 2000). Most have employed some 
form of cluster sampling, conducting surveys within randomly selected blocks of large 
size (e.g., 500-m squares, quartersections). One reason is convenience: it is easy to locate 
a relatively small number of large quadrats on a map and on the ground. Yet, sampling 
elements like archaeological sites within clusters creates negative consequences, such as 
(1) reduced estimates of variability (because places sampled occur in a relatively small 
number of clusters), and (2) a lack of independence between data elements owing to their 
spatial proximity or the autocorrelation effect (Kvamme 1988a). 

In the past decade we have moved into a very different world where we can now 
accurately locate ourselves through GPS (global positioning system) technology. Let us 
throw out large cluster blocks and utilize small (subhectare) parcels (or even points) for 
survey and random-element sampling designs (Scheaffer et al. 1979). With preselected 
coordinates, it is simply a matter of pressing “go to” on the GPS to reach a new locality, 
and a survey of nearby randomly selected places can be preplanned to minimize travel 
requirements. In so doing, we can attempt to attain “ideal” sampling designs that allow 
meeting of statistical assumptions, permit more-representative sampling of environmental 
and archaeological variability, and increase the likelihood of independence between 
observations. 

1.7 The Second Age of Modeling: Possible Improvements 

Although much contemporary modeling work is of high quality and innovation is 
apparent, other refinements seem possible in such areas as developing new variables 
through GIS, utilizing new modeling approaches and algorithms, and in methods for 
evaluating model performance. The following subsections offer a number of ideas, 
suggestions, and new methods that might be utilized in archaeological locational 
modeling. 
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1.7.1 Independent Variables 

Acquiring better data and variables that might bear on archaeological locations is one 
domain that can improve our ability to model. As technology improves, our potential in 
this area is increased. High spatial resolutions for digital elevation and satellite data mean 
that we can capture more detail of the landscape that could be relevant to certain classes 
of past activities, for example. Moreover, a lack of consideration of the social 
environment has been justly criticized by European scholars (Gaffney and van Leusen 
1995), pointing to other dimensions for improvement. 

1.7.1.1 The Natural Environment 

Variables that quantify aspects of the natural environment will generally remain most 
important in archaeological location modeling owing to their ready availability in digital 
or map form and their importance to human locational behavior. In general, we need to 
move beyond simple terrain variables like slope and aspect, or linear distances to blue-
line water features on maps. We now have access to powerful GIS tools that offer 
potentially more. We should pursue quantification of subtle variations in terrain shape 
and complexity, identify local high points and saddles (Duncan and Beckman 2000), 
quantify solar insolation, terrain texture, and local relief changes above and below 
locations for possible relationships with past activities, particularly in hunter-gatherer 
contexts. Llobera (2000) and Bell and Lock (2000) reveal great improvements in 
modeling movement over the landscape; perhaps it is now time to move beyond simple 
linear proximity measures. 

One particular area of promise lies in drainage runoff algorithms that objectively 
define flow based on landform shape in DEM (Burrough and McDonnell 1998:193–198), 
allowing movement away from the frequently subjective and arbitrary blue-line features 
on topographic maps. They allow quantification of accumulated flow to any pixel in a 
region; simple reclassification methods can then define drainage networks of any rank or 
complexity for proximity-based analyses. The continuous scale of accumulated flow 
itself might also be of interest. 

Vegetation and biomass-biocomplexity diversity indices derived from satellite 
imagery are yielding much insight into patterns of regional plant productivity and health 
(Sabins 1997:404). They have been largely ignored in archaeological modeling (see 
Gisiger 1996, however), despite their apparent potential, particularly in the large tracts of 
land in the Americas and elsewhere little changed from recent prehistory. 

1.7.1.2 The Social Environment 

Social variables typically refer to characteristics of the human-created environment. In 
complex societies it is markets, central places, intervillage spacing, road networks, 
political boundaries, and the like that drive uses of space. The relative importance of the 
natural versus social environments to locational behavior strikes some sort of balance, 
with one or the other more important, depending on needs and the nature of activity 
requirements. In general, we might imagine a continuum where the relative influence of 
these domains is a function of cultural-technological complexity (Figure 1.3, while 
realizing that such a generalization may not apply to Bongo-bongo). While both are 
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important to any society, in hunter-gatherer contexts the social environment probably is 
less so, if only because there frequently are no  

 

FIGURE 1.3 The relative importance 
of natural versus social environments 
to locational behavior is related to 
cultural complexity. 

markets, central places, road networks, and related phenomena that characterize settings 
of greater cultural complexity. 

Social variables have rarely been employed in archaeological location modeling 
(Gaffney and van Leusen 1995). One reason lies in data availability. Maps of the natural 
environment (albeit the present environment) are easy to obtain, and frequently can be 
instantly downloaded through the Internet. This is not true of social variables, where the 
loci of contemporary villages, markets, religious centers, or roads are frequently difficult 
to obtain for past times. In general, it is only in well-studied archaeological regions 
where, after decades of work, a reasonable semblance of past social landscapes can be 
reconstructed. Yet, even in these ideal contexts, such reconstructions are likely only 
partial: missing villages, road segments, or unknown political boundaries are likely (see 
Vermeulen, Chapter 14, this volume). 

A somewhat more subtle issue lies in the need to establish contemporaneity between 
features in the social landscape. Measuring proximity to a road or political center is only 
relevant if those features are coeval with the social milieu being modeled. This 
requirement further restricts consideration of many social variables to well-studied 
archaeological regions with good chronological control. Madry and Rakos (1996) were 
able to model prehistoric travel routes based on the arrangement and viewsheds of a 
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series of contemporaneous Celtic hill forts in France. Chadwick (1978, 1979) was even 
more restrictive by modeling Late Helladic settlement distributions based on the 
distribution of settlements in preceding periods in Mycenae. 

Obviously, archaeological location models that fail to address the social dimension 
owing to a lack of data or effort only get at a portion of the variability in past site-
selection behaviors (Corollary 6, above): that portion related solely to the natural 
environment, which can be small (Figure 1.3). Recent debate and applications in this 
area, particularly by Europeans (with generally better knowledge of archaeological 
regions), are therefore encouraging (Gaffney and van Leusen 1995; Gaffney et al. 1995; 
Stančič and Kvamme 1999; Wheatley 1996). 

1.7.2 Other Modeling Algorithms 

With the growth of GIS technology and its ready acceptance by government, industry, 
and academia, together with intense focus on regional modeling in other disciplines like 
biology, medical science, and economics, there has been a remarkable explosion in 
modeling methods and algorithms in the past decade. Approaches in this literature range 
from simple Boolean intersections, to additive binary layers, weighted additive layers, 
fuzzy versions of the foregoing, Dempster-Shafer models, log-linear and logit models, 
dominant-category clustering models, neural-network algorithms, Mahalanobis D2 
statistics, suites of classifiers from image-classification methodologies like maximum 
likelihood, and the ever-popular discriminant functions, including logistic regression, to 
name a few (e.g., Bian and West 1997; Clark et al. 1993; Eastman et al. 1995; Gabler et 
al. 2000; van Manen et al. 2002; Vila et al. 1999; Wang 1990). 

Despite this great variety of available approaches for modeling many types of spatially 
distributed phenomena, there has been relatively little variation in the archaeological 
literature in the methods that have been employed. Logistic regression, a robust 
nonparametric classifier, has been particularly popular in archaeological model 
development, as has discriminant-function analysis, the parametric alternative (Parker 
1985; Scholtz 1981; Kvamme 1983, 1988a; Warren and Asch 2000; Wheatley and 
Gillings 2002:172). Both are examples of linear statistical models, and even here, recent 
improvements exist. Generalized additive models (GAM) appear to offer a significant 
advance over the generalized linear model, for example, because they replace the linear 
component of the model with an additive one that identifies and describes nonlinear 
trends and threshold effects, which are far more common in nature than linear ones 
(Hastie and Tibshirani 1990). 

1.7.3 Forget Those Nonsites: Single-Class Approaches 

As a means of modeling the archaeological context, the two-class approach can be 
justified because there are places that contain material evidence of past activities 
(archaeological sites) and others that do not (nonsites). Yet, even if thorough field 
investigation fails to encounter archaeological evidence at some locus, there is a nonzero 
probability that archaeological remains may actually be present; for example, they might 
be buried, be lying under vegetation, or simply have been overlooked. 
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A similar perspective arises in the modeling of biological species occurrence. Much 
like the archaeological site present-absent dichotomy, such studies employ sightings or 
radiotelemetry on tagged animals to compare their presence-absence against mappable 
habitat variables in GIS settings. Logistic regression-based and other probability surfaces 
are then developed for species presence (Bian and West 1997; Dettmers et al. 2002). 
Argument has recently been vigorous against use of a species-absent class for model 
calibration, however, because the lack of a den or nest at the time of a field investigation 
does not imply its absence in times past or future (Clark et al. 1993; Dettmers and Bart 
1999).2 This quandary has led to alternative modeling approaches of great power that fit 
well within long-held theoretical perspectives stemming from perspectives on niche (as in 
Figure 1.2). 

These approaches focus on a single species-present class (analogous to an 
archaeology-present class). Calibrating to a species-present sample, the mean on any one 
environmental variable represents an estimate of “ideal habitat” for that species on that 
variable; in a multivariate context, it is the mean vector µ that represents ideal habitat 
across a series of variables. Less desirable habitat is inferred by any deviation from µ, 
agreeing well with the classic species niche model developed by Hutchinson (1957) that 
emphasizes an ideal “niche-space” within an n-dimensional hypervolume of relevant 
envi-ronmental parameters. The most common metric for evaluating locations in this 
perspective is the Mahalanobis distance statistic (in matrix notation) 

D2=(x−µ)′Σ−1(x−µ)   

which is interpreted as a squared normalized distance between a location’s measurements 
(x) and µ (Σ is the variance-covariance matrix). While D2 is a valid metric on its own, it 
tends to be highly skewed, and a χ2 transformation allows a 0-to-1 rescaling that, if 
multivariate normality is assumed, can be interpreted as a p-value analogous to a 
posterior probability obtained with more-conventional discriminant or logistic regression 
functions. These D2 or p-values are then mapped by GIS on a pixel-by-pixel basis, 
yielding a “deviation from ideal habitat” or a species-probability surface, respectively 
(e.g., Clark et al. 1993; van Manen et al. 2002). 

While offering an alternative to more-conventional and -accepted methodologies, this 
approach presents its own series of problems. One cannot undertake a stepwise F-to-enter 
solution, for example. One has to know which variables are relevant and go with them, 
but this does not appear to be a problem in the biological sciences. As alluded to earlier, 
variables selected are typically derived from a priori theoretical ideas. 

1.7.4 Models of Greater Specificity 

Environmental variation in large project areas can be enormous, and past human 
adaptations and uses were undoubtedly numerous. Given the size of some projects (e.g., 
whole states and significant proportions of Canadian provinces), gradients or differences 
in cultural practices, or even cultural types, might occur, and variables relevant in one 
subarea might not even apply to another. A model fine-tuned to the more limited 
variation of a small region should theoretically better “fit” that region’s cultural and 
environmental variability compared with a global model that can only “average” 
relationships over huge areas. To illustrate, I built one logistic regression model using all 
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data from a 600-km2 region, and then a second model using data only from an 8.5×5.5-
km subarea. The model for the latter, because it dealt only with the archaeological and 
environmental variation in the subarea, offered a much better fit with the data, and all 
performance indicators were markedly higher (Figure 1.4; Kvamme 1988a). 

One might therefore consider partitioning a large project area into a series of small 
blocks and building a fine-tuned model for each. Such distinct and independent models 
would undoubtedly perform better, but arbitrary “seams” or discontinuities in model 
results would likely occur at borders between the individual blocks. Such effects arise 
from environmental and archaeological differences between the blocks, resulting in 
reduced interpretability and quality of presentation. (Defects like massive jumps in 
estimated archaeological probabilities can only be explained by the arbitrary locations  

 

FIGURE 1.4 Archaeological 
probability surfaces obtained through 
logistic regression analyses of open-air 
lithic scatters in an 8.5×5.5-km (46.75 
km2) study block in southeastern 
Colorado (after Kvamme 1988a). (a) 
Model derived from all open-air lithic 
scatters (n=269) and environmental 
variation in a larger 600-km2 project 
area, (b) Model derived only from data 
occurring within the smaller study 
block (n=95). (c) Distribution of 
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known open-air lithic scatters in study 
block. Black signifies high 
archaeological probabilities. 

of boundaries between the study blocks.) With the significant computing power at hand 
today, an alternative approach may be workable. A moving window, kilometers in 
diameter, could potentially be employed to build a model utilizing data that only occur 
within it. The window would then be centered location-by-location throughout the project 
area, causing model results at each locus to be based on environmental and 
archaeological characteristics that are the most relevant, resulting in models of greater 
specificity. Other benefits could potentially accrue from such an approach. Mean vectors, 
confidence coefficients, and model parameter estimates within each window could be 
mapped and examined over space. Variations in the relative sizes and signs of regression 
coefficients, for example, could point to the relative importance of particular variables as 
environmental and archaeological circumstances change across a region. 

1.7.5 Measures of Model Performance 

It is uniformly agreed that a model must be tested before one can place reliance in it, and 
this stricture should apply to any model regardless of its means of derivation. Various 
methods of resampling (e.g., cross-validation, jackknifing, bootstrapping) have been 
developed that can provide robust estimates of performance (Verbyla and Litvaitis 1989). 
The ultimate test, however, is against samples independent of those used to develop a 
model. While these points have been well belabored before (Kvamme 1988a; Warren and 
Asch 2000), a number of alternative performance statistics can greatly enhance 
interpretation of various model qualities. 

Our goal is the modeling of archaeological phenomena across space, yet our focus is 
not on the archaeological site but on the location and whether or not a site is likely to be 
present. (The location should be regarded as a point on the landscape.) Let event S signify 
the actual presence of an archaeological site (or whatever archaeological phenomenon is 
of interest) of a type we wish to model at a location. S′ then indicates the absence of such 
a site at a location. An archaeological model can be regarded as a collection of irregular 
polygons that are mapped onto the landscape that indicate locations that are “favorable,” 
“likely,” or “probable” to contain an archaeological site of the type(s) being modeled. Let 
M denote the event that a model, however derived, assigns a location as “likely” for the 
site type of interest. M′ is its complement, meaning that the site type is unlikely according 
to the model. M and M′ therefore represent the GIS mapping of model predictions, but it 
must be discrete for this formulation. If a model mapping is continuous (as in a 
probability surface) or ranked (e.g., polygons indicating variations in archaeological 
likelihood), a GIS reclassification must be made at some threshold to achieve M and M′. 
Models with continuous or ranked outcomes therefore have the advantage that statistics 
may be generated under a variety of thresholds and graphed to yield richer and more 
insightful performance indications (e.g., see Kvamme 1992; Warren and Asch 2000). 

Most modelers focus on percent correct statistics for known archaeological site 
classes, or 100 p(M|S) (the probability that a model specifies a site when one is known to 
actually be present; the “|S” means “given” that a site is present). It is obtained simply by 
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working out the percentage of known sites that a model gets right. The p(M|S) can be 
referred to as “model accuracy” for the archaeological class. Other statistics yield 
additional insights about performance. 

The probability of S, the archaeological phenomenon of interest, can be estimated by 
p(S)=(total area of all known sites in class)/(total area field surveyed).3 Its value is 
extremely important: it indicates the base rate or a priori chance that the archaeological 
phenomenon of interest will occur at some location (Kvamme 1990a). Its meaning can be 
grasped if one considers throwing darts haphazardly at a map; the chance of a dart falling 
on a site of the type of interest is p(S). It is frequently difficult to estimate when 
examining regional literature because relevant data are seldom published. Values I have 
been able to compute in North American surveys range from about .001≤p(S)≤.04, 
signifying that archaeological phenomena may be regarded as rare events in most regions 
(forming a principal reason why robust archaeological models are challenging). The p(S) 
should be regarded as a base model that our efforts must beat. Stated differently, any 
model must yield p(S|M)>p(S); otherwise, it is worthless (where p[S|M] indicates the 
probability of a site given that a model specifies a site; see Kvamme [1990a]). Obviously, 
for rigorous statistical treatment, the sites used to estimate p(S) should ideally have been 
discovered by a program of random sampling, but a ballpark estimate can also offer 
useful insights. The p(S′) =1−p(S) is the probability of the site class being absent at a 
location, typically large in value. 

The p(M) is the base probability that a model indicates a site, determined by the area 
of its mapping: p(M)=(total area mapped by model to event M)/(total study area), a trivial 
computation with GIS. In other words, if p(M) =.3, then we would expect even a 
worthless model without predictive capacity to correctly specify about 30% of the sites in 
a region by chance alone, simply because it covers 30% of the region’s area. The p(M) is 
related to the precision of a model because it represents the proportion of a region 
mapped to event M, and one goal is to minimize that area to produce models of greater 
specificity. We might therefore define model precision as p(M′)=1 −p(M); the higher its 
value, the more precise (or smaller the region) is a model’s mapping. The ratio p(M)/p(S), 
also related to precision, can be regarded as an index of model fit. It indicates how many 
times larger the area of a model’s mapping is for a site class (M) compared with the 
actual estimated area of the site class (S). Although we wish this ratio to be small, values 
might typically range between 20 and 100, pointing to the imprecision of most models, 
but also to the fact that although many locations possess characteristics typical of sites, 
they do not contain one owing to low site densities or small p(S). 

It is emphasized that one can make p(M)=1 by mapping every location in a region to 
M to achieve a perfectly accurate model where p(M|S)=1. (Because every location is 
classified as “site likely,” all archaeological sites are correctly indicated.) In this case, 
however, model precision p(M′)=0, and we have a worthless model. A useful statistic is 
therefore p(M|S)−p(M), which signifies the improvement over chance a model offers, 
after correcting for its area. For example, a model that correctly indicates 75% of known 
sites (p[M|S]=.75) in a mapping that covers only 30% of a study region (p[M]= .3) 
represents an improvement over chance of 45% (p[M|S]−p[M]=.45). 

Other statistics pertain more to archaeological-class discovery probabilities. The 
importance of p(S|M)>p(S) was previously emphasized; the ratio p(S|M)/p(S) is therefore 
meaningful. It should be greater than unity and indicates how many times better than 
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chance the probability is of an archaeological site when the model indicates one. The 
p(S|M′), the probability of an archaeological site given that the model indicates its 
absence, is also a noteworthy statistic. It should be less than p(S) at any locus, and the 
ratio p(S)/p(S|M′)>1 should occur, indicating that when a model does not indicate an 
archaeological site, the probability of one occurring is less than the base-rate probability, 
p(S). Finally, the ratio p(S|M)/p(S|M′) is one of the most significant computable statistics 
because it indicates how many times more likely an archaeological site is when a model 
(M) indicates one compared with when it does not (M′). A summary of these statistics is 
given in Table 1.2, and a worked example with typical application numbers is given in 
Table 1.3. 

TABLE 1.2 Derivation and Interpretation of Model 
Performance and Related Statistics 

Statistic Derivation Interpretation 
p(S) From survey data: (total area of 

site class)/ (total area field 
surveyed) 

Base rate or chance probability of 
archaeological site class in study region 

p(M) Determined exactly by GIS: (total 
area of model)/(total study area) 

Base rate or chance probability that a model 
will indicate a site; proportion of study region 
mapped to M 

p(M′) 1−p(M) Model precision; high values indicate high 
precision 

p(M)/p(S) Ratio Model fit; indicates how many times larger a 
model mapping is than the total site-class 
area 

p(M|S) Estimated by proportion of known 
archaeological sites correctly 
specified by model 

Model accuracy; probability that a model will 
correctly indicate a site: 100×p(M|S)= 
percent correct 

p(S|M) Estimated by proportion of 
locations in M that contain 
archaeological sites 

Probability of archaeological site presence 
when model specifies a site 

p(S|M′) Estimated by proportion of 
locations in M′ that contain 
archaeological sites 

Probability of archaeological site presence 
when model does not specify a site 

p(M|S)−p(M) Subtraction Improvement that model offers over chance 
in specifying known archaeological sites 

p(S|M)/p(S) Ratio Model improvement ratio; indicates how 
many times more likely a site is in M than the 
base-rate site probability 

p(S)/p(S|M′) Ratio Model improvement ratio; indicates how 
many times less likely a site is in M′ than the 
base-rate site probability 

p(S|M)/p(S|M′) Ratio Model improvement ratio; indicates how
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many times more likely a site is in M versus 
M′ 

1.7.6 Significance Tests 

Assuming a random sample for the archaeological site class, one-sample (and one-tailed) 
tests for differences in proportion (Conover 1999) may be applied to test H0: 
p(M|S)≤p(M) or H0: p(S|M)≤p(S). The latter hypothesis is a more difficult one to test, 
however, because the typically low values of p(S) and p(S|M) and the relatively small 
difference between them demand large samples to minimize the probability of a Type II 
error. Values of p(M|S) and p(M) are typically much more central, and large differences 
in values usually are achieved in even mediocre models. Archaeological samples used in 
testing should be independent of the model (i.e., not used in model development). 

TABLE 1.3 Example of Derivation of Model 
Performance Statistics 

    Actual Circumstances 
    S S′   

  M p(s∩M)=.0085 p(S′∩M)=.3915 p(M)=.4 

  M′ p(sr|M′)=.0015 p(S∩M′)=.5985 p(M′)=.6 

Model Predictions   p(S)=.01 p(S′)=.99 1.00 

Derivation of cell data: 

If model accuracy is p(M|S)=.85, then p(S∩M)−p(M|S) p(S)=(.85)(.01)=.0085 

The remainder of the table is completed by subtraction because: 

• p(SM′)=p(S)−p(S∩M) 

• p(S′∩M)=p(M)−p(S∩M) 

• p(S′∩M′)=p(s′)−p(S′ ∩M)=p(M′)−p(S∩M′) 

Derivation of other statistics: 

• p(M′)=1−p(M)=1−A=.6 (model precision: 60% of region eliminated as unlikely to contain sites) 

• p(M)/p(S)=.4/.01=40 (model fit: its mapping is 40 times larger than the likely total site area being 
modeled) 

• p(M|S)−p(M)=.85−A=.45 (model gives .45 improvement over chance) 

• p(S|M)=p(S∩M)/p(M)−.0085/.4=.0213 (probability of site when model indicates one) 

• p(S|M′)=p(S∩M′)/p(M′)=.0015/.6−.0025 (probability of site when model does not indicate one) 

• p(S|M)/p(S)=.0213/.01=2.13 (site is 2.13 times more likely in M than base-rate chance of site) 

• p(S)/p(S|M′)=.01/.0025–4 (site is four times less likely in M′ than base-rate chance of site) 

• p(S|M)/p(S|M′)=.0213/.0025=8.52 (site is 8.52 times more likely in M than in M′) 
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Note: Model performance statistics are derived assuming that the regional a priori probability of an 
archaeological site is p(S)=.01; that the model maps 40% of the region to the site class, p(M)=.4; 
and that the model correctly indicates 85% of known sites, p(M|S) =.85. 

1.7.7 Confidence Intervals 

Percent correct statistics (e.g., 100 p[M|S], 100 p[M|S′]) and estimated site class 
probabilities (p[S]) used in model evaluations should routinely be associated with 
binomial confidence limits, provided that the samples can be regarded as random 
samples. This is rarely done despite early example applications (Kvamme 1988a, 1992). 
Such data gives an idea of the variability associated with each estimate. 

1.7.8 p(S) Is Not Constant 

Foregoing discussions assume p(S), the base or a priori probability of an archaeological 
site class, is constant in a study region. Yet, it undoubtedly also varies, like everything 
else, within the confines of a project area. There are many examples in the literature 
where high archaeological densities might occur in one area, while other regions tend to 
be relatively devoid of sites. Instead of computing p(S) once for an entire region and 
treating it as a constant, we now have the ability through GIS to compute it continuously 
within an extended neighborhood to produce a p(S) surface, allowing its treatment as a 
model parameter (p[S] could be computed much like a local site-density surface within a 
moving window of, say, a 5-km radius). The result could then be combined through 
Bayesian methods with model outcomes based on environmental or other relationships, 
acting much like a weighting effect, improving the overall model. 

Unfortunately, the p(S) is a function of known archaeological densities and therefore 
subject to wide errors in its estimation stemming from small samples and sampling 
biases. Reasonable sample sizes and distributions of extant archaeological sites across 
regions must be present to explore this approach. 

1.7.9 Issues of Scale: Near and Far Perspectives 

The importance of scale when considering human land use and settlement choice has 
been emphasized by several authors, including Allen (1996) in a study of Iroquoian 
settlement. Variations in climate, soils, and food resource densities are seen to influence 
use and habitation at global and regional levels, while local on-site conditions such as 
slope and proximity to water dictate immediate site placements. Jochim’s (1976) 
overview of hunter-gatherer settlement choice suggests much the same thing: high 
resource densities in a region might initially attract human groups, but the specific 
characteristics of individual locations dictate actual camp or settlement selections. Other 
examples can be found in ethnography (e.g., Western and Dunne 1979). 

It might therefore be argued that there are at least “near” and “far” scales of 
phenomena that influence human settlement choice. It is not just variation at the 
immediate on-site level that accounts for regional archaeological patterning, but the 
distribution of resources, soil type, climate, and other factors at a wider scale. For 
example, we can imagine that high densities of game or ripening nuts, good soils for 
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crops, or ready availability of water might draw people to a particular valley, but 
immediate settlement choice is dictated by the characteristics of a particular place: its 
accessibility, slope, shelter quality, proximity to water and fuel, view, defensibility, and 
so on. Most archaeological models have focused only on variation at immediate 
locations, typically on a cell-by-cell basis in a raster GIS of high spatial resolution (e.g., 
Brandt et al. 1992; Custer et al. 1986; Dalla Bona and Larcombe 1996; Hobbs 1996; 
Kvamme 1988a, 1992; Parker 1985; Scholtz 1981; van Leusen 1993; Warren and Asch 
2000). 

The variable a priori probabilities within large-radius windows of the previous section 
might be one way to incorporate regional variations within site-specific locational 
models. Alternatively, “far” perspectives could be explicitly incorporated within 
modeling efforts. One tactic might utilize variables that quantify variation within large 
areas (e.g., temperature or rainfall data, biomass/bioproductivity, soil quality with a 10-
km radius) simultaneously with site-specific or “near” variables. Another might be the 
development of distinct near and far models that are later combined through Bayesian or 
other methods. With the former of high resolution and focusing on variation at immediate 
locations (e.g., 30-m pixels), the latter might employ pixels 5-km in size or larger and 
more global variables that can get at modeling gross variations in site densities and the 
question of why certain regions seem to have been more preferred in the past than others. 

1.8 Conclusions: Direct Discovery Methods 

Perhaps we are going about the process of archaeological site discovery all wrong. 
Instead of trying to model past human locational behavior based on sometimes 
questionable theoretical assumptions or empirical relationships found in often-poor 
samples, why not try to directly locate archaeological sites through other means? After 
all, technology is marching forward faster than we can either imagine or grasp, and there 
are a host of new remote sensing methods within easy reach. 

Suppose we could just fly through the air and simply record information that leads to 
the identification of archaeological sites? We have actually been able to do that for nearly 
a century through conventional aerial photography where the regular geometric shapes 
common to human settlements (square, circular, oval, rectangular, and linear features) are 
easily recognized. In Europe, aerial archaeology is a commonplace tool and is probably 
the most productive site-discovery method employed by archaeologists (see Wilson 
2000). Yet, it is relatively unutilized and rarely recognized as such in North America, 
despite pioneering efforts in the Southwest and elsewhere by Charles Lindberg in the 
1920s (Avery and Berlin 1992:226–227). In addition, we now have access to similar 
imagery from space, in the form of IKONOS and Quickbird satellite data, for example, 
with global coverage at spatial resolutions at 1 m or better, yielding results nearly as 
detailed as aerial photography (see Fowler 2002; Hritz, Chapter 19, this volume). 

Whether from the air or space, high-resolution panchromatic or multispectral data 
offer enormous potential for detecting and locating archaeological resources over broad 
areas. Besides discovery through direct visualization of settlement components, past work 
has demonstrated that human occupations leave characteristic spectral signatures 
detectable in air and space imagery (e.g., Custer et al. 1986). In other words, predictive 
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archaeological models of high power can potentially be developed from air or space 
remote-sensing data alone. Furthermore, the very methods that form the core of current 
approaches to archaeological modeling—various statistically based discriminant 
functions—are central to the methods of digital image classification that are employed to 
identify such features in remotely sensed imagery. Sadly, almost no effort has been 
invested in this line of research. Yet, owing to the frequently lackluster performance of 
many of our current archaeological models, it is incumbent on us to utilize every means, 
and every angle possible, to develop robust models for locating sites of our cultural 
heritage. From a statistical standpoint, there is little difference whether one associates site 
locations with an infrared wavelength band or a terrain slope layer, and there can be 
significant information in spectral data that can lead to more powerful models. We might 
ultimately imagine a hybrid approach, where models based on remote-sensing data are 
combined with models based on more-conventional environmental and other 
relationships to develop powerful tools for this task. 

I believe we should and will turn increasingly to direct discovery methods for locating 
and mapping archaeological sites, for they can provide useful information in many 
contexts, and the various technologies are only going to improve. But where is the 
“theory” here; where are the “deductions”? In the end we must ask ourselves: “what are 
we trying to do?” Are we trying to find, map, and manage our planet’s cultural heritage, 
or are we trying to develop cultural theories of location choice? The answer can be either 
one or both. We must recognize both to be valid in sometimes complementary pursuits. 
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Notes 
1. This experiment was dreamed up by my good friend Michael G.Spitzer, now at Washington 

State University. 
2. Because the archaeological record is static, our situation is somewhat different. 

Archaeological evidence is either present or absent at a location; it is only unreliability in our 
detection of the evidence that gives rise to uncertainty. 
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3. If site-area data are unavailable, a typical or average site area might be employed for each site 
of the type of interest. 
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2  
Enhancing Predictive Archaeological 

Modeling: Integrating Location, Landscape, 
and Culture  

Gary Lock and Trevor Harris 

2.1 Introduction 

There is a beguiling aura surrounding predictive archaeological modeling that is 
compelling. This allure has been reinforced in recent years by the scientific and 
technological legitimation provided by geographic information systems (GIS). Using 
knowledge of the environmental variables that “first influenced the activities of original 
inhabitants,” GIS layers are produced that identify locations where combinations of 
environmental variables match the patterns observed at known prehistoric sites (Kuiper 
and Wescott 1999:1). Thus, high-potential areas of prehistoric sites can be identified 
using environmental data from known archaeological sites in a region that corresponds 
well with known sites (Kuiper and Wescott 1999:2). While most developers of such 
predictive models acknowledge limitations in their analysis, and of predictive 
archaeological modeling in general, there can be no doubt that in North America these 
models are seen to “provide planners with a guide showing areas that would likely 
require less time, effort, and money to develop from a cultural resource compliance 
standpoint” and to augment and prioritize areas for “evaluation, monitoring, or 
mitigation” (Kuiper and Wescott 1999:2; Wescott and Kuiper 2000). In other cultures, 
however, landscape analysis has taken an alternative route that reflects differing 
epistemological approaches to landscape archaeology. This chapter seeks to explore such 
differences in the approaches to landscape archaeology and predictive modeling. The aim 
is to identify strengths and weaknesses in archaeological predictive-modeling approaches 
and to suggest enhancements to modeling methods that incorporate cultural and 
humanistic archaeology as well as environmental factors in the modeling process. 

The history, theory, method, and application of archaeological predictive models have 
been well publicized in several valuable texts, and it is not our intent to review such 
studies in this chapter (Kohler and Parker 1986; Judge and Sebastian 1988; Wescott and 
Brandon 2000). Nor is it our intent to denigrate such models, for there has clearly been a 
demand for such tools from planners and cultural resource managers faced with the 
daunting task of identifying prehistoric cultural sites while constrained by limited 
resources and tight timelines. Faced with these realities, the end is seen to justify the 
means. There are, however, certain tensions and issues associated with these approaches 



that we seek to clarify and use to point toward an archaeologically more sensitive 
approach to GIS-based archaeological predictive modeling. 

2.2 Identifying the Tensions: Predictive Modeling and Landscape 
Archaeologies 

In seeking to identify the tensions that exist within the wider context of landscape 
archaeology and archaeological predictive modeling, we draw attention to the differences 
that exist between landscape archaeology in the U.S. and the U.K. When reviewing a 
group of papers on landscape archaeology, the British archaeologist Barbara Bender went 
so far as to identify an “Atlantic divide” between approaches to these topics in Britain 
and America (Bender 1999). We suggest there is value in exploring the nature of this 
divide and the tensions between the alternative approaches taken in the two countries as a 
basis to proposing approaches that may begin to close not only the cultural gap, but 
contribute to next generation GIS predictive models. 

Central to these tensions and the cultural “divide” are the demands of cultural resource 
management (CRM) to which predictive modeling is, and always has been, a 
handmaiden. Driven by the constraints of CRM, predictive modeling was developed to 
answer very specific questions that view the landscape as a current economic resource. 
The political, economic, and administrative context within which CRM archaeologists 
work defines their concerns based on landscape as now, that is, the recording and 
management of archaeological sites, usually within a legislative framework based on 
contemporary administrative perceptions of space, as well as “what exists where,” In 
sharp contrast to this is the development of landscape archaeology, which incorporates a 
diversity of approaches that, in essence, explore the landscape as then, where the focus is 
on explanation and interpretations of past landscape understandings. 

Interwoven within these arguments are other strands, of which two are relevant here. 
The first such strand concerns the role of technology and, in particular, the increasing 
reliance on, and dominance of, GIS. The development of predictive modeling and its 
application were a major area of interest predating GIS, as shown by a survey in 1986 
that cites over 70 papers on the topic (Kohler and Parker 1986). Importantly then, the use 
of GIS has not determined the underlying philosophy of predictive modeling, but there 
can be no doubt that it has now become so embedded within predictive archaeological 
modeling that the technology itself must now be considered an essential part of the 
predictive methodology and the framework within which CRM now operates. The social 
practice of CRM and predictive modeling is now structured around the use of GIS and 
must acknowledge the epistemological issues that surround the use of this technology. 

The second strand involves the development and use of archaeological theory and all 
of the complexity that this involves. To use a very simplistic caricature as a vehicle for 
the argument: the tensions are created by the differences between the applied scientism of 
processual archaeology and the attempted humanism of postprocessual approaches. 
Bender suggests that “the need to retain a strong scientific methodology” is evident in 
American landscape archaeology and is largely responsible for the “divide” (or at least 
the papers she was reviewing [Bender 1999:632]) and has reinforced the move toward 
predictive modeling. Processual archaeology heavily utilizes formal models and 
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modeling philosophy, such as site-catchment analysis and systems theory, and predictive 
modeling is one continuation of this intellectual tradition. The adoption of GIS in the mid 
to late 1980s, and especially the suitability of the raster data structure that facilitated the 
application of predictive modeling at a regional scale (Kvamme 1990), reinforced the 
methodology so strongly that theoretical development in other areas of landscape 
archaeology were largely overridden. 

The emphasis on a quantitative methodology was at odds with humanistic approaches 
to landscape that were emerging contemporaneously, as exemplified in Tilley’s 
influential A Phenomenology of Landscape (1994). The essence of this dichotomy is 
often crystallized as one of space versus place. Space is characterized as a void in which 
human activities are carried out. It is treated as the same void everywhere and at any 
point through time, a neutral backdrop for processual spatial modeling. Place, on the 
other hand, is a culturally defined locale that acts as a medium for action and is part of 
human experience and activity. Places are fluid and capable of taking on different 
meanings at different times, but they are always formative within personal and social 
activities. This juxtaposition of traditions forces us to confront the qualitative complexity 
of social landscapes and the quantitative reductionism of formally modeled space. 

There is a large literature on humanized approaches to landscape, albeit with a strong 
theoretical theme (see, for example, Tilley 1994; Hirsch and O’Hanlon 1995; Ashmore 
and Knapp 1999; Thomas 2001). It is because these approaches are so explicitly 
theoretical that they create such a challenge for GIS applications generally and predictive 
modeling in particular. Whereas processual models are relatively methodologically 
concise and reproducible within a GIS context (through buffering, overlaying, and 
statistical tests of association, for example), the text-rich description that forms the basis 
of postprocessual landscape work is focused on descriptive theory rather than 
methodology These concerns fed into the now well-rehearsed arguments about GIS 
heralding the return to environmental determinism (Gaffney and van Leusen 1995), a 
critique that landscape archaeology has tried to address but that seems to have left 
predictive modeling largely unmoved. This dichotomy between theory and practice in 
landscape archaeology has been confronted since at least 1993 (Wheatley 1993) and has 
produced a growing literature concerned with the theorizing of archaeological GIS 
(encapsulated within Wheatley 2000; Wise 2000). It must be said, however, that progress 
is slow and there are actually very few innovative applications that have moved very far 
beyond the theorizing (Lock 2001). 

Of course, GIS is a technology that operates within wider arenas, and the elaboration 
of tensions concerning its epistemology is not unique to archaeology. The GIS and 
society debate, which addresses the role of GIS in society, seeks to identify the 
assumptions, principles, and practices affecting the way in which analysis and the 
acquisition of knowledge is pursued through GIS. Two general themes within this debate 
form an important background to the more specific interests of predictive modeling that 
is now almost entirely GISdependent (Lock and Harris 2000). The first theme concerns 
the nature of the data and argues that data do not exist but are created. Data are a social 
construction, and the “for whom, by whom, and for what purpose” is based within a mix 
of social, political, and economic contexts and interests (Taylor and Overton 1991). The 
second theme concerns the potential exclusion of much information from GIS because it 
is qualitative in nature and not capable of being measured and represented by the spatial 
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primitives of point, line, or polygon. The GIS and society discourse recognizes that 
alternative forms of knowledge representation are crucial to understanding the nature of 
place and are largely excluded from GIS, resulting in a single “capturing” of an official 
view of reality that is heavily biased toward a scientific data-driven representation (Mark 
1993). Indeed, it has been argued that one reason why GIS has been so spectacularly 
successful is because it represents a single noncontradictory view of the world (Harris et 
al. 1995). This is of particular interest to predictive modeling within national and regional 
CRM systems and their ability, or inability, to incorporate alternative views of the past 
within a seemingly inflexible quantitative GIS. 

This dichotomy, between a GIS-based predictive modeling and landscape theory, in 
essence focuses attention on how people and nature are represented within GIS. It is of 
interest here to consider the ideas of Michael Curry in his book Digital Places: Living 
with Geographical Technologies (Curry 1998). Curry classifies GIS into PaleoGIS and 
GIS2. PaleoGIS represents most current GIS applications, and certainly most 
archaeological GIS, which are defined by their underrepresentation of the basic elements 
of human experience that give meaning to the world. The challenge is to move toward 
GIS2, and this aspect is further explored below. 

2.3 The West Virginia Predictive Model 

To illustrate and develop these points further, we briefly recount here a predictive-
modeling study undertaken by one of the authors in West Virginia as part of an 
environmental impact assessment project associated with a proposed high-power 765-kV 
transmission line crossing West Virginia into Virginia. To comply with Section 106 
legislation and to support CRM efforts, a predictive model was developed (Gozdzik 
1997). The model drew upon similar predictive models developed elsewhere that were 
adapted for use in southern West Virginia (see, for example, the Fort Drum, NY study by 
Hasenstaab and Resnick [1990]). Known historical and archaeological sites were 
identified from state records, and two models were constructed to identify the spatial 
probability of prehistoric and historic sites in the region. Similar approaches were used in 
both the prehistoric and historic studies, but for the sake of brevity only the former is 
discussed here. Some 588 known prehistoric sites were located on GIS maps. For each 
site, four environmental parameters related to distance of site to water, site slope, site 
elevation, and site soil type and drainage (based on 
http://www.nrcs.usda.gov/technical/techtools/ststsgo_db.pdf STATSGO data) were 
identified and the details extracted from the GIS (Figure 2.1 [State Soil Geographic Data 
Base]). Using exploratory data analysis, the environmental factors associated with the 
known archaeological sites in the region were explored through the analysis of univariate, 
bivariate, and hypervariate distributions. Based upon a graphical intuitive approach 
(GIA), a classification of three groups was devised, as detailed in Table 2.1. The GIA 
draws heavily on a review of parameter distributions and relationships, but it also enables 
an intuitive understanding of the archaeology of the region to influence the selection of 
threshold boundaries, as in Table 2.1. The environmental parameters reflect the known 
archaeology of the region in that, put simply, most sites can be found close to sources of 
fresh  
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FIGURE 2.1 
Constructing the West Virginia 
predictive model based on 
environmental variables (a, b), 
resulting in a site-sensitivity model for 
prehistoric sites (c, d). 

water, on land of shallow slope, on well-drained and fertile soil, and at low elevations. 
Three site-density categories were identified comprising locations of high, moderate, and 
low probability of locations containing archaeological sites. Some 10% of the study area 
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fell within the highlikelihood category, 49% in the moderate category, and 41% in the 
lowlikelihood category. 

This approach is necessarily totally dependent on the knowledge gained from known 
and recorded archaeological sites. Thus, as with  

 

similar predictive-modeling projects, the study is heavily dependent on the vagaries that 
brought about the identification of these known sites and not on a systematic and 
methodological survey of the sites. The resulting silences in the constructed data set are 
not acknowledged, are unquantifiable, and could result in a distorted knowledge database 
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upon which the predictive model is dependent. Furthermore, the actual model is entirely 
environmentally driven and assumes that the behavior patterns  

TABLE 2.1 
The West Virginia Predictive Model 

  High Probability of 
Sites 

Moderate Probability 
of Sites 

Low Probability of 
Sites 

Distance to water 0–230 m 231–500 m >500 m 

Slope 0–18° 19–30° >31° 

Elevation 400–560 m 561–840 m >840 m 

Soils Well drained Moderately well drained Poorly drained 

Roads (historic 
only) 

0–150 m 151–500 m >500 m 

associated with the known sites are influenced by, and highly correlated with, slope, 
distance to water, elevation, and soil type. Having said that, the environmental data are 
invariably based on currently available digital sources and are invariably characteristic of 
the late 20th century and not of the time period commensurate with the geography of the 
society under study. As with other predictive models, the model does not seek to identify 
individual archaeological sites, but to target areas that contained archaeological sites to 
varying degrees of likelihood. Without question, the use of GIS greatly facilitated this 
process because of the emphasis on the physical characteristics of landscape. However, it 
should be noted that seeking to develop the model to incorporate nonquantitative aspects 
of landscape would generate considerable difficulty for the GIS analysis. No statistical 
test was applied to determine optimal group classification, and reliance was placed upon 
the GIA to blend archaeological knowledge of the region with the environmental 
parameters. Thus, there were many subjective elements involved in this “quantitative” 
methodology, including the selection of environmental factors, the scale of GIS data and 
analysis, the locational and attribute accuracy of the recorded archaeological sites and 
environmental coverages, and particularly, the subjective selection of category 
boundaries. Furthermore, and somewhat typical of similar studies, there is almost no 
temporal distinction between the archaeological sites because of the paucity of time data. 
As a result, all sites, for all time periods, were analyzed as a single cadre in the same 
analysis. Once again, we stress the intent here is not to denigrate the predictive-modeling 
process, but to realistically appraise the strengths and weaknesses of that process. 

The resulting product was an impressive and persuasive map that displayed areas of 
high, moderate, and low site probability. The map was ostensibly based on a logical 
Boolean approach, was supported by the technology of GIS, could be replicated, and, 
importantly, provided a substantive product that would contribute toward the needs of the 
CRM community and meet compliance requirements. Measures of what constituted a 
“good” result, of course, remain unspecified, and without a comprehensive 
archaeological survey of the entire region (the avoidance of which was one of the 
purposes behind this model generation) the accuracy of the model will remain unknown. 
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2.4 Another West Virginia Predictive Model 

In the context of the previous model, now consider the following predictive model. In 
similar fashion to the above approach, a new study area was designated that again 
emphasized distance to water (buffered from 100, 500, and >500 m), low slopes and 
valley bottomlands (<18°), fertile alluvial soils, favored old-field sites, and at a preferred 
elevation from just above sea level to 300 m and up to 770 m (Figure 2.2). Without 
stretching the point too far, these parameters are not greatly dissimilar to those specified 
above for the prehistoric site model. However, these latter parameters correspond not to 
the location of archaeological sites, but to the habitat of the common sycamore tree 
(Platanus occidentalis L.), a fast-growing, long-lived tree and one of the most common 
trees in eastern U.S. deciduous forests (Wells and Schmidtling 2001). The tree especially 
favors alluvial soils along streams and bottomlands and is very tolerant of wet soil 
conditions and grows well in proximity to water (though it is relatively intolerant to 
flooding). We hope you will excuse the ruse employed here, but the question arises as to 
what are the models actually predicting—nature or culture? Bearing in mind the minor 
differences between the prehistoric and the sycamore models, does this imply that human 
behavior can be modeled and predicted by locating the habitat of sycamore trees in the 
eastern U.S.? No such correlation is mentioned in the archaeology of the region. But of 
course this misses the point, for the prehistoric predictive model does not suggest to 
understand human behavior so much as to be able to predict, by whatever means, the 
likelihood of sites being located in a particular region. Indeed, based on this finding, that 
the distribution of sycamore habitat is highly correlated with the distribution of 
prehistoric sites in West Virginia, we may now have the basis of a new, single-variable, 
predictive model. The end in predictive modeling justifies the means. If the modeling of 
human behavior can be approximated by the distribution of the sycamore, or fertile soils, 
or a streambed, then however environmentally deterministic this may be, the model is a 
success. 

It is clear from these two predictive examples that we consider the treatment of 
archaeological sites as simple data points, set solely in an environmentally determined 
space, as being problematic. Essentially, the archaeological site is reduced to a uniform, 
undifferentiated point in space—the McArchaeo site of predictive modeling—easily 
predictable because all points are the same and their location is entirely due to external 
variables. In contrast, we suggest that a continuum must exist that ranges from the 
extreme reductionism of archaeological sites as uniform points in space, to the full 
complexity that comes from consideration of the archaeological  
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FIGURE 2.2 
Predicting the common sycamore tree. 
The resulting model is based on 
distance from water, slope, soil type, 
and elevation. 

site as a cultural entity. Seeking to model human-landscape interaction using uniform 
data points concentrates on the world to the exclusion of the subject. At the other end of 
the continuum lies Tilley’s phenomenology in extremis—the subject to the exclusion of 
the world—which requires a landscape of cultural entities, each differentiated in 
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endlessly complex variations of subjectivity. The theory, methodology, and practice are 
not yet developed to enable the integration of such complexity into GIS and predictive 
modeling, but the way forward is to start moving along the continuum away from sole 
reliance on simplistic reductionism toward an augmented cultural entity. 

2.5 Humanizing the Landscape 

We suggest that in determining site locations there is a need to move beyond a sole 
reliance on environmental factors (Ebert 2000) and to draw upon aspects of landscape 
archaeology that could provide additional determinants of site location. Both “landscape 
archaeology” and “postprocessualism” are umbrella terms that encompass a broad range 
of understandings, and while it is not possible to go into great detail here, we proffer 
some ideas that are pertinent to the aims of predictive modeling. Before doing so, 
however, there is an even more fundamental problem that underlies the whole tension 
between predictive modeling and landscape archaeology—that of the concept of “site.” It 
has long been argued that the “site” as a unit of analysis is theoretically redundant and 
that individual and social interaction with the material world is a continuum across the 
landscape (Gaffney and Tingle 1984). Early concepts of “off-site archaeology” (Foley 
1981) have matured into a general acceptance that an understanding of a site can only be 
gained through its contextual connections within its landscape, which comprises a 
complex web of spatial, temporal, and cultural links. Part of that understanding is 
necessarily concerned with location and why a site is where it is. Of course 
environmental factors contribute to this understanding, but they are unlikely to provide a 
satisfactory explanation, for the whole edifice of predictive modeling is site-based rather 
than landscape-based. 

While landscape archaeology is diverse in its interests and applications, it is in essence 
concerned with landscape as then as accessed through what it means to be a socialized 
human being living within a particular landscape. Exploring such notions of landscape is 
not confined to archaeologists, but is a rich vein of thought spanning many subjects 
including geography, social theory, philosophy, anthropology, and history, often with an 
emphasis on a multidisciplinary approach (Muir 1999; Thomas 2001). We see some of 
the challenges facing predictive modeling being encapsulated in postprocessual writings. 
As Bender (1993:1) suggests, “Landscapes are created by people—through their 
experience and engagement with the world around them. They may be close-grained, 
worked upon, lived in places, or they may be distant and half-fantasized.” The differing 
forms of engagement with the physical world, and how those relationships can be used to 
make sense of an individual and a group’s place in the wider scheme of things, have 
given rise to many different types of landscape that, because of their relevance to the 
concept of location, are worth exploring briefly here. 

Much of this postprocessual research is concerned with landscapes, or more 
specifically with places and locales (whether natural features sites or monuments) that are 
imbued with cultural meaning through symbolism, often as part of cosmological, 
religious, ritual, or ideological beliefs. These traditional cultural properties or sacred 
landscapes involve sacred geographies and are founded on many different notions of 
what is sacred (Carmichael et al. 1994). There is considerable overlap here with 
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humanistic geography (Cosgrove and Daniels 1988) and with anthropology (Hirsch and 
O’Hanlon 1995), although these ideas have been widely applied to British prehistory in 
particular. Often incorporated into these approaches is a notion of time depth or historical 
narrative that is inscribed on a landscape through social memory (Ingold 1993) and 
reproduced over long periods of time through structured social practices (Barrett 1994). 
Time depth may involve ancestors, perhaps through genealogies, and mythology that 
charge certain places with power and significance through association. For nonliterate 
peoples, history can be written through landscape features and reproduced through social 
action and events that take place at these significant locales (Gosden and Lock 1998; 
Edmonds 1999). Aspects of landscape can also represent individual and group power and 
identity informally through some of the ideas above or through more structured 
mechanisms that convert political and economic hierarchies into forms of spatial control 
and access. 

It is clear from the body of work briefly summarized above that many different social 
and cultural factors can influence site location. Predicting site location based on rational 
Western logic is to ignore a considerable amount of anthropological and archaeological 
evidence and theory for the convenience of methodological simplicity. There is much 
more to location than the interplay of environmental variables, and the modeling 
challenge to be confronted is to integrate both environmental and cultural concerns with 
the concomitant demands of both data and theory. This approach demands recognition of 
the context of individual sites and the importance of spatial and temporal contingency. 
Not only what surrounds a site influences its position, but also what came before it and 
the cultural development of the landscape. Landscapes are thus a web of spatial and 
temporal connections, and the implications of this are only just beginning to be explored 
by GISbased landscape archaeologists. The few existing examples of research in 
humanizing landscapes are mainly based on what can be described as landscapes of 
perception and have involved attempts to model visibility and accessibility based on an 
embodied subject situated within the landscape. Wheatley and Gillings (2000) have 
shown the complexity of visibility studies and the shortcomings of a simplistic binary 
viewshed, together with ideas for developing the technique. The work of Llobera (1996, 
2000) includes an accessibility index that models topographic and cultural influences on 
human movement across a landscape. Both visibility and accessibility can have an 
influence on site location, although trying to incorporate perception into a model raises its 
own philosophical tensions. Through notions of “sensuous geographies” (Rodaway 
1994), Witcher (1999) differentiates between perception as the simple reception of 
information (i.e., a viewshed of what can be seen) and perception as mental insight (i.e., 
making sense of the view via socially constituted meaning). Despite the limitations of this 
work, these are serious attempts to move beyond the confines of PaleoGIS and the 
reliance on environmental data alone, and it remains to be seen how these can be 
incorporated into predictive modeling. 

2.6 Moving from Data Points to Cultural Entities 

To illustrate our thinking, we suggest one approach that would support ongoing 
predictive-modeling initiatives and build on the contribution of GIS, and yet redress some 
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of the imbalance we have alluded to in the context of differing interpretations of 
landscape, whether based on sacred, ideological, or cosmological meaning, on 
perception, or on symbolisms of power. In this respect, we suggest treating sites not as 
uniform data points in space but as cultural entities set against an environmental 
backdrop (see Rouse 2000). Such an approach entails applying any knowledge about the 
archaeology of the site to the model itself. In Figure 2.3, the data point is interpreted not 
solely in terms of its proximity to water and the stream network, but is postulated to have 
an additional attractor value. Thus a burial mound becomes more than just another 
undifferentiated point intersecting environmental planes, but has a cultural meaning in its 
own right. In our West Virginia example we postulate that a burial mound may have 
attractor status in that it pulls groups toward it or retains groups in the vicinity through 
ancestor worship. Thus one could suggest a greater likelihood of sites being present in the 
area because of the nature of the archaeological site itself, the burial mound, having a 
sphere of influence over the surrounding landscape and that extended beyond the strict 
confines of the “site” itself (Figure 2.3). This influence could easily be modeled within 
GIS through the use of distance buffers or, preferably, friction surfaces that incorporated 
concepts of relative distance rather than the more limiting use of absolute distance. 
Alternatively, the mound might be interpreted as being a repulsor, where fear and taboo 
acted to deter access to the site and thereby created a vacant annulus surrounding the site 
devoid of prehistoric activity. Again, this is easily modeled in a GIS. A further situation 
might be one where the mound acted as a territorial symbol or marker and was thus 
placed in a dominant, highly visible location. While these examples are conjecture, in all 
three instances the interpretation of the site archaeology itself can both influence and 
refine the resulting site-probability map. 

Cultural site interpretation can thus be used to augment the environmental point-data-
driven models currently practiced to create an envirocultural probability model. Thus 
sites are not treated as homogeneous point data, but, where the archaeology allows, are 
treated individually and interpreted for their cultural significance. By augmenting an 
environmentally driven analysis of site probability with the addition of a cultural 
interpretation of the site entity, we suggest the basis for a midpoint on Bender’s Atlantic 
divide. Thus we acknowledge that symbolic, cognitive, perceptual, and other qualitative 
reasoning can also influence behavior patterns. In short, we are arguing that the 
archaeology be put back into the archaeological predictor models. Furthermore, the 
approach outlined above could relatively easily be adapted within a GIS methodology. 
This approach does  
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FIGURE 2.3 
Attempting to incorporate the social 
into predictive modeling. The 
probability models include (a) 
viewsheds from a group of mounds 
and (b) attractor buffers. 
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entail greater effort because each site must be examined to determine its role in the 
landscape. In most predictive models, the number of such known sites has been limited 
and should not pose a significant resource problem. Furthermore, it draws upon the skills 
of the archaeologist to interpret the data rather than the existing heavy reliance on the 
data-processing skills of the GIS analyst. 

 

Enhancing predictive archaeological modeling      49



2.7 Increasing the Envirocultural Complexity 

The model outlined above should be seen as a first step toward some of the ideas outlined 
in this chapter. The challenge remains, however, of how to incorporate even greater 
complexity into the model. As already argued, this complexity must derive from both 
landscape theory and the specifics of  

 

FIGURE 2.4 
Modeling location based on movement 
and visibility: the Ridgeway ancient 
trackway in Oxfordshire, England. A 
cost-path model (a) and visibility index 
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(b) are both used to inform locational 
decisions for a series of Iron Age hill 
forts along the route. 

archaeological evidence from the region in question. We use two further examples here to 
illustrate how meaning and explanation based on the contextual detail of the archaeology 
of a region must feed into an understanding of site location. Both of these show that 
location can be independent of environmental variables in complex and subtle ways that 
are both spatially and temporally contingent and therefore could not, in these cases, be 
predicted by environmental variables alone. 

The first example is based on the work of the Hillforts of the Ridgeway Project that is 
based on fieldwork conducted in an area surrounding the ancient Ridgeway track in 
Oxfordshire, England (Daly and Lock 2004). Excavation of three Iron Age hill forts 
located within 20 km of each other—Uffington Castle, Segsbury Camp, and Alfred’s 
Castle—has emphasized marked differences between these sites, despite several surface 
similarities. The detailed studies have shown how each site developed from varying 
earlier activity, much of which is not evident from the surface. The Ridgeway was a 
crucial access route that antedates these sites and, together with the visibility 
characteristics of the area’s distinctive topography, has emphasized the nuances of 
location (Bell and Lock 2000). In this area, site prediction from environmental variables 
would be somewhat meaningless because there is very little variation, and the story is in 
the detail of the archaeology that shows location based on the subtleties of vision and 
movement as well as historical context (Figure 2.4). 

A second example focuses on Mesolithic and Neolithic sites along the River Danube 
in the area of the Iron Gates Gorge (Figure 2.5). Central to understanding this site is the 
transformation of traditional environmental variables into notions of affordances: how 
aspects of the landscape can offer potential for individual and social action to be played 
out. Distributions of flora and fauna can be converted into resource-scapes that offer 
opportunities for subsistence strategies. The occurrence of archaeological evidence can 
feed into notions of task-scapes, for example lithic scatters may represent locales of tool 
production that will have a relationship with resource-scapes that require lithic tools. The 
interplay between different types of affordances across the landscape creates lifeways for 
individuals and groups that challenge our understanding of their practices at a variety of 
scales from individual actions to seasonal movements. The location of sites is in a 
reflexive relationship with these activities, each influencing the other to produce social 
practice that not only reproduces cultural values, but also provides a mechanism for 
social change through deviant practices, however slight, being absorbed and continued. 

The Iron Gates Gorge example also illustrates the importance of understanding the 
meaning of sites through the contextual detail that derives from a combination of theory 
and data (in this case, the link between symbolism, visibility, landscape features, and 
structural elements of settlements or sites). Excavation at the site of Lepenski Vir, for 
example, has revealed graves in alignment with a nearby and very distinctive trapezoidal 
mountain, Treskavac. House plans also mimic the mountain shape. Using Higuchi 
viewsheds,  
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FIGURE 2.5 
Modeling location based on symbolism 
and context: the Iron Gates Gorge in 
Serbia. Note the alignments of 
excavated details such as houses and 
graves at the site of Lepenski Vir (a) 
with pronounced landscape features 
(b). 
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which incorporate near, medium, and distant banding, has shown that the site is located to 
include a variety of alignments on natural features at different distances in the 
surrounding landscape. The combination of landscape affordances and understanding 
each site as a cultural entity has enabled an understanding of location that goes beyond 
environmental determinism. 

2.8 Conclusion: The Challenge 

The intent of this chapter is to explore issues and approaches to archaeological predictive 
modeling. We suggest that many of the substantive issues become most dominant when 
we contrast the views of many American CRM-based predictive modelers and those of 
many British academic landscape archaeologists. These differences are framed within a 
classic modernist–postmodernist tension characterized on one hand by reductionism and 
on the other by the complexity of human existence. We acknowledge that these two 
positions are largely the result of different historical trajectories within archaeology, but 
they also operate within very different contexts today. While acknowledging the political, 
economic, and institutional constraints of CRM, we have also raised issues concerning 
the role of predictive modeling. At the same time, we suggest one example of how data 
points and environmentally driven predictive models may be augmented by the concept 
of cultural entity, which brings with it a richer understanding of site and landscape 
archaeology. While we are not claiming that landscape archaeology has the answers to 
these complex issues, it certainly provides an alternative way of thinking about sites and 
their locational characteristics. Drawing upon Bender’s words, “I’m not suggesting that 
we have cracked these questions…but…because we have moved into a more reflexive 
relationship with the past and to the process of doing archaeology, we are uneasily aware 
that they need addressing” (Bender 1999:632). 
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3  
One Step Beyond: Adaptive Sampling and 

Analysis Techniques to Increase the Value of 
Predictive Models* 

Konnie L.Wescott 

ABSTRACT A critical part of the planning process in developing an 
archaeological predictive model is defining the strategy for testing and 
refining model results. Ideally, predictive modeling is a dynamic process 
that provides more than just a static map that is outdated as soon as new 
data become available. The issue of uncertainty in the accuracy of 
available information affects confidence in the results of any predictive 
model. Under certain conditions, the resulting model may be too 
conservative to be useful for even basic planning applications. An 
assessment of data uncertainty and a method for developing a data-
acquisition and -testing strategy to reduce that uncertainty can produce a 
more reliable and cost-effective model. Use of an iterative modeling and 
testing regime that is based on an adaptive sampling approach is a 
possible solution. Bayesian techniques and adaptive sampling methods 
have been used successfully to support the characterization and 
remediation of hazardous-waste sites, and these have resulted in 
significant  

* Work supported by U.S. Department of Energy under contract W-31–109-Eng-
38. 

cost savings in the cleanup of those sites. A similar approach may 
prove beneficial for determining the likelihood that archaeological sites 
are present in a given area. The ability to optimize sampling efforts to 
reduce the uncertainty will provide managers and planners with a higher 
degree of confidence in the model’s accuracy, especially as new data are 
received and additional iterations of the model are run. 

 



Preface 

The conference held at Argonne National Laboratory (Argonne) was a unique 
opportunity to share some ideas about geographical information systems (GIS) and 
predictive modeling in a relaxed and collegial, but extremely focused, setting. For me, it 
was an opportunity to express some thoughts I had about assessing the varying levels of 
confidence in predictive model results and tie those ideas to some innovative work that 
was ongoing at Argonne using adaptive sampling methods to characterize 
hazardouswaste sites. I was not exactly sure how the two ideas could be compatible, but 
the underlying concepts seemed worth investigating and sharing, if for no other reason 
than to obtain feedback from the many experts attending the conference. In writing this 
chapter, I continued my struggle to link the concepts proven effective in the context of 
hazardous-waste characterization and remediation with the practice of archaeological 
predictive modeling, particularly in a cultural resources-management context. Although I 
have not had the resources available to me to test the concepts in the field, I believe they 
are worth adding to the discussion on archaeological modeling brought forth in these 
proceedings. 

3.1 Introduction: Current Use and Value of Predictive Models 

The value of using GIS-based predictive models for efficient land management and 
planning and cultural resources protection and stewardship is apparent in many contexts. 
Two specific examples follow based on U.S. regulatory requirements. The first example 
looks at some specific goals that a federal manager may have while embarking on an 
environmental assessment process for a proposed construction project. The second 
example follows the inventory and evaluation requirements of the National Historic 
Preservation Act (NHPA), which are better suited to long-term facility management 
approaches, rather than project management and administrative goals for a specific 
proposed project. 

An environmental management goal of a federal project manager operating within the 
National Environmental Policy Act might be to minimize or prevent impacts to 
significant natural and cultural resources while achieving more specific project goals 
(e.g., construction of a scientific facility). An administrative goal of the same manager 
might be to keep project costs to a minimum. A specific cultural resources goal in this 
particular situation might then be to protect archaeological sites, so that they remain 
intact for future generations, while still meeting facility management and administrative 
goals. This cultural resources goal can be met by limiting (not necessarily eliminating) an 
intrusive survey and its associated costs (e.g., if a previously surveyed location meets 
project needs) and avoiding known and unknown/ unrecorded archaeological sites to the 
extent feasible. The knowledge base to achieve this goal is typically derived from 
compliance-based survey projects with accelerated timelines and limited financial 
resources. Modeling is one logical approach for streamlining the planning and 
management process with regard to the presence or absence of archaeological sites and 
maximizing the value of the available data. This, in turn, provides a structure for 
maximizing the value of data collected in the future. 
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In addition to project-specific requirements for cultural resource compliance, as 
illustrated in the previous example, U.S. federal managers are also tasked under the 
NHPA to inventory and evaluate all cultural resources under federal jurisdiction. This 
task is acknowledged to be nearly impossible using traditional inventory methods, given 
the vast amount of federal acreage and the manpower and time required to survey that 
land and record and evaluate sites. Costs simply become too exorbitant to accomplish the 
task. However, with a modeling structure to help guide future inventory events, the task 
of expanding the knowledge base of the federal land unit can become less daunting. 

The purpose of this chapter is not to discuss the nuts and bolts of predictive modeling, 
as modeling remains a popular topic in the literature and likely will continue to be a 
source of debate and practice. Rather, this chapter is reflective, intended to offer a 
possible approach for land managers to apply in order to prioritize their cultural resources 
management (CRM) activities, to be effective stewards of cultural resources under their 
jurisdiction, and to maximize their limited financial resources by enhancing both the data 
value of their surveys and the value of their predictive models that are either already in 
existence or are in various stages of development. 

There are property types (federal facilities or land-management units) for which GIS-
based predictive models may not be necessary: small facilities, facilities with extensive 
survey data already accumulated, and facilities with seasoned archaeological managers 
who know more about the area than can be communicated electronically (however, keep 
in mind that institutional knowledge has been known to leave). In these instances, 
priorities for additional sampling and data collection likely can be made easily and 
intuitively without a computer-generated model. However, for large land holdings, even 
skilled archaeologists may find GIS-based models useful and costeffective for not just 
managing cultural resources under their jurisdiction, but for communicating their needs 
and management/compliance goals to nonarchaeologists. On the other hand, there are 
many instances in which the managers responsible for meeting stewardship and 
compliance requirements regarding cultural resources may not have a background or an 
education in archaeology. In the latter context, predictive models and a decisionsupport 
approach for maximizing the value of model output can be of great benefit, as long as 
qualified archaeological guidance is being provided. 

3.2 Testing and Improving Predictive Models 

One tangible product of a predictive model is a static map that illustrates the potential 
(typically some variation of high, medium, and low) of encountering sensitive cultural 
resources within a given area. These maps can be very useful for facility planning and 
management, as well as for assessment activities within a given planning horizon. 
However, these maps provide a “snapshot” that is based only on data available at a 
particular point in time. The predictive maps can become outdated very quickly, 
especially if the facility engages in an active survey or data-collection program. The 
models could require frequent updating or revision to incorporate new archaeological 
information, as well as results from other environmental updates to the facility GIS (e.g., 
updates from soil samples, geologic characterizations, data from new construction 
projects, etc.). 
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In current practice, archaeological predictive models are tested and improved through 
the use of traditional sampling methods (e.g., pedestrian surveys, shovel tests). A CRM 
manager is typically not able to dictate where surveys will be completed or how the data 
will be used beyond the immediate need, as survey activities are often project-driven for 
only compliance purposes. Recognizing that there may be administrative barriers, 
attempts should be made to actively use the newly acquired survey data to validate and 
test previous model results. In situations where staffing and financial resources are 
available, or can be made available, to more proactively manage and protect cultural 
resources, and thereby direct inventory efforts, alternative approaches may be employed 
for selectively sampling those areas with the greatest potential for refining an existing 
predictive model. 

Other issues also may affect the need for model revision. Significant data gaps may 
have been present during model development, or it may be known or discovered that 
some of the data collected were suspect or biased in some fashion. Alternatively, the data 
used in the original model may have represented current environmental conditions rather 
than the paleoenvironmental conditions present when the site locations were first utilized, 
resulting in the possible need for a different model. New models could also be developed, 
if needed, to accommodate technological advances and new ways of looking at 
archaeological or environmental data. 

Modeling is imprecise by nature, and the results are fraught with varying levels of 
uncertainty. Understanding the uncertainty and how it affects dayto-day operations is a 
key component to using a model successfully. Once a model is no longer fulfilling its 
intended purpose (i.e., it loses its predictive power and levels of uncertainty become too 
great for the model to be useful), it becomes necessary to be able to adapt to the changing 
conditions brought forth by new data and possibly employ new approaches. As stated 
above, selectively sampling those areas with the greatest potential for refining an existing 
predictive model (or for proving it is inadequate) is one way to reduce the uncertainty in 
the model. The remainder of this chapter will focus on this point. 

Ideally, the modeling process should be dynamic and could even be automatic as new 
data become available. Each archaeological survey, each soil sample, or each monitoring 
event should trigger an update or refinement to the model. An adaptive system like this 
would assist the facility manager or the cultural resource manager in applying the most 
current information to projects by providing an opportunity for reinterpreting the model 
results, determining and quantifying uncertainty in the results, and evaluating the latest 
survey and testing strategies. However, to automate this process, a larger integrated data-
management and decision-support system would be needed. The dynamic archaeological 
model could then be interfaced with data updates as sampling progressed. Ultimately, the 
decision-support system could assist the user in increasing the value of the predictive 
model by determining the optimal locations to survey on a priority basis, thereby 
reducing data uncertainty and increasing confidence in the model results. 

3.3 Quantifying Uncertainty and Bayesian Statistics 

Assuming a model has been developed for a particular facility that accommodates the 
available data, a three-dimensional cost surface can be produced to indicate levels of 

One step beyond      59



confidence (or certainty) in the predictions. For example, areas previously surveyed and 
known to contain sites are indicated as areas of high probability and high confidence (low 
uncertainty). Areas previously surveyed and known not to contain sites are indicated as 
low probability and high confidence. Areas not surveyed are modeled as high or low 
probability and low confidence (high uncertainty). Varying degrees of confidence are 
possible, depending on the methods employed. The confidence in surveyed areas with no 
sites may vary based on the possibility of buried remains not discovered during the initial 
survey. Confidence in unsurveyed areas may vary on the basis of other factors, such as 
suitability of the location based on environmental factors, expert knowledge of site 
distributions in the area, autocorrelation or proximity to high- (or low-) confidence areas, 
and physical clues from maps or remote sensing. Such “soft” types of data can be 
accommodated in a statistical framework following a Bayesian approach. 

The Bayesian statistical approach is a potentially promising method for addressing 
uncertainty in a modeling context. As part of a dynamic modeling process, it allows 
combining data with existing knowledge and expertise (prior beliefs). It is the one 
statistical method that allows you to explicitly state what elements of the model are 
subjective, and it allows you to change your beliefs on the basis of new evidence. There 
are obviously pros and cons to this type of approach, and arguments can and will be made 
on either side of the debate. For example, expert knowledge will vary by expert, and who 
you choose to believe will affect the outcome. However, by making these subjective 
choices explicit in the model, there could be an advantage over classical statistics in how 
the output is interpreted by others (i.e., it may be less likely to be misinterpreted). To 
date, the most accepted use of Bayesian statistics in archaeology is in calibrating and 
interpreting scientific dating determinations; however, it appears to be getting some 
attention in other areas of archaeology, such as for predictive modeling (Millard 2003; 
Orton 2003; Van Leusen 2002). Further discussion of using Bayesian statistics for 
developing archaeological predictive models can also be found in Chapter 9 (Verhagen, 
this volume). 

Given the model and the ability to apply expert knowledge through Bayesian statistics 
to quantify levels of uncertainty, such as for producing a cost surface as described above, 
the next step is to develop decision rules that will guide a priority-based sampling 
strategy for collecting data to maximize the value of the model’s output (reduce the level 
of uncertainty). 

Scientists working on the characterization and remediation of hazardouswaste sites 
have developed one possible approach using adaptive sampling methods and Bayesian 
statistics that may be of value in archaeological contexts (depending on the 
appropriateness and applicability of geostatistical models to specific project goals). More 
discussion on this possible application follows. 

3.4 Adaptive Sampling and Analysis Programs 

Although hazardous-waste characterization and archaeological research may vary greatly 
in their ultimate goals, the two activities share a need for obtaining accurate field data as 
efficiently as possible. Within the field of hazardous-waste characterization and 
remediation, a possible alternative approach to traditional field sampling has been 
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developed for the U.S. Department of Energy (DOE 2001). The Adaptive Sampling and 
Analysis Programs (ASAPs) were developed to solve a particular problem related to the 
expense (in money and time) of site characterization. The traditional process was to 
prepare a detailed work plan for a sampling program, deploy technicians to collect a 
prespecified number of samples from specific, gridded locations, and send the samples 
off-site for analysis. On the basis of the offsite results, it would be determined if another 
work plan needed to be developed and field technicians redeployed to start the same 
process over again to resolve inevitable uncertainties in the data. To avoid some of the 
risk of needing to repeat the process, there has been a tendency to oversample an area to 
make sure it is adequately covered. However, this approach is still costly and does not 
always eliminate the need to resample if data anomalies are present. ASAPs have proven 
to be a good solution to this problem. They rely on a dynamic work plan that incorporates 
the new sample data with available GIS data and modeling techniques that allow the 
sampling team to evaluate the data in the field and provide a basis for fieldlevel decision 
support for an “on the fly” sampling program. (Since the time of my conference 
presentation, the Environmental Protection Agency has introduced the “triad” approach, 
which applies similar concepts for streamlining data collection and addressing decision 
uncertainty; see Crumbling et al. 2001 and http://www.epa.gov/tio/triad.) 

The ASAPs approach uses a GIS-based system with components for data integration 
and decision support. The data-integration software (e.g., ArcView® GIS) is used to 
integrate, manage, and display real-time data for site characterization as the data are 
collected. A decision-support software tool, named Plume™, was developed at Argonne 
specifically for characterizing hazardous-waste sites by reducing uncertainty in the 
sampling collection process. Plume collectively accounts for “soft” site data (historical 
data, maps and photographs, past experience, model results) and “hard” in-field sample 
results to determine where the next samples should be taken. Plume incorporates analyst-
developed prior probabilities of threshold concentration levels of the contaminant 
(generally on the basis of “soft” data) and advanced Bayesian and indicator geostatistical 
techniques to provide an image of the known contamination based on the samples taken, 
quantitative measures of the inherent uncertainty and the benefits of additional sampling, 
and the new sampling locations that will provide the most value in reducing uncertainty. 

The advantages of the ASAPs over more traditional site-characterization methods are 
that fewer samples and sampling events are needed, which reduces overall project cost 
and the potential for worker exposure to contaminants. ASAPs result in better 
characterization because of the ability to rapidly visualize data as it is generated along 
with the ability to evaluate the value of additional data collection in the field (DOE 
2001). 

3.5 ASAPS Approach to Archaeological Predictive Modeling 

Despite some obvious differences between hazardous-waste sites and archaeological 
sites, the concept of using Bayesian statistics and an adaptive sampling program is 
interesting and holds promise for application in archae-ology. The following is an 
example of how an approach similar to ASAPs might work in an archaeological context 
for testing an existing predictive model. 
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Using a Bayesian approach, a new, more adaptive model can be developed that takes 
into account “soft” and “hard” data. Site presence is given an indicator value of 1, and 
site absence is given an indicator value of 0. These values are only achieved if the area 
has been adequately surveyed and either a site was recorded or no site was found. All 
unsurveyed areas would be given an initial indicator value of 0.5, as there would be equal 
opportunity for site presence or absence without the benefit of applying any additional 
information. However, because additional information is available for some locations, it 
can be used to change the 0.5 values toward either 1 or 0. The existing predictive model 
can be applied, although the values may only change slightly in the absence of rigorous 
model testing. For example, an area designated as having a high potential for containing a 
site might be assigned a value of 0.6 or 0.7 just based on the initial model. However, for 
that same area, on the basis of expert opinion or possibly an anecdotal recollection of 
artifacts being present in that vicinity, the assigned value of that area could be increased 
to 0.8 or 0.9, meaning there is much higher confidence that a site exists in that location. 
In locations where it is possible that deeply buried sites may be present but were not 
discovered during initial survey, the level of confidence in the result of site absence may 
not be as high, and the initial value of that area for site absence might change from 0 to 
possibly 0.15 because of the potential for deeply buried remains. As this cost-surface 
model is produced across the entire area, the goal of future surveys (whether they be 
directed or simply compliance-based) is to change as many of the intermediate values as 
possible (i.e., values within the range of 0.4 to 0.6) to values closer to 0 or 1. Areas for 
which there are higher levels of confidence (e.g., >0.8 for site presence and <0.2 for site 
absence) would not be prime candidates for directed sampling for planning purposes. 
However, these areas would be surveyed if selected for future ground-disturbing 
activities and the results of the survey fed back into the system. 

As new data become available, the indicator values are allowed to change in response 
to that new data to improve the model results. As more Is and 0s are entered and 
confidence builds in other areas, the initial model should be reevaluated, adjusted, and 
reapplied to change some of the underlying intermediate values, as appropriate. Future 
sampling efforts may provide sufficient validation of the initial model that increases 
confidence in the model output and allows additional adjustments in favor of the model 
output (e.g., areas previously designated 0.6 on the basis of the high-potential 
designations of the model could become 0.7 because there is increased confidence in the 
model results). Alternatively, the initial model may be determined ineffective, and 
indicator values based on that model may need to return to a value of 0.5. 

As far as optimizing locations to sample next, the hazardous-waste site example uses 
Bayesian and geostatistical procedures to develop the decision rules about where to 
sample (e.g., rules to determine if the area is clean or contaminated). Kvamme (Chapter 
1, this volume) makes reference to the potential for geostatistics and autocorrelation in 
archaeological predictive modeling, but the particulars on when and how to apply these 
approaches were not discussed. Particulars of the sampling program are likely to be 
model- and location-specific; therefore, there is little more for me to add to this 
discussion. Although I had hoped to actually demonstrate the utility of this approach with 
real data and a sampling program (possibly something similar to Plume) designed 
specifically for archaeology, support for these specific efforts has not yet been secured. 
However, I believe the conclusions, although reflective rather than substantive, are still 
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relevant for the discussions on predictive modeling presented in this book. Ultimately, the 
goal of the sampling program is to reach an acceptable level of confidence to achieve a 
“statistical maximum” (Van Leusen 2002) for predicting and observing the same thing 
(either a site or no site) and to minimize occurrences of predicting and observing different 
things (predicting no site, but observing a site, and predicting a site, but observing no 
site). As stated by Van Leusen (2002), efforts for archaeological resource management 
seem to focus on instances where site absence is predicted but sites are actually present, 
rather than on the full set of model outcomes. This is mostly the case because it has costly 
consequences. However, to increase the accuracy and efficiency of decisions based on a 
particular model, one must have confidence that the entire system is operating correctly. 

3.6 Conclusions 

A clear statement of the specific context in which a model is developed and of the 
intended goals of a model is extremely important for evaluating model effectiveness. In a 
facility-planning and cultural resources management context, the goals might be to limit 
intrusive surveys and avoid sites to the extent feasible. The most efficient modeling for 
these purposes is a dynamic process that incorporates a sampling strategy to continually 
refine model results. Uncertainties in the accuracy of the data could be addressed within 
the sampling strategy. Bayesian statistics and an adaptive sampling approach have the 
potential to provide a minimally intrusive and cost-effective strategy for improving 
model results. 

The general concept that expert knowledge can be used to generate decision rules to 
negotiate an adaptive sampling program is something that should be analyzed further. An 
adaptive sampling strategy and a decisionsupport system could streamline CRM activities 
to help land managers avoid planning development projects in areas of high potential 
with a high degree of confidence in the predictions, thereby avoiding many of the 
associated costs that accompany those areas in terms of required surveys and the possible 
excavations of sites. The most helpful information would be in continually reevaluating 
the level of confidence in the results of an existing predictive model that has been 
updated to reflect new information. The manager then could apply the logic that high 
confidence in high probability means potential high cost. Conversely, high confidence in 
a low-probability area means the likelihood that costs would not exceed those for a 
traditional survey, with the expectation that no significant sites would be encountered. 
Increases in uncertainty regarding site presence on either end of the scale would result in 
increases in uncertainty regarding the total cost of the project. 

Using adaptive sampling and a dynamic modeling process increases management 
efficiency in planning and decision support by incorporating the most up-to-date 
information and the most accurate-to-date model results while reducing the amount of 
uncertainty and increasing the confidence level in the predictions. 
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Issues of Scale 



 

4  
Modeling for Management in a Compliance 

World  
Christopher D.Dore and LuAnn Wandsnider 

ABSTRACT In practice, compliance-driven cultural resource 
“management” and its requirements for resource location, evaluation, 
impact assessment, and mitigation manifests a fundamentally different use 
of geospatial predictive modeling than do research-oriented investigations. 
This difference primarily results from the lack of an iterative research 
design. In research-oriented modeling, iterations of model building and 
model testing gradually build a more robust model and lead to an 
increased understanding of the variables that condition human spatial 
behavior in the past. In a compliance environment, spatial models are 
rarely built and evaluated; rather, once built, they are applied in a single 
iteration. An assumption is made that the model being used will 
accurately predict behavior in space. Yet, in most settings, our knowledge 
of the factors that condition the spatial organization of activities—and 
under what conditions these factors are relevant—is just beginning to 
develop. Coupled with the methodological issues of sample size, changing 
environmental conditions, functional differences in resource types, the 
fact that most archaeological deposits represent depositional (as opposed 
to functional) sets that have accumulated over hundreds of years, spatial 
variability caused by nonenvironmental factors, etc., compliance modeling 
certainly does not represent best practice, even though it is legal under 
federal cultural resource law. 

Rather than modeling the past, a more productive approach to 
modeling for cultural resource managers is to model the present. Instead 
of reacting to development and infrastructure projects that have taken the 
place of our stewardship responsibility, geospatial technologies can be 
used to design a proactive approach to resource management. With such 
an approach, present conditions, both natural and cultural, are modeled to 
predict site and feature visibility and to identify potential threats to surface 
sites and features. At a regional scale, the use of vegetation, slope, and 
sediment data can be used to develop erosion models for current and 
future conditions. Cultural resources can be compared with these models 
to categorize and prioritize the resources most at risk. At the scale of 
individual resources, aerial photography and new higher resolution 
satellite imagery can be used to establish the baseline condition of 
resources and, with follow-up visits, to establish and compare rates of 



change from erosion, all-terrain vehicles, and vandalism. At the intrasite 
scale, new processing techniques can be used with geophysical data to 
predict the nature of actual cultural features rather than identify data 
anomalies that then require excavation. These techniques will ultimately 
lead to absolute, rather than relative, signatures for properties of the 
archaeological record and provide a truly nondestructive archaeology. We 
illustrate this geospatial management framework with archaeological 
examples from western, southwestern, and midwestern North America. 

4.1 Introduction 

Although “cultural resource management” (CRM) is the term used to describe applied 
archaeology1 within the United States, in fact, however, there is very little management 
of archaeological resources, at least in a stewardship context. Landholding federal 
agencies, while tasked with this responsibility under Section 110 of the National Historic 
Preservation Act (NHPA), Executive Order 11593, and others, are largely unable to meet 
this responsibility due to vast landholdings (especially in the western United States), 
numerous resources, small budgets, and the pragmatic priority of fulfilling compliance 
obligations such as those required by Section 106 of the NHPA. The Advisory Council 
on Historic Preservation (2001) recently stated, “In spite of the important stewardship 
responsibility entrusted to Federal agencies for much of our Nation’s heritage, other 
agency mission priorities often force historic preservation activities, programs, funding, 
and staffing to take a back seat.” 

Compliance with Section 106 requires that federal agencies take into account the 
effects of undertakings on historic properties and that the Advisory Council on Historic 
Preservation (Advisory Council) be given the opportunity to comment. In practice, four 
steps are usually taken to fulfill compliance responsibilities with Section 106 and other 
environmental laws, and thereby “manage” cultural resources: identification of resources, 
evaluation of resources, assessment of the effects of a project on significant resources, 
and an identification of ways to lessen effects that are deemed adverse. 

Predictive modeling, done both within and outside of geographic information systems 
(GIS), has long been a part of federal cultural resources compliance (e.g., Ambler 1984). 
When modeling is implemented in the compliance process, it is almost exclusively used 
in the resource-identification phase. Driven by the high cost of systematic field surface 
surveys, federal agencies and nonagency project proponents have searched for ways to 
reduce the costs of resource identification. Sample surveys have been the cost-saving 
strategy of choice, and predictive modeling, sometimes less formally called sensitivity 
analysis, is the method most often utilized to spatially define sampling strata. 

From a legal perspective, there is no mandate to comprehensively survey a project 
area, called the area of potential effects (APE). Likewise, when undertaking a compliance 
investigation, there exists no requirement necessitating that all resources be found within 
the APE. The legal burden is that a reasonable and good-faith effort be made to identify 
resources within the project area (36 CFR 800.4(b)(1)). Using predictive modeling to 
identify areas most likely to contain resources is not only allowable (U.S. Secretary of 
Interior 1983), it has been informally advocated by the Advisory Council (McCulloch 
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1999). As we will outline below, while legal for compliance purposes, we believe that the 
use of predictive modeling within a compliance framework is not best practice and 
actually perpetuates stagnation in our understanding of past human land use. 

Most predictive modeling to identify resources is not best practice for a variety of 
reasons discussed below. Insofar as this is true, that aspect of “cultural resource 
management” encompassed by “identification” is similarly challenged. But, with the 
emergent perspective of landscape management coupled with widely available geospatial 
technologies (emphasized here), management in general and, especially, two other 
common compliance activities—assessment of project effects and ways to lessen adverse 
effects—become approachable. In what follows, we identify some of the problems with 
modern modeling applications in compliance-driven cultural resource management, 
concluding with examples of the application of geospatial modeling to stewardship-
oriented management of cultural resources at a variety of scales. Through these efforts, 
we aim to put the “M" back in CRM.  

4.2 Predictive Modeling and Compliance 

Critiques and discussions of the methods involved in predictive modeling and sampling 
have permeated our professional literature over the last 30 years. Many of the issues we 
identify here have been outlined by others, including Kohler and Parker (1986), Kvamme 
(1989, 1990), contributors to Judge and Sebastian (1988), Church et al. (2000), and Ebert 
(2000). While, collectively, we are well-informed about the theoretical and 
methodological issues in modeling, this knowledge rarely seems to be considered in the 
design and application of models in the compliance community. With geographic 
information system software on the desktop of most agency cultural resource managers 
and cultural resource consultants, and with pressure to lessen the cost of compliance, the 
lure of technology has made predictive modeling vogue in the compliance world. 
Unfortunately, many of these modeling efforts have been flawed by methodological and 
application mistakes. Given these oversights, we feel that it is beneficial to briefly restate 
these issues with an emphasis on compliance applications, focusing especially on model 
building, model testing, and the theoretical issues that underlie each of these tasks. 

4.2.1 Model Building 

Archaeologists (Altschul 1988; Ebert and Kohler 1988) often distinguish between 
inductively and deductively derived models. No matter the mode of model building, 
decisions about data inclusion and data quality affect model performance. The 
appropriateness of the environmental base data used to build a model is rarely scrutinized 
sufficiently. Research projects may factor in data adequacy as a prerequisite to selection 
of a study area or incorporate building environmental data sets into the research program, 
but compliance investigations rarely have this luxury. The project area for a compliance 
project has been selected a priori by the nature of the undertaking, and investigators have 
little choice in the availability of environmental base data. Custom-designed data sets are 
virtually never created due to limitations in project schedules and budgets. Base data for 
model building in a compliance investigation almost always means using “off the shelf” 
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data, usually from the United States Geological Survey (USGS), one of the private firms 
in the new value-added spatial data industry, or clients. Insufficient time is spent 
evaluating the metadata and asking if these data are appropriate at all for the scale of 
human landscape utilization of interest. Quite apart from issues of data scale, resolution, 
and algorithms used to create data sets (e.g., Hageman and Bennett 2000; Kvamme 
1990), the actual accuracy, error, and precision of these data as expressed in the National 
Map Accuracy Standards is in fact too low to support high-resolution modeling efforts 
attempted in compliance exercises (Marozas and Zack 1990). 

Another problem arises from the oversimplification of the natural environment as 
related to human land use (Church et al. 2000; Wescott and Kuiper 2000). For example, 
the distance to nearest water is frequently used as source data for models, but rarely do 
model builders consider the type of water. Is the modeled water snow, a stream, lake, 
spring, or ocean? If a body of water, is it brackish or fresh? If a stream, is it annual or 
perennial? Is it habitat for anadromous fish or other resources? These types of 
distinctions have very different ramifications for how people use the natural landscape. 

Similar problems exist with the archaeological data used to establish the correlations. 
These data sets usually come from the records of the landholding federal agency. The 
geospatial controls for the spatial component of these data come from a wide range of 
sources, and accuracy metadata often do not even exist. In determining the accuracy of 
the Nebraska statewide archaeological database, for instance, we found that the 
archaeological resource database data error ranged dramatically over an order of 
magnitude in the hundreds of meters (Wandsnider and Dore 1995). To ensure at a 90% 
confidence interval that a site was actually located where records claimed it was, sites 
recorded with universal transverse Mercator (UTM) coordinates had to be buffered by 
353 m, and sites recorded by legal description needed a 1000-m buffer for the same 
accuracy confidence—and this was after discarding sites with larger errors clearly 
originating from coding and data entry. 

Additional problems, besides those of spatial accuracy, also exist with the 
archaeological component of modeling data. Many times, the number of available sites 
used to build an inductive model is insufficient to draw statistically meaningful 
correlations between resources and landscape features. This is particularly problematic in 
compliance investigations where project areas can be quite small and good spatial data 
sets in adjacent areas are lacking. Likewise, the functional class of archaeological sites is 
too often ignored. That is, sites are treated as unifunctional; the investigator fails to 
consider that habitation sites, processing sites, quarry sites, etc. are located on the 
landscape using different, and sometimes contradictory, criteria (but see Hasenstab and 
Resnick 1990; Savage 1990; Wescott and Kuiper 2000). Further, temporal distinctions 
are often slighted, especially beyond the simple historic/prehistoric division (but see 
Altschul 1990). These oversights exist even though, after doing archaeology for over 100 
years, we have learned that human land use did change with time in response to social, 
economic, and environmental dynamics. Unfortunately, when a savvy model builder does 
in fact discriminate along temporal and functional dimensions, the sample size within 
each class can be reduced to meaningless levels, making a bad situation worse. 

Finally, most archaeological sites that are known, and that exist in spatial databases for 
use by model builders, are sites discovered through surface survey. While this is less 
problematic in some portions of the desert west where 10,000 years of human land use is 
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visible on the surface, in most places only a fraction of the resources have surface 
signatures. Thus, in most cases, we can only state where sites can be found, not where 
sites are not found, and models built upon these data best predict the visibility of a 
resource on the ground surface as opposed to the actual presence of a resource, whether 
surface or subsurface. (See discussion in Warren and Asch [2000:27–28] and Cashmere 
and Wandsnider [1995] for explicit attempts to model surface visibility.) 

Combining environmental and archaeological data sets presents problems of its own. 
Do the two data sets even belong together? How representative is the environmental data 
of the landscape that existed when locations and landscapes were utilized (Church et al. 
2000)? As previously mentioned, most data from compliance projects is off-the-shelf 
data, and almost all of these data are from the post-Landsat era (post-1972). These data 
may or may not be appropriate for modeling depending upon the degree of environmental 
change that has taken place. From a compliance perspective, attempting to draw 
correlations between the modern environment and the locations of archaeological sites is 
desirable. As archaeologists and scientists, however, what we really want to understand is 
how people interacted with past environments. Further, the correlations that may be 
established between the present environment and archaeological resources may be “false” 
correlations that may really be showing areas where past and present landscapes 
correspond (Duncan and Beckman 2000:55). A second concern when combining 
environmental and archaeological data sets arises from stacking, or the vertical layering, 
of data sets. As Marozas and Zack (1990) have pointed out, the overall horizontal error is 
additive: the error of each layer is added together to produce composite error. Given the 
accuracy of individual data layers and their degree of heterogeneity, the error can quickly 
affect any possible associations produced by the model. This problem can be quite 
substantial if, for example, the accuracy figures we calculated for the Nebraska data set 
are representative of other archaeological data sets. This is unfortunately a likely 
scenario. 

4.2.2 Model Testing 

The U.S. Secretary of the Interior’s Standards for Identification (1983) state that the 
accuracy of the model must be verified and that predictions should be confirmed through 
field testing. If necessary, the model must be redesigned and retested. Such actions, 
however, are virtually never taken within compliance investigations. The common 
scenario is that a model is built based upon resources in surveyed portions of the APE or 
upon surveyed areas in the general region. This model is then applied to unsurveyed 
portions of the APE to stratify the APE into areas likely to contain resources, as well as 
areas unlikely to contain resources. Field surveys are then conducted in these areas to 
find resources. In the worst cases, field surveys are only conducted in highprobability 
areas. In better-quality compliance investigations, sample surveys are conducted in all 
stratified areas to actually test the predictive power of the model. Even in compliance 
investigations that conduct field surveys in all stratified areas, a common methodological 
error is that areas of high site probability are surveyed more intensively than areas of 
lower site probability and resource totals are not adjusted to reflect the search intensity. 
The result is that field surveys are self-fulfilling and almost always confirm the model; 
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more sites are found in higher probability areas than are found in lower probability areas 
(but see Dalla Bona 2000). 

One of the reasons that this methodological error is ignored is the disjuncture between 
the paradigm and units employed in a compliance investigation versus those in predictive 
modeling. In a compliance investigation, the tangible data unit, as defined by law, is a 
building, structure, object, or site.2 In contrast, the meaningful unit in a predictive model 
is a region or land parcel: an area within which there exists a probability for finding a 
building, structure, object, or site (Kvamme 1988,1989). The priority in a field survey of 
a modeled probability area for a compliance investigation is not to evaluate the 
probability; it is to find sites. When sites are found, further work is spent evaluating the 
resource for its significance and assessing the effects of the project on the resource rather 
than closing the iterative loop by reassessing the model. 

Under this scenario for the application of a predictive model, there is a single iteration. 
A model is developed and applied in an attempt to limit the amount of field survey that 
must be done to identify archaeological resources. This kind of modeling is problematic 
for two reasons. 

First, the model is not tested; it is applied. In doing this, an assumption is made that an 
adequate understanding of the factors that condition human land use exists for the APE. 
Although an argument can be made that the role of the compliance archaeologist is not to 
build theory but, rather, to apply theory constructed by research-oriented academic 
colleagues, it is clear that we are only beginning to understand the variables at play in 
conditioning human land use. Because a compliance investigation most often will result 
in the damage or destruction of archaeological resources from either archaeological 
excavation or the construction of the project, is it wise to use predictive modeling in this 
way? We believe not. 

Second, one of the criteria for evaluating a resource for its eligibility to be listed in the 
National Register of Historic Places, Criterion D, is the resource’s ability to have yielded, 
or its likely ability to yield, information important in prehistory or history The degree to 
which a resource meets this criterion is inversely related to the resource’s predictability in 
a predictive model. For example, if a resource is found in a location specified by a model, 
the factors conditioning the resource’s placement on the landscape are understood. 
Therefore, it has less potential to provide data about the past, at least from a land-use 
context. Alternatively, a resource that is found where it is not predicted has great 
potential to provide information important in prehistory or history because of the fact that 
it was found where it was predicted not to be (Altschul 1990). This is one of the reasons 
why the methodological error of surveying less intensively, or even not at all, in low-
probability areas is of concern. 

4.2.3 Theoretical Issues 

In addition to the problems we have pointed out in the areas of model building and model 
testing, there are some additional theoretical issues of predictive modeling that are worth 
mentioning briefly. First, most models assume that the selection and utilization of a place 
on a landscape is based upon environmental criteria. While environmental criteria are 
important for the location and performance of many activities, it is erroneous to build 
sitelocation models on these criteria alone, or at least for all activities. While cognitive 
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and other perceptual criteria can and have been incorporated into models, working with 
nonenvironmental variables is not widely done in North America, although this has been 
explored extensively in Europe (contributors to Lock and Stančič 1995; Gaffney et al. 
1996). 

Second, the emphasis in archaeological predictive modeling is on sites normally 
assumed to be residential settlements and special-use locations (quarries, rock art, etc.). 
Two problems follow from this practice. Low-density archaeological remains are rarely 
considered. While it is not useful to revisit the site-nonsite debate here, suffice it to note 
that the nonsite approach has merit as a framework for understanding human land use 
even though this framework is not usually used in predictive models. The primary reason 
that nonsite data are not used is because of the paucity of available nonsite spatial data 
sets. Even if such data sets existed, within a compliance context, isolated or low-density 
evidence of human land use is routinely held to lack significance by the very nature of its 
being isolated or low density and is therefore slated for dismissal. Yet, the low-density 
archaeological record comprises substantially high numbers of discarded tools, usually 
taken to be great sources of information on past place use (Wandsnider 1988). 

More critically, however, “sites as settlements” denies the temporal and taphonomic 
(Dunnell 1992; Kelly 1988) nature of site archaeological deposits. That is, when we find 
Nebraska-phase ceramics at a particular location, what settlement temporality can we 
infer for that location? A season? Many seasons? Extended or intermittent occupation 
over many years? Many decades? A constellation of other information—the 
presence/absence of structures, middens, and so forth—are commonly employed to 
“temporalize” settlement assessments. But this temporal information, beyond coarse 
chronology (i.e., “Central Plains Tradition settlement”) is not commonly incorporated in 
settlement-modeling attempts. Yet, long-term Central Plains occupation and reoccupation 
is a very different kind of place use than brief, nonrecurring occupation. It may be that we 
must wait for the development of accessible temporal GIS (TGIS; Langran 1992) to fully 
deal with the temporal and taphonomic variation that our archaeological site deposits 
actually contain. 

Third, correlation is not explanation. Correlating variables in a predictive model may 
establish relationships among data, but it does not, by itself, explain the dynamics of 
human land use (Church et al. 2000). What we really want to understand are the “whys” 
that led to the performance of different sets of activities at different places at different 
times. How are places on a landscape linked together through human organizational 
systems? Additional theoretical constructs and bridging arguments must be used to 
supplement the correlation of landscape features to provide explanation. 

Fourth, in a compliance context, the current application and use of predictive 
modeling actually leads to a stagnation of our understanding about the past. This is due to 
the lack of model building, model testing, and model refinement iterations. When models 
are only created and applied, nothing new about the past is learned. The current state of 
knowledge about land use is quantified into a model, and then fieldwork, because of 
some of the application problems we have noted, usually confirms the model. Sites in 
low-probability areas, the ones that have the highest potential to be significant to our 
understanding about the past, but that are usually not found, are destroyed by the project 
that is undertaken. Thus, we rarely learn anything new and essentially continue to build 
the same model from project to project (Ebert and Kohler 1988; Ebert 2000). 
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4.2.4 Summary 

In the preceding, we have criticized the use of predictive modeling in compliance 
investigations by pointing out many of the problems in model building, application, and 
theory. Nevertheless, we do not advocate discarding predictive modeling in archaeology. 
To the contrary, predictive models, both within and outside of a GIS environment, 
provide a very robust tool for understanding past human–land interactions. Within a 
research framework, when iterations of model building, testing, and refinement can be 
undertaken, this tool has been shown to advance our understanding of the past. In a 
compliance framework, however, where predictive modeling is characterized by a lack of 
iterations, we feel that predictive modeling serves neither the compliance process nor the 
advancement of knowledge about the past. 

4.3 Managing with Geospatial Technologies 

We believe that with a different orientation, predictive modeling can have a productive 
role in cultural resource management. As we noted at the beginning of this chapter, the 
management of archaeological resources has been forced to a low priority by many 
landholding federal agencies due to vast landholdings, numerous resources, small 
budgets, and the pragmatic priority of fulfilling compliance obligations such as those 
required by Section 106 of the NHPA. Although predictive modeling is largely unsuitable 
for the identification component of compliance, we believe that such models can be used 
to better purpose to put the “M” back in CRM. 

To borrow from Judge and Sebastian (1988), who titled their publication Quantifying 
the Present and Predicting the Past, rather than using contemporary data to model the 
past, we propose a framework that consists of modeling the present and predicting the 
future. Using this framework avoids most of the methodological problems mentioned 
earlier and can easily and economically be implemented by federal cultural resource 
managers even with large land areas, small budgets, and little time. To illustrate this 
framework, we will present examples at the regional, site, and feature scales. All of these 
examples have in common the use of contemporary data about the archaeological record 
and natural environment to characterize the present and predict future conditions. 

4.3.1 Regional Scale 

Our first example comes from northwest Nebraska, on a portion of the Nebraska National 
Forest, and illustrates how the threat of natural erosion on archaeological resources can 
be assessed, predicted, and managed. In this example we have identified two of the major 
variables contributing to sediment erosion: steep slope and lack of vegetation cover. The 
principal variable, precipitation, can be assumed to be even over this region that covers 
142 km2. Another major variable, soil type, was not factored in even though these soil 
data were available. Lacking this data layer does not negate the results of our analysis, 
but using it would certainly have enhanced and refined the results. We did use off-the-
shelf data for this analysis: a 7.5-min digital elevation model (DEM) from the USGS and 
a multispectral Landsat thematic mapper (TM) image (Figure 4.1). 
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To calculate the quantity of vegetation, we used the transformed vegetation index 
(TVI) on TM bands 3 (0.63−0.69 µm, red) and 4 (0.76–0.90 µm, near infrared). The TVI 
is one of several vegetation indices that can provide a rough, relative indication of the 
amount of vegetation. In this image (Figure 4.2), the quantity of vegetation is shown 
grading from none (white) to dense (black). Note that the northern portion of this area 
consists of agricultural fields crosscut by riparian corridors, while the southern portions 
are predominantly covered in pine forest. The DEM was used to compute the degree of 
slope (Figure 4.3). White indicates low slope; black indicates high slope. Then the 
inverse of the vegetation values was computed so that high values represent low 
vegetation. The slope and TVI values were then rescaled into the same 8-bit data space 
(256 distinctions). These two data sets were then added together to produce a numerical 
index representing the relative threat of erosion. As seen in Figure 4.4, the threat values 
grade from low (white) to high (black). Known archaeological sites were then added to 
the analysis and can now be ranked according to their potential for erosion. 

A federal cultural resource manager, with little time to monitor sites and a small 
budget to spend on preservation, can use these results to predict which sites are at the 
greatest risk and where, perhaps, cattle grazing might  

 

FIGURE 4.1 
Transformed vegetation index for the 
7.5-min study area calculated from 
Landsat TM data. 

be reduced. Similar models can be constructed for looting, recreational damage, military 
training, etc. Scarce resources can then be spent most effectively on the sites that really 
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need the attention. This erosion model that we have presented is, admittedly, simplistic 
and could certainly be refined by better data assessment, more careful model building, 
ground truthing, and iterative refinements. Our point, however, is that even these 
simplistic models—this one completed in less than two hours—can offer the cultural 
resource manager effective tools for proactively managing archaeological resources. 

4.3.2 Site Scale 

Similar techniques can be applied at the site scale to help the cultural resource manager 
monitor the condition of sites. In the western United States, erosion, vandalism, and 
recreational activities such as the use of all-terrain vehicles (ATVs) can irreparably 
damage archaeological sites. At Vandenberg Air Force Base in California, a systematic 
aerial monitoring program is being used to maximize limited CRM resources. Cultural 
resource managers responsible for large federal land parcels, although short on funds, 
often have access to aircraft. Even “casual” aerial photography done out of the side of a 
plane  

 

FIGURE 4.2 
Slope model calculated from a USGS 
30-m digital elevation model. 
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with a 35-mm or video camera can provide extremely valuable management results. 
This example shows two images. The first was taken in 1997 (Figure 4.5), and the 

second was taken in 1998 (Figure 4.6). Note that the oblique angle, scale, and camera 
position are different in each image. Using image-analysis techniques, the two images 
can be placed in the same geometry. In this case, the 1997 image was transformed into 
the geometry of the 1998 image. This analysis was done relatively, but with ground-
control points and absolute geographic coordinates obtained from the global positioning 
system, both images can be placed into geographic space (Figure 4.7). 

Following the transformation, the limit of the bank erosion was marked for each year. 
With the limits of erosion identified, the lines are simply subtracted from each other, 
leaving polygons that represent the amount of the site lost to erosion (Figure 4.8). 
Because the time that elapsed between the two photographs is known, the rate of erosion 
can be determined. As in the previous example, this rate can then be compared with other 
sites in the area to determine the resources that are most at risk (Figure 4.9). With 
knowledge of rates of change, cultural resource managers are then in a position to predict 
future site damage and can direct resources appropriately. 

 

FIGURE 4.3 
Model of erosion potential. 
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4.3.3 Feature Scale 

Our last example is an intrasite example and is at the scale of the individual feature. This 
prototype study was completed for the City of Albuquerque and illustrates how a 
predictive model can work in the present. The city has purchased a prehistoric 
archaeological site to protect it from development. While the initial goal was to create an 
active archaeological park with ongoing excavations, Native American objections caused 
the city to reconsider their plans. Subsurface remote sensing was then proposed as a 
nondestructive option to map the architectural remains of the pueblo. However, because 
excavation could not be used to verify and identify geophysical anomalies, an alternative 
geophysical methodology needed to be developed. An additional problem that needed to 
be overcome on this project was that the architectural features of interest were unburned 
adobe. Adobe that is unburned does not usually have properties that make it readily 
distinguishable from the surrounding sediment matrix, at least in terms of most 
geophysical properties. 

The key to developing our approach was the fact that the city’s archaeologist had 
noticed that, under the right conditions, several wall segments  

 

FIGURE 4.4 
Archaeological site-erosion threat 
assessment and ranking. 
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could occasionally be seen faintly exposed in the ground surface. Over a period of several 
years, a number of wall segments were mapped to the extent that both walls and room fill 
could be spatially defined over a small area. With known features identifiable, we 
designed an approach based upon multispectral satellite remote sensing using supervised 
classification. A similar approach using unsupervised classification had been used by 
Ladefoged et al. (1995) in New Zealand. To cope with the unburned-adobe problem, we 
decided to use three geophysical techniques to raise the discriminatory potential above 
what any single method can achieve. We used magnetics (gradiometer), resistance, and 
time-sliced radar data as the “spectral bands” (Figure 4.10). Given the thickness of the 
known wall segments, about 20 cm, particular attention was given to both the spatial 
resolution of data and the spatial control of data. It was essential that any error in 
correspondence between all data layers be less than half the wall thickness, about 10 cm. 

The supervised classification method is essentially a model-building and prediction 
technique. In the computer, classes of phenomena are identified and marked on top of a 
stack of data layers. In this case, walls and room fill were the two classes of interest 
(Figure 4.11). There are a variety of classification algorithms that can be used to 
differentiate features. For this study, we used the Mahalanobis classification algorithm, 
which is based upon neural-network classification principals. Regardless of the particular 
algorithm, however, the  

 

FIGURE 4.5 
Oblique aerial photography used for 
monitoring and the 1998 aerial image. 
(Courtesy of Applied Earthworks with 
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support of Vandenberg Air Force Base. 
With permission.) 

 

FIGURE 4.6 
The 1997 aerial image placed in the 
geometry of the 1998 aerial image. 
(Courtesy of Applied Earthworks with 
support of Vandenberg Air Force Base. 
With permission.) 
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FIGURE 4.7 
After georeferencing, the edge of the 
bank was defined in each image. 
(Courtesy of Applied Earthworks with 
support of Vandenberg Air Force Base. 
With permission.) 
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FIGURE 4.8 
The lines defining the edge of the bank 
are subtracted from each other, leaving 
polygons that define the bank erosion 
that took place between the 1997 and 
1998 photographs. 
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FIGURE 4.9 
Aerial photograph showing the 
approximate site area and the areas of 
geophysical data collection. 

strategy of each is identical: to examine the variability in the data for the known features, 
referred to as the training set, and develop mathematical criteria for distinguishing each 
feature from the others. These criteria form the predictive model. In a second phase of 
analysis, the model is applied to unknown areas of the data set and predicts, or classifies, 
data into the typology that was defined. In our example, this would be either adobe wall 
or room fill. In an ideal situation, of course, there would be iterations of prediction, 
testing through excavation, and model refinement, but in this case there is no immediate 
means of obtaining additional verification. The final step is to evaluate the classification 
results against the original training data (Figure 4.12). In this study, a 69.6% success rate 
was obtained, quite good given the nature of unburned adobe, a small sample size, and 
some problems with the radar data. 

This technique illustrates one way in which predictive models can be used at the 
intrasite scale to manage resources in a nondestructive way. Additionally, it takes the 
important step of realizing the nondestructive potential of geophysics by beginning to 
develop absolute signatures for particular materials and feature types. Archaeological 
geophysics, at least as it is most commonly practiced, involves identifying an unknown 
anomaly that is then excavated to determine what it is. The geophysics technique may be 
nondestructive, but the application of the technique is no less destructive than traditional 
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excavation without using remote sensing. We would hope that, in the future, a library of 
absolute signatures would exist  

 

FIGURE 4.10 
Different types of geophysical data are 
treated as if they were different bands 
of multispectral data. Using the known 
sample of walls and room fill as the 
training set, these geophysical data are 
then classified using a supervised 
classification technique. 

for subsurface archaeological phenomena similar to those available for many plants, 
minerals, and sediment types on the ground surface (e.g., ASTER Spectral Library, Johns 
Hopkins University Spectral Library, NASA Jet Propulsion Laboratory Spectral Library, 
USGS Spectral Library [Clark et al. 1993]). 
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4.4 Summary 

In this chapter, we have attempted two things. First, we have argued that, for many 
reasons, the use of predictive modeling in cultural resource compliance, at least as it is 
most frequently applied, is not best practice. As with any other method, we encourage our 
colleagues to critically evaluate the appropriateness of predictive modeling for each 
particular application and not to use the method when it is not warranted. We understand 
the desire to reduce field time and labor costs in the resource-identification  

 

FIGURE 4.11 
Graph showing the lack of difference 
between the mean data value for walls 
and room fill across three geophysical 
techniques. Thus, the potential for any 
one individual technique to 
discriminate between these two 
material classes is low. 

phase, but we hope that our integrity as scientists and as stewards of the archaeological 
record supersedes the pragmatic realities of the business of compliance archaeology. 

Second, we have tried to provide, through the examples presented here, a different 
perspective on predictive modeling in archaeology In this framework, the present is not 
characterized to retrodict the past, but to predict the future and contingent state of extant 
resources. We believe that this framework can productively be used by cultural resource 
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managers, even within their current constraints and compliance responsibilities, to regain 
their stewardship responsibilities by intelligently assessing, prioritizing, and responding 
to the needs of the resources they manage. 

Notes 
1. As well as a number of other applied disciplines, including architectural history, ethnology, 

history, etc. 
2. While landscapes and districts do exist in the compliance world, these are actual entities as 

opposed to areas of probability. 

 

FIGURE 4.12 
Results of supervised classification 
using the Mahalanobis classification 
algorithm. Evaluating the classification 
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model against the original data places 
the accuracy of the model at 69.6%. 
Rectilinear room blocks can be seen in 
the left portion of the image; the right 
portion is an area of architectural 
collapse. 
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5 
Problems in Paleolithic Land Evaluation: A 

Cautionary Tale 
Hans Kamermans 

ABSTRACT Land evaluation is a technique developed by soil scientists 
to generate different models for land use on the basis of ecological and 
social economic data. In archaeology, land evaluation can be used as a 
deductive form of predictive modeling. In this chapter, land evaluation is 
applied to Pleistocene data from the Agro Pontino (Lazio, Italy), a coastal 
plain ca. 80 km southwest of Rome. The data were collected by the Agro 
Pontino survey project between 1979 and 1989. After an initial inventory 
of the paleoenvironment, socioeconomic models are constructed using 
ethnographic, historic, and archaeological data. Land units are ranked 
according to their suitability for a certain type of land use, and finally an 
expected form of land use is compared with the archaeological record. 
Land evaluation seems to be a very suitable technique for models of 
simple types of agriculture (Kamermans 2000). For hunter-gatherer 
societies, the application is more problematic. Some methodological 
problems are presented here. In the end, it is shown to be impossible to 
detect (assumed) differences in land use between the Middle and Upper 
Paleolithic in the area. 

5.1 Introduction 

There are two different reasons for applying predictive modeling in archaeology. The 
first is to predict archaeological site location as a guide to future developments in the 
modern landscape—an archaeological heritage management application. The second is to 
gain insight into former human behavior in the landscape—an academic research 
application. 

Modern developments are changing the European landscape rapidly. In many areas the 
archaeological record is under threat. In 1992 a number of European countries signed in 
Valletta (Malta) a treaty to protect the European archaeological heritage. This treaty is 
now known as the Convention of Malta or the Valletta Convention. The aim of the 
convention is “to protect the archaeological heritage as a source of the European 



collective memory and as an instrument for history and scientific studies” (Council of 
Europe 1992). To reach this goal, governments want archaeologists to identify areas with 
a high density of archaeological find spots in order to protect the archaeology that is left, 
and to record and study what is under threat of being demolished. To do this, 
archaeologists will have to reconstruct the original spatial patterning of the material 
culture of the past. One way of doing this is by means of predictive modeling. However, 
this practice has not been without criticism (cf. Ebert 2000). 

The interpretation of behavior and material culture over space has always been one of 
the fundamental aspects of archaeology (Green 1990:3). Nowadays the concept of 
landscape is very popular, as seen in the work of scholars like Barbara Bender (1993), 
Julian Thomas (1993), Christopher Tilley (1994), Richard Bradley (1997), and Gabriel 
Cooney (2000). But especially during the late 1960s and the early 1970s—the time of 
New Archaeology with its emphasis on explanation, quantitative thinking, and a 
scientific perspective of the past—archaeologists turned to other fields, notably 
geography, for tools and ideas for spatial analysis (Aldenderfer 1996). Examples are von 
Thunen’s model of agricultural land use, Weber’s model of industrial location, 
Christaller’s central place model, and Hägerstrand’s model of innovation. For 
geographers, these models were described in Haggett’s book Locational Analysis in 
Human Geography (1965). This book was “translated” for archaeologists by Ian Hodder 
and Clive Orton (1976) as Spatial Analysis in Archaeology. Predictive modeling can also 
play a role in this more academic part of archaeological research.  

 

FIGURE 5.1 Different steps in the 
application of land evaluation in 
archaeology. 
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The following application of land evaluation in the Italian Agro Pontino hopes to 
contribute to the debate on differences in land use during the Middle and Upper 
Paleolithic. Especially the subsistence strategies of the Neanderthals (the Ancients as 
Stringer and Gamble [1993] call all premodern humans) are still far from clear. 

5.2 Land Evaluation 

The technique of land evaluation was originally developed by soil scientists (Brinkman 
and Smyth 1973) and generates different models for land use on the basis of ecological 
and social economic data. In an archaeological application of land evaluation, there are 
five steps to be considered (Kamermans et al. 1985, 1990; Kamermans 1993, 1996, 2000) 
(Figure 5.1): 

Step 1 is an inventory of the natural environment collected by field 
surveys and reviews. These data form the basis for a reconstruction of the 
natural environment at different times in the past. 

Step 2 is the construction of socioeconomic models for early forms of 
land use with ethnographic, historic, and archaeological data. 

Step 3 is the classification of the area into different land-mapping units 
on the basis of physical factors. These units are described in terms of their 
properties to provide a qualitative land classification. 

Step 4 is a semiquantitative land classification: the measurement of the 
suitability of an area for a certain type of land use on the basis of the 
requirements for that type of land use. 

Step 5 is an expected form of land use for every chosen socioeconomic 
model based on results from steps 2 to 5. These models are then 
confronted with the archaeological database. The comparison of the 
expected form of land use with the archaeologically recorded land use 
provides a basis for modifying the model and repeating steps 2 to 5. 

The application of land evaluation in archaeology requires some (unfortunately arguable) 
assumptions: 

• Humans in the past exploited the environment according to the principle of least effort. 
• The combination of environment and human behavior creates a specific spatial pattern 

in particular types of areas. 
• There is a relationship between prehistoric land use and artifact or find-spot density. 
• The economic system during each archaeologically distinct period was, broadly 

speaking, constant. 

Archaeological land evaluation is a form of deductive predictive modeling. Predictive 
modeling is a technique used to predict archaeological site locations in a region on the 
basis of observed patterns or on assumptions about human behavior (Kohler and Parker 
1986; Kohler 1988; Kvamme 1985, 1988, 1990). There are two different approaches to 
predictive modeling, an inductive and a deductive one. 
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With the inductive approach, a model is constructed based on the correlation between 
known archaeological find spots and attributes (mostly) from the current physical 
landscape. On the basis of correlation, causality is assumed, and the model is then used to 
predict site location. 

With the deductive approach, a model is constructed on the basis of a priori 
knowledge (social, mainly anthropological, historical, and archaeological knowledge), 
and the known find spots are then used to evaluate the model. Archaeological land 
evaluation is an example of this last approach. Kamermans (2000) demonstrates the 
differences between the two approaches of predictive modeling. 

5.3 The Agro Pontino Survey Project 

During the 1980s a team of Dutch, American, and Italian scholars and students studied 
the archaeology and past environment of the Agro Pontino (Lazio, Italy) (Voorrips et al. 
1983, 1991). The two main research themes of the project were the transition from the 
Middle to the Upper Paleolithic (Loving et al. 1990/91, 1992; Loving 1996a, 1996b) and 
the application of land evaluation in archaeology (Kamermans et al. 1985, 1990; 
Kamermans 1993, 1996, 2000). 

The Agro Pontino is a coastal plain along the Tyrrhenian Sea ca. 80 km southeast of 
Rome (Figure 5.2). Half of its surface consists of a low-lying graben filled with peat; the 
other half is formed by a complex of stable marine terraces (Segre 1957; Sevink et al. 
1982, 1984, 1991; Kamermans 1991). Due to this special combination, the Agro Pontino 
is a perfect area for the study of the relationship between humans and their natural 
environment in the past: palynological data from the graben was used to reconstruct the 
past  
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FIGURE 5.2 The Agro Pontino. 
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FIGURE 5.3 The Agro Pontino 
geomorphological map. 

environment (Eisner et al. 1984, 1986; Hunt and Eisner 1991; Eisner and Kamermans 
2004), and the stable surfaces yield archaeological evidence from the Paleolithic onwards 
(Zampetti and Mussi 1988; Loving et al. 1990/91). The area is famous for its Neanderthal 
finds from the caves of Monte Circeo (Blanc 1957; Ascenzi 1990/91). Data from past and 
ongoing research in the caves of nearby Monte Circeo were used as additional 
information (Caloi and Palombo 1988, 1990/91). 

5.4 Land Evaluation and Archaeology 

5.4.1 Step 1: Basic Surveys 

Step 1 is the reconstruction of the natural environment at different times in the past. The 
reconstruction is based on an inventory of natural features identified through field 
surveys and reviews. 

Geologically speaking, the Agro Pontino consists of two parts, a low-lying graben at 
the foot of the mountains, mainly filled with peat, and a dune area along the coast, both 
dating from the Quaternary (Figure 5.3). A soil survey by Sevink distinguished four 
marine terraces along the coast (Figure 5.4): the Latina level at ca. 25 m a.s. (above see 
level); the Minturno level at ca. 16 m a.s.; the Borgo Ermada level at ca. 6 m a.s.; and the 
youngest, still active marine complex, the Terracina level. Estimated dates are: Latina 
level 560,000 BP  
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FIGURE 5.4 The Agro Pontino land 
units. 

(Tyrrhenian I), Minturno level 125,000 BP (Tyrrhenian II), Borgo Ermada level 90,000 
BP (Tyrrhenian III), and Terracina level postglacial (pre-Neolithic). Each terrace consists 
of a sandy beach ridge and a clayey lagoon. The graben is partly covered with Holocene 
alluvial and slope deposits (Sevink et al. 1982, 1984,1991). The calcaric mountains along 
the northern part of the Agro Pontino, the Monti Lepini and the Monti Ausoni, and Monte 
Circeo in the extreme south, an isolated part of the Apennines, were formed during the 
Mesozoic. In the northern part of the area are volcanic rocks, a result of volcanic activity 
700,000 to 10,000 years ago (Segre 1957; Kamermans 1991). 

During the last glacial period the youngest terrace was not yet formed, and the sea 
level was 100 m below its present level. This means that the Agro Pontino was about 
twice as large as today. The graben has a very young surface, leaving only a small sample 
of the original surface available for research into the Middle and Upper Paleolithic. 

Palynological research of a 9-m sediment core from the graben in an area called 
Mezzaluna, close to the fault along the Monti Lepini, provided a welldated record of 
environmental change from the full glacial to recent times (Eisner et al. 1984,1986; Hunt 
and Eisner 1991; Eisner and Kamermans 2004). 

During the part of the full glacial before 15,800 BP, a dry herb steppe was the 
dominant regional vegetation (Figure 5.5). A number of woodland species sporadically 
occupied moister ecological niches. The vegetation mosaic of steppe-forest and mesic 
woodland suggests that although the climate was drier and cooler than today, there was 
more moisture than at the glacial maximum. A freshwater lake occupied at least part of 
the Agro Pontino graben during the full and late Pleistocene. 
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FIGURE 5.5 Reconstructed ecological 
zones of the Agro Pontino during the 
early glacial. 

An episode can be postulated that drained the lagoon between 35,000 and 16,000 BP. A 
sand layer 9 m below the present surface may be all that remains of a massive erosional 
event, and upper layers of the mid-Pleistocene clays may have been scoured by the 
covering sands. 

The lake that developed during the last part of the full glacial (15,800 to 13,000 BP) 
on top of the pollen-poor sand layer was not the same as the earlier lake. Lagoonal 
deposits were replaced by peaty clays. The species found in the pollen core are typical of 
shallow open water. The regional vegetation consists of predominantly steppe 
assemblages, suggesting that this full glacial landscape was more severe in terms of 
aridity, with warm summers and dry, cool winters. 

The late glacial period (13,000 to 10,000 BP) represents the most severe conditions of 
the Late Quaternary. Open water continued to shrink, and as the land dried it was 
occupied by wet and mesic herb assemblages. The driest and best-drained soils were 
covered with steppe vegetation, as well as drought-adapted species of Compositae. 
Quercus (oak) and Pinus (pine) managed to survive during this period but were unable to 
spread to the expanding available land. Increasing Artemisia and Chenopodiaceae 
(goosefoot) indicates a climate of cold winters and low precipitation too severe to permit 
drought-adapted woodland species to flourish. 

The early Holocene is characterized by a rapid expansion of the forest vegetation and 
the disappearance of typical steppe taxa (Figure 5.6). 

Because virtually no faunal remains are known from the plain, the fauna had to be 
reconstructed from animal remains excavated in the caves of Monte Circeo and the 
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Lepini and Ausoni mountains (see Caloi and Palombo 1988, 1990/91; Stiner 1994). 
During the last interglacial, the following animals were  

 

FIGURE 5.6 Vegetation 
reconstruction of the Agro Pontino 
during the Holocene. 

among others living in Latium: hare, wolf, fox, hyena, elephant, rhinoceros, horse, 
hippopotamus, fallow deer, red deer, roe deer, and aurochs. 

At the beginning of the last glacial, hippopotamus disappears and ibex appears. During 
the pleniglacial, elephant and rhinoceros disappear, and wild boar, red deer, and roe deer 
are dominating the fauna. Other large mammals during that period are horse, wild ass, 
fallow deer, aurochs, and ibex. In the Agro Pontino, chamois and red deer are 
characteristic for the late glacial. 

5.4.2 Step 2: Models 

Step 2 is the construction of socioeconomic models for early forms of land use with 
ethnographic, historic, and archaeological data. 

With respect to their food management strategies, human hunter-gatherers can, 
analogous to other organisms, be divided into generalists and specialists. A generalist eats 
a greater range of food types or a greater variance of types or a greater “breadth” of 
types; it has a great repertoire of feeding behavior (Schoener 1971:384). Winterhalder 
(1981a: 27; 1981b: 69) studied the spatial implications of this distinction and concluded 
(1981b: 69): 
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This model predicts that organisms living in a relatively small-scaled 
environmental mosaic will develop a broad use of habitats; they will be 
patch type generalists. Conversely, those exposed to a large-scaled 
environment will specialize and forage within relatively few habitats. As 
scale increases the optimum patch choice shifts towards specialization. 

For the purpose of this study two models are used, defined in terms of mobility and food 
management strategies: the generalist practicing residential mobility and the specialist 
practicing logistic mobility. 

The characteristics of a generalist are: foraging in an area with a great variability in 
land units and a high residential mobility. The archaeological correlate will be a low 
visibility of camp sites, resulting in small find scatters dispersed over many small land 
units. 

The characteristics of a specialist are: high logistic mobility, foraging in large land 
units. The archaeological correlate will be bigger find complexes dispersed over one or a 
few land units. 

5.4.3 Step 3: Qualitative Classification 

Step 3 consists of the classification of the area into different land-mapping units on the 
basis of physical factors. These units are described in terms of their properties to provide 
a qualitative land classification. 

It is not easy to construct a qualitative land classification for prehistoric hunter-
gatherer societies. To a certain extent Brinkman and Young’s land qualities related to 
domestic animal productivity can be used (Brinkman and Young 1976:16). 

This produces, in an adapted form, the following list: 

• The productivity of an area in terms of edible vegetation for animals 
• Climatic hardship affecting animals 
• Endemic pests and diseases 
• Toxicity of the vegetation 

It is difficult to go any further because, for most factors Brinkman and Young used in 
their original work, there is a lack of data for a prehistoric situation. Furthermore, in the 
Middle and Upper Paleolithic, animals were not forced to stay in a certain area as is the 
case with domestic animals. Wild animals will simply move if the circumstances are not 
right. So the qualitative land classification for prehistoric hunter-gatherer societies has to 
be replaced by a reconstruction of appropriate ecological zones for the various time 
periods (Figure 5.5 and Figure 5.6). 

5.4.4 Step 4: Quantitative Classification 

The next step is a semiquantitative land classification: the measurement of the suitability 
of an area for a certain type of land use on the basis of the requirements for that type of 
land use. 
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During step 2, two socioeconomic models were constructed: the generalist practicing 
residential mobility and the specialist practicing logistic mobility. A semiquantitative 
land classification was formulated for these two models.  

 

FIGURE 5.7 Semiquantitative land 
classification of the Agro Pontino for 
the generalist hunter-gatherer for the 
Paleolithic (see also Table 5.1). 

TABLE 5.1 Semiquantitative Land Classification 
for the Generalist Hunter-Gatherer for the 
Paleolithica 

Land Unit Predicted Rank 
Coastal terraces 1 

Small lagoonal 2 

Volcanic and travertine 3 

Latina lagoonal 4 

Eolian 5 
a See Figure 5.7. 

The characteristics of a generalist are: hunting various species of animals in an area with 
a great variability in land units and a high residential mobility. In an effort to identify the 
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generalist, land units are grouped together to construct units with a great variability. The 
smaller marine terraces along the coast are grouped together, as are the younger inland 
lagoonal deposits and the volcanic and travertine deposits. The Terracina level and the 
more recent alluvial/colluvial deposits are left out of the analysis because they did not 
exist during the Paleolithic and the Epipaleolithic (Mesolithic). 

Figure 5.7 and Table 5.1 give the Semiquantitative land classification for the 
generalist hunter-gatherer for the Paleolithic, and Figure 5.8 and Table 5.2 for the 
Epipaleolithic. The most suitable area would seem to be a combination of the younger 
marine terraces characterized by a diverse environment, that is, sandy ridges alternated by 
clayey plains. Also, the more inland lagoonal areas would be suitable for the general 
hunter-gatherer, followed  

 

FIGURE 5.8 Semiquantitative land 
classification of the Agro Pontino for 
the generalist hunter-gatherer for the 
Epipaleolithic (see also Table 5.2). 

TABLE 5.2 Semiquantitative Land Classification 
for the Generalist Hunter-Gatherer for the 
Epipaleolithica 

Land Unit Predicted Rank 
Coastal terraces 1 

Small lagoonal 2 

Volcanic and travertine 3 
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Terracina lagoonal 4 

Latina lagoonal 5 

Eolian 6 
a See Figure 5.8. 

by the volcanic and travertine deposits and the big lagoonal and eolian deposits. 
The characteristics of a specialist hunter-gatherer are: high logistic mobility and 

foraging in large land units. The environment in the land units should be less diverse than 
for the generalist hunter-gatherer. In this case the smaller marine terraces along the coast, 
the younger inland lagoonal deposits, and the volcanic and travertine deposits are not 
grouped together. Table 5.3 and Table 5.4 show that the large Latina lagoonal deposit 
would be the most suitable land unit for hunter-gatherers during the Paleolithic and the 
Epipaleolithic, respectively (Figure 5.9 and Table 5.3 for the Paleolithic, and Figure 5.10 
and Table 5.4 for the Epipaleolithic). 

TABLE 5.3 Semiquantitative Land Classification 
for the Specialist Hunter-Gatherer for the 
Paleolithica 

Land Unit Predicted Rank 
Latina lagoonal 1 

Borgo Ermada inland lagoonal 3 

Minturno beach ridge 3 

Eolian 3 

Borgo Ermada lagoonal 6 

Volcanic 6 

Travertine 6 

Borgo Ermada beach ridge 9 

Minturno lagoonal 9 

Minturno inland lagoonal 9 
a See Figure 5.9. 

TABLE 5.4 Semiquantitative Land Classification 
for the Specialist Hunter-Gatherer for the 
Epipaleolithica 

Land Unit Predicted Rank 
Latina lagoonal 1 

Borgo Ermada inland lagoonal 3 
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Minturno beach ridge 3 

Eolian 3 

Terracina inland lagoonal 5.5 

Borgo Ermada lagoonal 5.5 

Volcanic 5.5 

Travertine 5.5 

Terracina beach ridge 10 

Terracina lagoonal 10 

Borgo Ermada beach ridge 10 

Minturno lagoonal 10 

Minturno inland lagoonal 10 
a See Figure 5.10. 

5.4.5 Step 5: Land Use 

The product of the last step is an expected form of land use for every chosen 
socioeconomic model based on results from steps 2 to 4. A comparison of the expected 
form of land use with the archaeologically recorded land use provides a basis for 
modifying the model and repeating steps 2 to 5. 

The archaeological data used for the land evaluation research was collected during 
seven surveys over ten years; three small ones with two to four people and four larger 
ones with a crew of up to twenty scholars and students. The total area of the Agro 
Pontino is huge, approximately 750 km2, so it was decided to sample (Loving et al. 
1991). In the then-prevailing tradition of processual archaeology, a multistage approach 
(Redman 1973) was used  

 

FIGURE 5.9 Semiquantitative land 
classification of the Agro Pontino for 
the specialist hunter-gatherer for the 
Paleolithic (see also Table 5.3). 
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FIGURE 5.10 Semiquantitative land 
classification of the Agro Pontino for 
the specialist hunter-gatherer for the 
Epipaleolithic (see also Table 5.4). 

consisting of three stages: an exploratory phase, a probabilistic phase, and a problem-
oriented phase, with the results of one phase being used for making decisions about the 
next phase. During the exploratory phase, fields were surveyed to get an impression of 
the presence of archaeological material  

TABLE 5.5 Comparison of Predicted and 
Observed Preferences for General HunterGatherers 
during the Middle and Upper Paleolithic 

Land Unit Predicted 
Rank 

Observed Middle 
Paleolithic 

Observed Upper 
Paleolithic 

Coastal terraces 1 4 4 

Small lagoonal 2 2 1 

Volcanic and 
travertine 

3 3 3 

Latina lagoonal 4 1 2 

Eolian 5 5 5 
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and the distribution over the different soil units as defined by the soil survey. The 
information collected from these fields was used to develop methods for assessing factors 
affecting visibility (Verhoeven 1991) and to estimate the size of a randomly selected 
sample, which required making statements about the population of fields in the entire 
Agro Pontino. During this same phase, field techniques were developed (Loving and 
Kamermans 1991a). For the probability sampling phase, a systematic nonaligned transect 
design was selected to ensure a sufficient sample size for making probability statements 
about the archaeological populations in the Agro Pontino as a whole. During the 
problem-oriented phase, additional materials were collected to help accomplish specific 
research goals. 

During all the surveys, the same field and analysis procedures were used. The result is 
a very well-controlled sample from the open-air find spots from the Agro Pontino. All 
phases of the survey together yielded in total 360 find spots; most of these, 289, were 
multiperiod. The material from the Paleolithic and Mesolithic find spots consisted 
exclusively of stone implements, mostly made from small-size flint and quartzite pebbles 
(Loving and Kamermans 1991b). 

For the application of land evaluation in the Agro Pontino, find-spot density per land 
unit was used instead of artifact density, although Foley (1981) convincingly 
demonstrated that artifact density should be given preference. It was impossible to use 
artifact density because it would require dating the individual artifacts, and because most 
find spots are a palimpsest, this was not only impracticable but even impossible. The rank 
order of the different land units, based on data on find-spot density collected during the 
survey, was compared with the expected rank order of the land units for the different 
models. Apart from that, a test was carried out to see if there was a significant difference 
in find-spot density between the different land units for every separate time period. 

Table 5.5 gives the expected and observed rank order for the generalist hunter-gatherer 
during the Middle and Upper Paleolithic. Both the Spearman test and Kendall’s test were 
used to test the rank order (Table 5.6). With an a of 0.1, none of the rankings was 
significant, which means that none of  

TABLE 5.6 Spearman’s and Kendall’s Test for the 
Data in Table 5.5 

  Spearman Test Kendall’s Test 

Period r t(3) signif. Tau-c ASE1 t 
Middle Paleolithic .10000 0.17408 .87289 .00000 .48990 .00000 

Upper Paleolithic .30000 0.54470 .62384 .20000 .45607 .43853 
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TABLE 5.7 Comparison of Predicted and 
Observed Preferences for Specialized 
HunterGatherers during the Middle and Upper 
Paleolithic 

Land Unit Predicted 
Rank 

Observed Middle 
Paleolithic 

Observed Upper 
Paleolithic 

Latina lagoonal 1 2 4 

Borgo Ermada inland 
lagoonal 

3 3 3 

Minturno beach ridge 3 6 5 

Eolian 3 10 8 

Borgo Ermada lagoonal 6 8 7 

Volcanic 6 4 9 

Travertine 6 9 2 

Borgo Ermada beach 
ridge 

9 5 6 

Minturno lagoonal 9 7 10 

Minturno inland 
lagoonal 

9 1 1 

TABLE 5.8 Spearman’s and Kendall’s Test for the 
Data in Table 5.7 

  Spearman Test Kendall’s Test 

Period r t(8) signif. Tau-c ASE1 t 
Middle Paleolithic −.00629 −0.01780 .98623 .00000 .33092 0.00000 

Upper Paleolithic .13217 0.37714 .71588 .10667 .30591 0.34868 

the observed rankings correspond to the predicted ranking for general hunter-gatherers. 
Table 5.7 gives the expected and observed rank order for the specialist hunter-gatherer 

during the Middle and Upper Paleolithic. Table 5.8 gives the results for both the 
Spearman test and Kendall’s test, which were used to test the rank order. Again, with an 
α of 0.1, none of the rankings was significant, which means that none of the observed 
rankings corresponds to the predicted ranking for specialized hunter-gatherers. 

For the Middle and Upper Paleolithic, none of the expected rank orders for either the 
generalist or the specialist fits with the observed rank order. For the Epipaleolithic, the 
results are more promising. The rank order based on find-spot density of the land units 
does not correlate with the order for the generalist hunter-gatherers (Table 5.9 and Table 
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5.10), but it does for the specialist hunter-gatherers (t>2 and significance<.1, see Table 
5.11 and Table 5.12). 

TABLE 5.9 Comparison of Predicted and 
Observed Preferences of Generalist 
HunterGatherers for the Epipaleolithic 

Land Unit Predicted Rank Observed Epipaleolithic 
Coastal terraces 1 5 

Small lagoonal 2 2 

Volcanic and travertine 3 4 

Terracina lagoonal 4 6 

Latina lagoonal 5 3 

Eolian 6 1 

TABLE 5.10 Spearman’s and Kendall’s Test for 
the Data in Table 5.9 

  Spearman Test Kendall’s Test 

Period r t(4) signif. Tau-c ASE1 t 
Epipaleolithic −.42857 −0.94868 .39650 −.33333 .36107 0.92319 

TABLE 5.11 Comparison of Predicted and 
Observed Preferences of Specialized 
HunterGatherers for the Epipaleolithic 

Land Unit Predicted Rank Observed Epipaleolithic 
Latina lagoonal 1 5 

Borgo Ermada inland lagoonal 3 4 

Minturno beach ridge 3 3 

Eolian 3 2 

Terracina inland lagoonal 5.5 10 

Borgo Ermada lagoonal 5.5 9 

Volcanic 5.5 8 

Travertine 5.5 6 

Terracina beach ridge 10 12 

Terracina lagoonal 10 12 

Borgo Ermada beach ridge 10 7 
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Minturno lagoonal 10 12 

Minturno inland lagoonal 10 1 

TABLE 5.12 Spearman’s and Kendall’s Test for 
the Data in Table 5.11 

  Spearman Test Kendall’s Test 

Period r t(11) signif. Tau-c ASE1 t 
Epipaleolithic .54254 2.14208 .05540 .48915 .22991 2.12755 

Land evaluation as a form of deductive predictive modeling fails to identify a dominant 
form of land use for the Middle and Upper Paleolithic, but it succeeds for the 
Epipaleolithic. Elsewhere it was shown that land evaluation works in the Agro Pontino 
for the Neolithic period (Kamermans 1993, 2000). Would the results for Paleolithic 
hunter-gatherer societies be more conclusive if an inductive way of predictive modeling 
was used? 

5.5 Inductive Predictive Modeling 

With the inductive approach to predictive modeling, a model is constructed on the basis 
of correlations between known archaeological find spots and attributes that are 
predominantly taken from the current physical landscape. It is only a predictive model 
when the observed correlations are extrapolated. These extrapolation models are most 
commonly used in archaeological heritage management archaeology, but may also have 
their use in scientific research, for example to analyze anomalies in an observed spatial 
pattern. In order to explain the failure of land evaluation to detect differences in land use 
in the Agro Pontino between the Middle and the Upper Paleolithic, an inductive approach 
is used to see if there is a correlation between find-spot density and land units. 

The archaeological hypothesis for the Middle Paleolithic is that human hunter-
gatherers had no preference for any of the constructed land units. The null hypothesis is 
that there is no difference in find-spot density between the defined land units. 

The Attwell-Fletcher test was used to test this hypothesis. This test (Attwell and 
Fletcher 1985, 1987) is designed to test the existence of a significant association between 
a point pattern distribution and categories of an environmental variable. It compares an 
observed pattern with a simulated random pattern. Two sets of hypotheses are tested. The 
null hypothesis for the first set is “no association,” the alternative hypothesis is that at 
least one category is favored. In the other case, the null hypothesis is of course the same, 
but the alternative hypothesis is that at least one category is avoided. The main 
advantages of this test over, for instance, the χ2 test are that it can be applied to small 
samples, that it indicates the strength of the association, and that it is directional (i.e., is a 
category favored or avoided?). The oftenused and misused χ2 test can do nothing more 
than demonstrate the existence of a relationship. A weakness of the Attwell-Fletcher test 
is that the simulation does not take into account the problem of autocorrelation, that is, 
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the inherent relationship between different aspects of the natural environment. For both 
the Attwell-Fletcher test and the χ2 test, one should be aware that the existence of an 
association does not necessarily imply a causal relationship. 

Table 5.13 shows that one land unit, eolian, has a value below the fifth percentile such 
that the null hypothesis of no association is rejected because there is an association. This 
means that there are fewer than expected find spots in the eolian area. This is, however, 
very easily explained by geological  

TABLE 5.13 Attwell-Fletcher Test to Compare the 
Find-Spot Density and Geomorphological Land 
Units for Hunter-Gatherers during the Middle 
Paleolithic in the Agro Pontino 

Land Unit Number of 
Find Spots 

Expected 
Proportion 

Observed 
Proportion 

Category 
Weight 

Coastal terraces 13 0.2904 0.23 0.16 

Small lagoonal 12 0.1483 0.21 0.30 

Latina lagoonal 23 0.2769 0.40 0.31 

Eolian 2 0.1410 0.04 0.05 

Volcanic and 
travertine 

7 0.1435 0.12 0.18 

Note: Number of find spots=57; number of categories=5; number of simulations=1000; 95th 
percentile=0.34±0.005; 5th percentile=0.07±0.013. 

TABLE 5.14 Attwell-Fletcher Test to Compare the 
Find-Spot Density and Geomorphological Land 
Units for Hunter-Gatherers during the Upper 
Paleolithic in the Agro Pontino 

Land Unit Number of 
Find Spots 

Expected 
Proportion 

Observed 
Proportion 

Category 
Weight 

Coastal terraces 7 0.2904 0.22 0.15 

Small lagoonal 7 0.1483 0.22 0.30 

Latina lagoonal 12 0.2769 0.38 0.28 

Eolian 2 0.1410 0.06 0.09 

Volcanic and 
travertine 

4 0.1435 0.13 0.18 

Note: Number of find spots=32; number of categories=5; number of simulations=1000; 95th 
percentile=0.38±0.008; 5th percentile=0.03±0.005. 
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phenomena such as the old surface being no longer available, or find spots having 
disappeared under eolian deposits. 

For the Upper Paleolithic the hypotheses are the same. The archaeological hypothesis 
is that human hunter-gatherers had no preference for any of the constructed land units. 
The null hypothesis is that there is no difference in find-spot density between the land 
units. Table 5.14 shows that, for the Upper Paleolithic, the null hypothesis is not rejected 
and that there is no difference in find-spot density between the land units. 

5.6 Discussion 

For the Middle and Upper Paleolithic none of the expected rank orders for either the 
generalist or the specialist fits with the observed rank order. Furthermore, no statistically 
significant difference in find-spot density for both time periods could be found between 
the defined land units, with the exception of the eolian land unit for the Middle 
Paleolithic. The absence of find spots in this land unit, however, has nothing to do with 
land use but can be explained on the basis of the geology. So is there a problem to be 
solved or not? No pattern whatsoever could be detected. Does that mean that the wrong 
research tool (land evaluation) was used, or does it mean that the way in which Middle 
and Upper Paleolithic people used the Agro Pontino did not create a distinct patterning of 
the material record? 

Was the wrong research tool used? How do we know that the land evaluation 
technique works? For the Epipaleolithic, the rank order of the land units correlates with 
the order for the specialist hunter-gatherers. This is what was to be expected for the 
Mesolithic. The land evaluation technique also works for societies with a subsistence 
based on simple types of agriculture (Kamermans 2000). 

So assuming that the land evaluation technique works, a different explanation for the 
fact that none of the models work has to be found. Is there something wrong with the 
assumptions? The assumptions are: 

• Humans in the past exploited the environment according to the principle of least effort. 
• The combination of environment and human behavior creates a specific spatial pattern 

in particular types of areas. 
• There is a relationship between prehistoric land use and artifact or find-spot density. 
• The economic system during each archaeologically distinct period was, broadly 

speaking, constant. 

There could be a problem with the second assumption. Perhaps the definition of the land 
units is too detailed for hunter-gatherers. It is possible that during the Middle and Upper 
Paleolithic hunter-gatherers considered the Agro Pontino as one land unit. There is also a 
possibility that there was a difference in exploitation between the coastal zone (Agro 
Pontino) and the hinterland. Earlier research points in this direction (Voorrips et al. 
1985). 

The even spread of the material culture throughout the landscape makes the model of 
generalists practicing residential mobility in the Agro Pontino for both periods most 
likely, although the number of artifacts per find spot for these periods is very low. The 
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archaeological correlate should be larger find complexes dispersed over one or a few land 
units. 

Do these results contribute to the discussion on Middle and Upper Paleolithic 
subsistence practices in the Agro Pontino? There is a debate between American and 
Italian scholars about the hypothesis that a major shift in land use took place in the region 
during the Middle Paleolithic (Mussi 1999). In the late 1980s two American scholars 
studied the faunal and the lithic material from the cave sites of Monte Circeo. The results 
were sensational. Both Stiner and Kuhn (Kuhn 1991, 1995; Stiner 1991, 1994; Stiner and 
Kuhn 1992) see a major change in subsistence during the Middle Paleolithic in Latium. 
Before 55,000 BP, scavenging was the main activity for subsistence, while after 55,000 
BP, hunting was. They base their conclusions mainly on the fact that head parts of 
medium-sized ungulates dominate the pre-55,000 BP collections. The range of formal 
tool types in the Mousterian sample stays the same across the 55,000-year boundary, but 
the reduction technique changes. Mussi (1999) expressed surprise that scavenging 
continued until that late a date in the Agro Pontino and ascribes the differences in, 
notably, the faunal material to differences in excavation techniques. Indeed, all the sites 
dated before 55,000 BP were largely excavated before the Second World War, the later 
sites after the war. 

When using land evaluation, it is necessary to assume that the economic system during 
each archaeologically distinct period (defined on the basis of flint typology) was 
constant. Unfortunately, this makes it impossible to test the Kuhn and Stiner hypothesis. 
But the lack of difference between both the density and the distribution of find spots with 
typologically Middle and Upper Paleolithic material does not support the current view of 
a major cultural break during the Middle or between the Middle and Upper Paleolithic. 
The cautious conclusion from the land-evaluation exploration is that both the Middle 
Paleolithic Ancients and the Upper Paleolithic Moderns used the same way of exploiting 
the Agro Pontino: as generalist huntergatherers practicing residential mobility. 

5.7 Conclusions 

The tentative conclusion we can draw is that the land evaluation technique as a form of 
deductive predictive modeling does work. It works for societies with a subsistence based 
on simple types of agriculture (Kamermans 2000), and it works for hunter-gatherer 
societies, as demonstrated by the fact that, for the Epipaleolithic in the Agro Pontino, the 
rank order of the land units correlates with the order for specialist hunter-gatherers. 

There are, however, problems with the Middle and Upper Paleolithic. None of the 
subsistence models for those periods fit with the distribution of the archaeological 
material in the plain, and it looks as if there is no significant difference in find-spot 
density between the land units for Middle and Upper Paleolithic material. This can be 
attributed to a number of causes: 

• The definition of the land units was not in accordance with Paleolithic land use. The 
generalist hunter-gatherers operated on a different scale and exploited the whole of the 
coastal zone as one land unit. 
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• The area dating from the Pleistocene that is available for research is unrepresentative. 
The sea level was 100 m lower than today, and consequently the coastal plain was 
twice as large. Furthermore, the surface of the graben consists of Holocene deposits. 

• The archaeological sample was unrepresentative. No use was made of the 
archaeological data from the caves of Monte Circeo or the Lepini and Ausoni 
mountains. Only data from the sample collected by the surveys was used. 

Unfortunately, due to the above-mentioned methodological flaws, this research cannot 
clarify the problem of a possible occurrence of a major cultural break during the Middle 
or between the Middle and Upper Paleolithic. But the tentative conclusion, that both the 
Middle Paleolithic Ancients and the Upper Paleolithic Moderns exploited the Agro 
Pontino as generalist hunter-gatherers practicing residential mobility, makes a major 
change improbable. 
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6 
Regional Dynamics of Hunting and 

Gathering: An Australian Case Study Using 
Archaeological Predictive Modeling 

Malcolm Ridges 

6.1 Introduction 

Archaeological predictive modeling (APM) comprises a diverse set of approaches that 
have found application, primarily, in cultural resource management (CRM). The general 
aim of these approaches is to estimate the occurrence of archaeological material 
throughout a landscape given what is known about an existing archaeological sample 
(Sebastian and Judge 1988). Such knowledge has proved useful for improving the 
management of cultural heritage by permitting more effective regional conservation 
strategies (Hall and Lomax 1996; Kincaid 1988). However, it is also possible to outline 
some wider applications for the set of approaches that APM comprises. For the study 
outlined in this chapter, APM was used as an exploratory data tool to examine the factors 
determining the location of archaeological finds within a region in northwest central 
Queensland, Australia. 

The high degree of correlation between patterns in the natural environment and the 
distribution of hunter-gatherer archaeological features is now wellestablished (Ebert and 
Kohler 1988; Jochim 1981; Veth et al. 2000). Such findings highlight the importance that 
environmental context has on the location of hunter-gatherer activities. However, an 
emerging issue is that environmental variables, on their own, are not appropriate for 
explaining all the variation in the location (or composition) of archaeological features 
(Gaffney and van Leusen 1995). Although environmental context is readily incorporated 
into GIS systems and spatial models of the distribution of archaeological features 
(Kvamme 1985), other factors are also important if the full range of variation in the 
location and form of archaeological features is to be understood (Whitley 2000). 

Ebert (2000:133) recently flagged this issue by suggesting that the frequency with 
which archaeological predictive models return an accuracy on the order of 60 to 70% 
may be indicative of an important component being omitted from models. If this is the 
case, then it also suggests that there is a need to expand the range of variables commonly 
employed in archaeological predictive modeling (Gaffney and van Leusen 1995). 
Addressing this issue requires a continuing focus upon the relationship between hunter-



gatherer behavior and its archaeological expression (Binford 1982). However, for 
archaeological predictive modeling, it also means identifying spatial variables that are 
relevant to the location of hunter-gatherer activity, but that are not necessarily drawn 
directly from ecological patterns in the environment. 

In part, the historical emphasis upon the use of variables describing patterns in the 
natural environment can be traced to the types of logic used to develop predictive models 
(Salmon 1976), which has led to a gap between models that predict versus those that 
explain (Altschul 1988). However, the position taken here is that, in reality, it is common 
for archaeologists to use both forms of logic in a feedback loop during research (VanPool 
and VanPool 1999), and that neither approach, on its own, provides a complete 
mechanism for understanding the factors driving archaeological patterns. From such a 
perspective, APM might be better thought of as a suite of tools that attempts to elucidate 
generalizations about the location and distribution of archaeological features, which can 
also be used to predict the spatial context in which they occur. 

A related issue is the persistence of applying APM to “sites,” in particular, in the case 
of hunter-gatherer studies, open lithic scatters. The types of hunter-gatherer behavior 
associated with the activities preserved in open lithic scatters generally demonstrate a 
high degree of correlation with patterns in the natural environment due to the 
requirements of subsisting through hunting and gathering. But this does not necessarily 
mean that all hunter-gatherer archaeological features will also correlate with patterns in 
the environment to the same degree or in the same way. It therefore remains possible that 
the importance of environmental context may be overestimated because the contribution 
of other factors has not been thoroughly explored separately for different kinds of 
archaeological evidence. When different types of archaeological evidence are modeled 
independently, significant differences have been observed in the models produced and in 
the importance of individual variables (Ridges 2003). 

In this study, a large number of open lithic scatters were considered, along with a 
significant corpus of rock art that existed in the region. To some extent, an understanding 
of the roles that rock art and stone-tool production played in regional behavior could be 
derived by studying them independently. However, such an approach would overlook the 
fact that both were components of a regional system of behavior, and that some 
dependent relationship probably existed between them, despite their distinctiveness. The 
approach adopted in this study was to develop their respective spatial contexts, since this 
potentially provided an avenue to understanding the commonality between them. It was 
here that APM demonstrated its utility as an important research tool. 

In many instances, generalizations about where archaeological features occur can be 
used to predict the location of undiscovered archaeological features. But equally 
important, they can also be used to refine theories about past behavior. With this in mind, 
APM was utilized in this study as a tool to explore the spatial trends in archaeological 
data. In turn, these patterns were important in understanding the kinds of behavior that 
produced the regional pattern of archaeological feature distribution. 
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6.2 Background 

The work reported in this chapter formed part of a project conducted in northwest central 
Queensland, Australia (see Figure 6.1). This is a remote part of Australia, on the fringe of 
the arid zone. Aridity in the region results from a low and highly unpredictable rainfall 
pattern. Rain mostly occurs during the summer months in the form of thunderstorms. 
Evaporation far exceeds precipitation, so that standing water is rare, and there are no 
continuously flowing rivers in the region. Topographically, the region consists of low 
rugged uplands and broad alluvial plains. The region demonstrates little relief, varying by 
only about 200 m in elevation. Nonetheless, where relief is appreciable, it is generally 
abrupt, and although not sufficient to completely hinder the movement of people in any 
direction, it is enough to have strongly influenced the routes people traveled. 
Ethnographic reports (Roth 1897) indicate that the movement of people closely followed 
the drainage lines, which also provided the most reliable and plentiful sources of water 
when it was available. 

In the upland zones, the vegetation is generally low, open woodland interspersed with 
hummock grasses. On the plains, this gives way to extensive areas of tussock grassland. 
The geology consists of Cambrian and Precambrian sedimentary units that have been 
intruded by granite. The  

 

FIGURE 6.1 Location of the study 
region. 
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upwarping of the sedimentary units produces a low tableland forming abrupt mesas at its 
margins. It is in rock shelters along these mesas that many of the rock-art sites 
encountered in the region are located. A wide variety of rock types occur in the 
surrounding region, enabling stone artifacts to be manufactured from quartz, quartzite, 
chalcedony, chert, silcrete, and metabasalt.  

Aboriginal occupation in the region extends back at least 15,000 years, although it 
appears to have been punctuated by periods of abandonment (Davidson et al. 1993). 
These people adopted a hunting and gathering lifestyle that was typical for the arid zone 
of Australia (e.g., Gould 1980). Their population density was very low, and they were 
highly mobile. Importantly, Roth, the most prominent ethnographic source for the region, 
suggests that the movement of people related as much to social and economic reasons as 
it did to subsistence (Roth 1897:132). 

The sparseness of the vegetation means that archaeological visibility in the region is 
very good. The most common archaeological feature is open lithic scatters. In an 
investigation of sampling methods, Davidson observed stone artifacts in every 500-m 
quadrant he examined (Davidson 1993b), demonstrating the abundance of stone artifacts 
occurring in the region. Stone artifacts were also flagged by Hiscock as one of the 
significant research interests of the region (Hiscock 1988), and stone technology has been 
the focus of several theses (Drury 1996; James 1993; Kippen 1992). The other most 
commonly encountered archaeological features include rock-art sites (Davidson et al. in 
press; Ross 1997), ceremonial stone arrangements, and stone and ocher quarries. 

The region, which provides a rich and well-preserved archaeological record, also 
played host to two kinds of behavioral processes that are important for understanding the 
prehistory of the region: trade and rock art. Each of these is outlined briefly below. 

Roth described in some detail the movement of items into and out of northwest central 
Queensland. The most important of these items were stone axes manufactured within the 
region (Davidson et al. in press); ocher, which was also available within the region (Jones 
1984); and the narcotic plant pituri (Duboisi hopwoodii) (Watson 1980), which occurs 
just to the south of the region. Along with naturally available items, rights to hold 
ceremonial events were also important in the network of regional exchange (Roth 
1897:120–125). The harvesting of pituri each year facilitated several months of 
ceremonies and markets at various places throughout the region (Roth 1897:133). The 
region has been implicated in the vast network of exchange that extended from the Gulf 
of Carpentaria to the Flinders Ranges in Australia’s south (McBryde 1987; Mulvaney 
1976). In turn, these extended links formed part of the trunk routes crisscrossing the 
Australian continent (McCarthy 1939) that facilitated connections between Aboriginal 
people throughout mainland Australia. 

Northwest central Queensland also contains a diverse and underreported assemblage 
of rock art about which there is little oral tradition. About 180 art sites containing 
paintings or engravings have been recorded in the region. Morwood (1985) outlined the 
distinctiveness of a recurring anthropomorphic figure that set the region apart from the 
other major centers of rock art in Australia. Detailed analysis of these figures by Ross 
(1997) showed that they were spatially restricted to the region. Ross also demonstrated 
that the anthropomorphic figures are depicted with stylistic elements that, while adhering 
to a regional style, potentially encoded additional information about group affiliation. 
Ross concluded that the method of portrayal of anthropomorphic figures indicated a 
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social system that sought to distinguish itself from its neighbors. For whatever reason, it 
was important to mark places throughout the region with a prolific array of iconic 
pictures. 

A social system that sought to distinguish itself from its neighbors contrasts with the 
freedom of movement associated with trade. Similarly, if anthropomorphic figures were 
part of a boundary maintenance system, the process was not straightforward given that 
they occur throughout the region rather than at its periphery. Thus, some relatively 
complex spatial processes are evident in the behavior of Aboriginal people in the region. 
Importantly, these spatial processes involve social and economic interactions, so that the 
location of archaeological features cannot be understood purely from the viewpoint of 
subsistence. Understanding these spatial processes necessarily involves invoking 
procedures capable of characterizing economic and social spatial relationships along with 
environmental context. 

6.3 Approach 

The approach adopted in this study aimed to explore some of the concepts that have been 
developed by Zubrow (1994) and van Leusen (in Gaffney and van Leusen 1995). Doing 
so involved three steps: 

1. Constructing a model of the location of open campsites using conventional 
archaeological predictive-modeling procedures and variables 

2. Examining the spatial arrangement of residuals in this model to identify where and 
how the model was deficient 

3. Deriving a new variable that addressed these deficiencies and that produced a model 
with better predictive power and improved explanatory power 

The first step is covered only briefly because it is not the focus of this paper, and the 
methods employed have been well described in other places (Judge and Sebastian 1988; 
Kvamme 1989; Warren 1990; Wescott and Brandon 2000). In summary, the first step 
involved forming an inductive predictive model using logistic regression, where the 
dependent variable was the presence or absence of open campsites. The input data was 
derived from archaeological surveys conducted over a ten-year period (Davidson 1993a) 
and comprised 840 100-m squares that have been surveyed, 322 of which contained 
campsites and associated artifact assemblages. In addition, 46 art sites have been 
recorded in the study area. 

The independent variables included geology (Blake et al. 1983), vegetation (Neldner 
1991), elevation,1 slope, aspect, wetness2 (Wolock and McCabe 1995), topographic 
position (Jenson and Domingue 1988), and proximity to streamline. The last variable was 
defined especially for this study to describe the particular importance of water in semiarid 
landscapes (see Figure 6.2). 

Streamline proximity was measured using the accumulated cost distance of slope away 
from drainage lines. In addition, the cost distance was measured separately for each of the 
stream orders resulting from a Strahler (1952) classification of the drainage pattern. Each 
of these cost-distance surfaces was then rescaled to have values ranging from 0 to 1, and 
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inverted so that areas close to streams had a value of 1. The layers were then combined 
arithmetically using a weight corresponding to stream order. Thus: 

Streamline proximity=(cost distance from stream order 1) +(2×cost distance 
from stream order 2) +(3×cost distance from stream order 3)…etc. 

  

The advantage of measuring streamline proximity in this way was that it captured the 
greater likelihood of finding water in downstream areas.  

 

FIGURE 6.2 Streamline proximity 
variable. 

Because none of the streams in the region flow regularly, and because water holes are 
intermittent in the sandy bottoms of the drainage channels, measuring streamline 
proximity in this way better reflected the nature of water availability. A second advantage 
of the approach was that it identified the confluence of several middle-order streams. In 
cost-benefit terms, these areas offered the greatest potential for finding multiple sources 
of water within close proximity to one another. 

A presence-only approach was used to develop the model, so that a set of 500 
randomly distributed points comprised the comparison, or nonsite, data. It is 
acknowledged that such an approach incurs the potential for misrepresenting a “site” as a 
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“nonsite” (Kvamme 1988). However, because the important element of this study was to 
examine the trends in the occurrence of archaeological features, and in the absence of 
surveyed “nonsites,” this was deemed the best approach possible. After performing 
appropriate statistical tests to confirm the appropriateness of each variable for 
distinguishing campsites versus noncampsite locations (following Warren and Asch 
2000:15), a model was formed using all the input variables. This model was then used to 
predict the probability of a campsite occurring in any of the 1-Ha grid cells used to 
describe the study area. 

The most important aspect of the approach used in this study concerns the steps taken 
once the model was built. Although the approach adopted in step one routinely results in 
a model with a useful degree of predictive accuracy, in this study it was known a priori 
that the variables outlined above were unlikely to be the only factors determining the 
location of archaeological features. The difficulty, in terms of developing a methodology 
for addressing the social factors that were known to be playing a role in the region, is 
how such factors could be identified, and how variables describing them could be 
incorporated into the model. 

It is here that the ideas developed by van Leusen (in Gaffney and van Leusen 1995) 
and Zubrow (1994) become important. Van Leusen suggested that human settlement 
patterns can be understood in terms of two components: environment and culture. 
Through using environmental variables to describe the location of activities, van Leusen 
argued that any remaining variation should reflect cultural factors unrelated to, in this 
case, subsistence through hunting and gathering. Thus he states (Gaffney and van Leusen 
1995:370): “By applying an ED [environmental determinism] model to a dataset, one can 
eliminate environmental patterning in the data, leaving a clearer view of whatever 
cultural factors may have influenced the data,” 

Van Leusen’s idea has some appeal in that it captures the notion that although there 
may be strongly influential factors in determining where people choose to locate their 
activities in a given landscape, there can remain other significant factors determining 
more subtle levels of variation. In other words, despite the patterns in the environment to 
which hunter-gatherers must adapt, there still remains an influential overarching 
sociocultural system (Gamble 1986:31). Pickering (1994) has argued that despite ample 
anthropological descriptions of the way social landscapes operated in Aboriginal 
societies, very little of hunter-gatherer social landscapes produces detectable evidence in 
the archaeological record. Thus, even with knowledge that an overarching sociocultural 
system is present, we may find that, given the nature of the archaeological signature of 
hunter-gatherers, the locational variation produced by many sociocultural processes is 
masked by the dominance of subsistence-related behavior. However, as Gamble 
(1986:299) observed for the Palaeolithic in Europe, such a proposition remains largely 
untested archaeologically. 

It is unlikely, therefore, that van Leusen’s idea can be applied in such simplistic terms. 
For one thing, models produced using ecological context are subject to how well the 
subsistence system is captured in such an approach. For example, the remaining variation 
might be produced through subsistence behavior not described by the environmental 
variables employed. Similarly, as Gaffney (Gaffney and van Leusen 1995:375) argues, it 
is difficult to separate behavior induced by patterns in the environment from a cultural 
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decision to adapt to an environment in a particular way, thus precluding any simple, two-
part separation. 

The other important work in this discussion is Zubrow’s (1994) approach to mapping 
cognitive space. Using a modeled optimal settlement pattern and that observed 
archaeologically for the Iroquois cultural area, Zubrow hypothesized that the differences 
between them reflected variation within an otherwise economically driven pattern. In this 
case, the variation was driven by the operation of a cognitive landscape. Zubrow 
attributed the degree of difference from the predicted location for a site to a host of local 
and regional cultural factors, unrelated to the economic system. Zubrow argued that by 
examining the differences between a predicted and observed settlement pattern, the effect 
of one aspect of a cultural system upon another aspect could be observed when the 
predicted pattern was based on explicit theoretical statements. In other words, Zubrow 
effectively describes an approach whereby the idea of van Leusen might be investigated. 

An approach to applying Zubrow’s methodology is to look at the residuals of the 
model produced in step one. Traditionally, the analysis of residuals is used to assess the 
quality of the fit of a regression model to the data, since the mathematics of regression 
seeks to minimize the size of the residuals. However, it is important to realize that in 
modeling spatial data, the residuals have a spatial component also, and systematic 
variation in the spatial arrangement of residuals can be informative about spatial variables 
that could be missing from a model. Or, as in this case, they can be used to identify 
nonenvironmental variables that have a systematic spatial pattern. Unfortunately, very 
few archaeological predictive modeling projects examine the spatial patterning of 
residuals of models to see whether any identifiable systematic variation remains. 

Whereas in Zubrow’s study the objective was to propose an approach to mapping a 
cognitive landscape, in this study the analysis of residuals was used as a guide in 
identifying where systematic spatial variation remained in the model. Equipped with such 
knowledge, variables demonstrating a high degree of correlation with the pattern of 
residuals could then be investigated. As will be illustrated below, a relationship was 
found between the size of the residual and the proximity of art sites. With additional 
variables identified, their inclusion into the model may then improve the quality of the 
resulting model in terms of both predictive and explanatory power. 

6.4 Results 

Figure 6.3 shows the results of applying the methodology outlined for step one. The 
calculated accuracy of the model (i.e., the number of campsites predicted by the model to 
have a probability greater than 0.5) was 71%. Important in the model is the emphasis it 
places on the highest probability zones being on the flatter terrain in the bottom and right 
of Figure 6.2. The areas in the center of Figure 6.3 are the uplands that comprise a series 
of broad sandstone mesas. From the mesa areas, the drainage largely follows a radial 
pattern, illustrating how these upland areas are at the headwaters of most creeks and have 
very low capacity for containing water. To a large  
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FIGURE 6.3 Conventional inductive 
model using environmental variables. 

extent, then, the pattern produced in this model is consistent with what would be expected 
from a model primarily describing subsistence behavior. 

Figure 6.3 might also be considered as a reflection the environmental component of 
archaeological location variation if we were to apply van Leusen’s idea. However, it is 
worth exploring other variables because, with a predicted accuracy of 71%, the model is 
still within one standard deviation of what would be achieved by randomly setting 
locations as campsite or noncampsite. It would therefore appear that either a significant 
amount of variation remains unexplained by the model, or that a significant amount of the 
variation in the location of campsites is random. 

The next step was to examine the residuals in the model, explore what other variables 
might be correlated with them, and provide an avenue for improving the model. As was 
explained earlier, the other important type of archaeological feature occurring in the 
study region is rock art. These rock-art sites are known to have played an important role 
in the maintenance of a social identity for the people in the region (Ross 1997), and as 
such were likely to have played an important role in structuring behavior at the regional 
level. 
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Figure 6.4 shows the distribution of art sites in the study area and, in conjunction, also 
shows the size of the residual at each of the recorded campsites in the study area by 
varying the size of the circle representing them. A visual examination of Figure 6.4 
reveals that there is a tendency for  

 

FIGURE 6.4 Comparison of art sites 
and residuals from the model based on 
environmental variables only. 

the largest residuals, i.e., the largest white circles, to be located close to art sites, 
suggesting that proximity to an art site may be an important element in unexplained 
variation in the model. This was supported by performing a spatial autocorrelation 
analysis on the residuals, using the Greary measure (Cliff and Ord 1973). The result was 
a value of 0.68, which indicates there is a strong tendency for an archaeological location 
with a large residual to occur close to locations with similarly high residuals, and vice 
versa for locations with small residuals. It therefore became clear that there was a 
significant degree of systematic spatial variation in the residuals of the model. 

To explore this idea further, a proximity-to-art-sites layer was derived using a cost-
distance function and slope as a cost layer. The result was similar to a catchment analysis 
(Bailey and Davidson 1983), where high values indicate areas that are proximate to 
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several art sites. Thus, if we were to think about access to art sites in a similar way as we 
might model access to resources (Winterhalder 1981), then areas in this layer with high 
values might be preferentially chosen for placing campsites if being close to art sites was 
important. The resulting layer is presented in Figure 6.5. It can be seen in this figure how 
areas along drainage lines that are close to several art sites produce values that are higher. 
Hence, in some cases at least, it would appear that sticking to drainage lines could serve a 
dual purpose, providing access to water and several art sites. 

 

FIGURE 6.5 Proximity-to-art-sites 
layer. 

Incorporating the distinctiveness of each site into the proximity layer extends this idea. 
The recording of art sites in the study region has revealed that some may contain just one 
or two paintings, whereas others can have hundreds, the implication being that some art 
sites may have been more important, or perhaps visited more often, than others. 
Consequently, it could also be suggested that the sphere of influence of each art site is 
likely to be different. 

With this in mind, a procedure similar to that used to derive streamline proximity was 
employed. In this instance, each of the art sites was given a score for its diversity, 
measured as the number of motif types occurring at that site. The diversity values were 
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then classed into five categories, and the cost distance derived for each class separately. 
The five resulting layers were then rescaled to have values ranging from 0 to 1 and 
inverted so that values of 1 occurred at art sites. The layers were then summed 
arithmetically in the same way as for stream orders, by applying a weight for the degree 
of diversity occurring at the art sites in each class. The result was the layer presented in 
Figure 6.6, which also shows the diversity of each art site as a function of the size of the 
dot representing it. 

A final examination of the art-sites-proximity variable was to compare the proximity 
values occurring for each campsite with the size of the residual occurring from the initial 
model. This is produced as a scatter plot in Figure 6.7. In this figure, it can be seen that as 
the size of the residual becomes  

 

FIGURE 6.6 Art-site-proximity 
variable, weighted by site diversity. 
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FIGURE 6.7 Plot of weighted art-site 
proximity against regression residuals. 

larger, there is a tendency for a campsite to be in closer proximity to art sites that have a 
broad diversity. The result was a strong correlation between the size of the residual, and 
the weighted proximity to art site, as is indicated by an r2 value of 0.3. From this it could 
be concluded that proximity to art sites was an important component in influencing where 
campsites were located, and that proximity to art sites was more important for art sites 
containing a diverse range of motifs. 

The final step was to rebuild the model, this time including the weighted proximity-to-
art-sites variable. This model is presented in Figure 6.8, where it can now be seen that 
higher probabilities occur for much of the upland areas where art sites are located. 
Significantly, this means that the model gives greater weight to areas along second- and 
third-order streams, which is more consistent with observations in the region whereby 
many campsites are encountered at the base of mesas. Similarly, there is less distinction 
along the course of drainage lines, as campsites in the new model are predicted to occur 
in more or less equal probability along their full course. This is consistent with the 
ethnographic observations of Roth (1897), who observed that the drainage lines were the 
main routes of travel. Correspondingly, the calculated accuracy of the model has 
improved to 75% of campsites now being predicted to have a probability greater than 0.5. 
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FIGURE 6.8 New model 
incorporating weighted proximity to 
art sites. 

Interestingly, the eastern margin of the mesas in both models maintained very similar 
predictions. As may have been gathered from the distribution of recorded campsites and 
art sites in Figure 6.4, there is considerable bias in survey coverage in the region, with 
most emphasis being on the western and southern portion of the region. Consequently, an 
indirect benefit of approaching model development in the way it was for this study has 
been its utility for designing future work. Although survey in this region has been 
intensive, it has not been comprehensive, in the sense that there are several areas that 
could now be targeted for future survey using testable assumptions arising from the 
models (in particular, whether art sites that are likely to occur on the eastern margin of 
the uplands demonstrate a similar influence on the location of campsites). Such results 
have implications for cultural resource management in that not only is the ecological 
context of a model testable through revised research design, but also the explanatory 
utility of the model, as behavioral principles, can also be investigated. 
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6.5 Discussion 

The position adopted in this study was that all archaeological evidence reflects a 
multitude of influences. Many of these influences are difficult to observe at the gross 
level because they can be swamped by one or two dominating factors. Nonetheless, this 
study proceeded with the intention of attempting to identify at least one example of how 
nonsubsistence-related behavior might be (a) important in determining the location of 
campsites and (b) incorporated into archaeological predictive modeling. The gain in 
predictive accuracy from 71% to 75% may not have been a substantial improvement in 
predictive terms, but the real benefit is in a model that improves in explanatory power as 
well. Thus the approach adopted in this study offers some scope for getting out of the 
mold of employing either deductive versus inductive logic for model formation (Ebert 
2000; Salmon 1976). 

Crucial to moving forward in this way is viewing the location of huntergatherer 
activities as being flexible, rather than rigidly adhering to ecological context. Although 
there undoubtedly were limitations in the way huntergatherers located their activities in 
semiarid environments such as western Queensland, it would appear that, within these 
limitations, there was considerable scope for other factors to come into play. It would 
therefore appear that van Leusen’s notion of separating environmentally driven variation 
from other aspects of culturally determined variation has some merit. But equally, there is 
still quite a vast array of factors that could be important in this regard, and separating 
them is unlikely to be straightforward. Thus, what appears to be taking place in this case 
was that hunter-gatherers were primarily locating their activity within broad zones that 
are all relatively efficient in terms of providing access to resources. However, within 
those zones, there remains a degree of flexibility about the specifics driving the location 
of activities in individual cases. 

This is consistent with anthropological observations of hunter-gatherer behavior. 
Woodburn (1972:205) has noted that the movement of people between camps was 
primarily motivated by social forces. In particular, changing camp involved changing the 
associations between people, and often this was a means of relieving tensions in the 
group. As Lee (1972:181–182) also observes, although scarcity of water may draw 
people together to camp at water holes, eventually it was tensions within the group that 
drove them apart again. Hence, although social factors were involved in where hunter-
gatherers located their activities, we do not understand very well how they manifest 
themselves archaeologically. At issue for hunters and gatherers is that some degree of 
planning would clearly have been required to recover resources efficiently (Winterhalder 
and Smith 1981), but of equal importance was the flexibility needed to cope with 
changing environmental and social conditions (Smith 1988). Some of these issues have 
been borne out in the approach adopted in this study. 

Through exploring the residuals of a conventional inductive model, it was possible to 
demonstrate some of the limitations of using only environmental variables to derive 
predictive models. This is not to make the case that cultural variables are more important, 
but to illustrate the advantages of using both in conjunction, which really should come as 
no surprise. The need to incorporate such variables has always been present, but this 
approach has been hampered by methodological difficulties. The utility of exploring the 
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remaining spatial variation in residuals is that it can potentially provide important clues to 
where other variables might be sought. 

In this study, it was known that the rock art was playing an important role in 
structuring social behavior, but how that influence filtered down to other forms of 
archaeological evidence and regional patterns was not clear. However, by approaching 
the problem as it was in this study, it can now be seen that the influence of social 
behavior can extend to forms of archaeological evidence where, traditionally, social 
behavior has been difficult to observe archaeologically (Pickering 1994). The 
consequence is that, even in the presence of a dominating correlation with ecological 
context, it may be that variation from such trends proves to be more informative about 
regional behavior than the existence of the trend itself. 

This position bears some resemblance to Binford’s (1987) opinion on what he referred 
to as the ambiguity of the archaeological record. Binford suggested that ambiguity in the 
archaeological record develops from alternative behavioral processes producing similar 
material patterns. Because he saw ambiguity as the main hindrance to archaeological 
interpretation, Binford argued that it was necessary to resolve the causes of ambiguity to 
improve our understanding of archaeological pattern using empirical generalizations. In 
contrast, the view taken here was that the ambiguity in the archaeological record 
represents a window into the complexity of human behavior, which itself is inherently 
ambiguous (Hodder 1982). 

Developing a methodology for this approach meant reassessing what it is that 
archaeologists are trying to describe about the archaeological record. Rather than 
focusing solely on generalizations, as would be the case in a strictly positivist framework, 
the generalizations were used in this study to form the baseline from which variation 
could be measured. Hence, this study adopted the premise that the environment is 
determinant in the sense that it sets out, in broad terms, the constraints in adopting a 
particular mode of existence in a given landscape (Gamble 1986:30). However, within 
that set of constraints lies another level where the social relations are ultimately dominant 
in specifying the particular behavioral response to the constraints imposed by the 
environment (Ingold 1981). 

With so much variation present (at the end of this study, 25% still remains 
unexplained), it may be tempting to lean toward simple linear relationships between 
archaeological find spots and ecological context, which are easier to understand and 
predict. However, such behavioral complexity should be the challenge, not the problem. 

6.6 Conclusions 

Archaeological predictive modeling (APM) is well-placed to contribute to the broader 
study of regional hunter-gatherer behavior. As a method for describing the spatial pattern 
within regional data sets, APM provides a useful means of identifying generalizations 
about the distribution of archaeological features. At the moment, the application of APM 
in hunter-gatherer archaeology is somewhat dominated by inferences derived from 
subsistence strategies and the needs of cultural resource management. However, there is 
no reason why the suite of tools APM represents cannot be applied to a wider spectrum of 
behavioral issues. Thus, other social and economic processes can also be investigated 
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with APM if issues with appropriate variables can be resolved (Gaffney and van Leusen 
1995:374). However, making the most of the potential contribution of APM requires 
viewing the approach from a slightly different perspective. Rather than seeing it as a 
theoretical statement about the nature of hunter-gatherer subsistence patterns (Church et 
al. 2000), APM might be better viewed as an approach that consists of a suite of tools 
designed to explore spatial trends in archaeological datasets. With this in mind, APM can 
potentially offer a great deal to a range of theoretical perspectives of hunter-gatherer 
behavior by providing a means for characterizing spatial trends in holistic and 
sophisticated ways. 

Notes 
1. A digital elevation model (DEM) was derived using the 20-m contours, spot heights, and 

1:100,000 scale drainage available for the study area. These were used as input for the 
TOPOGRID function available in the grid module of Arc/ Info, which produces a 
hydrologically correct DEM using the ANU DEM algorithm (Hutchinson 1989). 

2. Wetness is an index derived from a DEM based upon the capacity of a single grid cell to 
retain surface flows of water based upon the slope at that point and the size of the water 
catchment leading into that cell. 
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7 
Making Use of Distances: Estimating 

Parameters of Spatial Processes 
Christian Mayer 

ABSTRACT A general model of settlement structures by means of 
spatial processes and a specification of a special model for an 
archeological landscape is presented. The study is mainly concerned with 
the estimation of systematic effects, their proper formulation according to 
the general model applied, and methods for their estimation and their 
validation. As an example, the recent and historical settlement structure 
from a region northeast of the Austrian capital of Vienna has been 
analyzed. 

7.1 Introduction 

Using distances between sites as a tool to describe an archaeological landscape has some 
tradition in archaeology. Usually, distances between sites were supposed to be a measure 
of the size of the more or less circular shaped territories of sites. Consequently, the 
number of sites was estimated by the distances measured between them, thus being a kind 
of site prediction. From a current perspective, these approaches lacked a methodological 
background. 

Although the development of the statistical theory for working with distances was 
fully developed only in the middle of the 1980s, its potential as a research tool in 
archaeology was recognized earlier (Hodder and Orton 1979; Orton 1982). Possibly due 
to the fact that the kind of statistics suitable for spatial data is different from commonly 
used statistics, working with distances between sites has not become a standard method 
for describing archaeological landscapes. 

This chapter presents a model of an archaeological landscape in terms of distances by 
making explicit use of the concept of spatial processes. Of course, a spatial process may 
have a large number of parameters, but this chapter is mainly concerned with the 
estimation of systematic effects which play a key role in understanding an archaeological 
landscape as well as in the estimation of N, the number of sites in a region. 

 



7.2. A General Model: Spatial Process 

A spatial process is a set of data consisting of locations and measures of some property at 
these locations. A crucial point is that the location where the measurements are taken 
plays an important role for the phenomenon modeled. In this case, data is considered as 
spatially dependent and this dependency is the main difference from the more familiar 
statistics since that form of statistics does not regard the location where measurements are 
taken to be of importance. The traditional analysis of graveyards is an example of the two 
different approaches: one can analyze the graves as independent data by comparing their 
content and size without reference to their position in the graveyard and infer their 
relative age. By analyzing the graves’ positions in the graveyard and inferring their 
relative dating from their location, one views the graveyard as a spatial process. This 
means that the graves are not independent from each other and the usual statistical 
techniques which are designed for independent data do not apply here. An example of the 
consequences of applying techniques for independent data to dependent data is given by 
Cressie (1993:13). 

7.2.1 Some Definitions 

Cressie (1993:8) gives a formal account of a spatial process 

   

where s is a location and Z(s) is any quantity of a property at that location; D is an index 
to identify the location that may be taken from a multidimensional space including the 
time dimension; the Z(s) may take any form either being binary, discrete, or continuous. 

Naturally, a process cannot be observed directly since it is a construction, only data 
generated by the process can be directly observed. This data is called a realization of a 
process. When the Z(s) in the formal description of a given process is a collection of 
events, the process is called a spatial point process, a realization of a spatial point process 
is a spatial point pattern (Cressie, 1993:577). 

If it is equally likely for a point to occur at any location within a region A, the pattern 
is said to be random or denoted as a Poisson point process. Consequently, if one analyzes 
a point pattern, one tries to compare a realization of a Poisson point process to the data at 
hand. 

A point process is characterized by the distribution of distances between points and the 
number of points within the pattern. The ratio between the size of an area A of a pattern 
and the number n of events is denoted as intensity λ. Distances and intensity are 
interchangeable since the intensity defines the average area around an event and, from the 
intensity, the average distance to nearest neighbor can be estimated for a pattern. If the 
distances between the events in a pattern and its counterpart, the intensity, vary 
systematically, then the process has a Local Intensity Function. 

Of course, empirical data is much more complex than formal descriptions; therefore, it 
may happen that the data, seen from the generating process, is somewhat distorted. In this 
case the data is said to be inhomogeneous or nonstationary or simply infected by trend. 

The object of further considerations can therefore be written as: 
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(1.1) 

or 

 
(1.2) 

Both trend and Local Intensity Function are systematic effects and are not discernable in 
the first place. The difference between them is that the Local Intensity Function (LDF) is 
a property of the pattern while trend is considered to be an external impact on the pattern. 
Therefore LDF is not explicitly included in model 1.2. 

7.2.2 Characterizing a Point Process 

Parameters of a point process are derived from the distribution of the distances between 
points. To characterize these distributions, two techniques are possible. The first one is 
the computation of the K-function or its derivate the L-function. The other possibility is 
to study the distribution to the neighbor of order n (first, second…. n-th neighbor) using 
Thompson statistics. The difference between these two techniques is that Thompson 
statistics views a process by the distances ordered by neighbor of order n, while K-, L- 
and Paircorrelation functions view distances by lag. Naturally, fusing the distributions of 
distances ordered by neighbor and investigating them by lag, we obtain the K-, L- and 
Paircorrelation functions of the same data set. 

If the data are infected by trend, trend removal is of high importance for the 
recognition of the process under investigation. To remove trend once again has two 
possibilities. The first one is to estimate the K- function for each point, replace the 
empirical function by a mathematical function with a—hopefully—low number of 
parameters, and remove the trend from these parameters. The second possibility is to 
compute the distances of order n and apply a detrending method to their spatial 
distributions. Replacing the individual K-functions by theoretical functions is 
complicated and seems less reliable, since the approximation doubtlessly will enhance 
estimation error. Therefore, the trend will be removed from the distances of order n. 
Model 1.2 therefore develops to 

Process(observed)=U (distance(neighbor(order n)) 
+trend(distance(neighbor(order n)))) (1.2.1) 

7.2.3 Edge Correction 

When computing distances between points, each point should have an equal chance to be 
considered as a neighbor. If the point is near the boundary of the working area, this 
equality is not given, because there are no points outside the boundary. Consequently, 
points in the vicinity of that special point have higher chances to be considered as 
neighbors than the others, resulting in a distortion in the distribution of distances. This 
phenomenon is denoted as the edge effect and has to be corrected. From the various 
possibilities to perform edge correction, torus correction has been chosen: the data under 
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consideration are shifted so that they are embedded in replications of the original data. 
From this, distances are computed. 

7.2.4 Trend Removal 

To analyze model 1.2.1, trend has to be removed first. From the various techniques 
available, median polish has been chosen, since the median is not as exposed to outliers 
as the use of the mean would be. By the decomposition given by Cressie (1993:186), 
model 1.2.1 develops to 

Process(observed)=U distance(neighbor(order(n)))  
(1.2.2) 

where 
distance (neighbor(order(n)))=median (distance(neighbor(order(n)))) 
+ row (distance(neighbor(order(n)))) 
+ column (distance(neighbor(order(n)))) 
+ residual (distance(neighbor(order(n)))) 

  

7.2.5 K-Functions, L-Functions, Thompson Statistics 

From model 1.2.2 distances were recomputed by summing median (distance (neighbor 
(order (n)))) and residual (distance (neighbor (order (n)))),—the row and column effects 
stand for the trend in the x- and y- directions—and the sums are used as a new data set to 
compute K-, L- and Paircorrelation functions and Thompson statistics. Formulas applied 
are: 

• K- and L- functions: Cressie 1993:616, 617; Stoyan—Stoyan 1992:270 
• Paircorrelation function: Cressie 1993; Stoyan—Stoyan 1992:275 
• Thompson statistic: Thompson 1956; Cressie 1993:611 

To test for significance, 99 realizations of a random process are simulated and plotted 
against the empirical data. To estimate the Local Intensity Function, median polish can be 
applied. 

7.2.6 Properties of a Pattern, Local Intensity Function 

Usually, as a first stage of investigation, patterns are classified into regular, clustered, and 
random patterns by using one in more tests like the ones in section 7.2.5. Of course, 
patterns may be more complex, for instance, by being regular at short distances or by 
neighbors of low order, and these groups of regularly spaced points are located randomly 
in a study area (Stoyan—Stoyan 1992). 

Consider a pattern that is detected as regular by means in section 7.2.5. If the pattern is 
perfectly regular, the points are arranged in equilateral triangles. But there could be 
another source of regularity. Imagine a simulation routine of a point pattern like this: start 
with a random point and generate an additional point with random coordinates. If the 
distance between the first point and the next point is below some fixed value, discard it, 
or retain it otherwise. Generate an additional point and check whether it is at least the 
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fixed distance away from all existing points. Repeat this procedure until a certain number 
of points is placed. The result is a regular pattern generated by a Simple Inhibition 
Process (Diggle et al.: 1976), which shares no property with a triangular pattern except 
for regularity. Definitely, the goal of a complete account of a point pattern would be to 
know the sources of regularity, randomness, and clustering. To discern between different 
possibilities one can compare realizations of point process of known properties by 
adjusting their parameters to empirical data thus formulating a model of the generating 
process. 

But there is a problem to be solved prior to the choice of the model of the point 
pattern: consider the placement of groups of regularly spaced points in an area. Such a 
pattern displays regularity as well as clustering. If the points in the pattern are settlements 
it would be of major interest where the empty space between the groups of points 
originates. There could be two assumptions: The first could involve a loss of sites, or the 
landscape in which the pattern that is realized cannot be completely settled in. The 
second assumption could be that there is a regulation so that members of the different 
groups are forced to settle in a certain distance to members of any other group. In both 
cases a systematic effect is involved but in the first case the systematic effect is an 
external impact on the pattern, in the second case the systematic effect is a property of the 
pattern. In the first case the systematic effect is denoted as trend, in the second case, as 
Local Intensity Function. Trend and Local Intensity Function cannot be discerned at first 
sight. Therefore, the parameters of a model applied to a data set have to be specified, so 
that the presence or lack of a Local Intensity Function can be determined. 

7.2.7 Validation of the Model 

Naturally, the validity of the model depends on the degree of reproduction of the original 
data by the model applied. Of course, the validation of a model is a twofold problem. 
Firstly, a model has to have a pertinent corre-spondence to the data under investigation. 
This problem has to be solved in advance of any computation and in connection with the 
actual problem. Secondly, there is a technical aspect of model validation. This aspect will 
be discussed in respect to model 1.2.2. 

Process(observed)=U distance(neighbor(order(n))   

where 
distance(neighbor(order(n)))=median (distance (neighbor (order(n)))+row 

(distance 
(neighbor(order(n))))+column (distance (neighbor(order(n)))+residual 

(distance(neighbor(order(n)))) 

  

When this model is applied, one estimates not only the distances between points but the 
order of the distances, the median, and the systematic effects simultaneously Assuming a 
correct estimation of the medians and the trend component, one can interpret an actual 
distance by estimated medians and trends by seeking iteratively for the minimum 
difference between estimated and observed distance. The distribution of the differences 
between estimated and actual order and the difference between estimated and actual 
distance have to equal the distribution of the residuals. If so, the model is valid. 
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In fact, this restriction is not realistic. Consider a regular pattern of a triangular 
prototype. The distances of the 1st to the 6th neighbor are equal and their order is not 
distinguishable. If some normally distributed variation—that is the distribution of the 
residuals—is added, one can order the distances, but the actual rank of a value would be 
random. Consequently, the recomputation of distances possibly will be exact, but—a 
least in a regular pattern—the estimation of the order of the distances will be inexact by 
virtue of regularity. Therefore, the estimated distances will be affected by a measurement 
error that is a property of the pattern under study. The measurement error of the 
estimation will certainly be different from the one stemming from the residuals. To 
ensure the nonrandomness of the results, a randomly distributed effect for the x- and y- 
axes can be generated and used for the recomputation of the distances. 

7.3 A Model for an Archaeological Landscape 

If an archaeological landscape is described by a collection of coordinates representing 
sites, the archaeological landscape is modeled by a point process. 

Certainly, to achieve a meaningful result, the elements of the model must have a 
counterpart in the phenomenon studied. Therefore, the process (observed) will be denoted 
as settlement structure and the point pattern as settlement pattern. Of course, by 
interpreting an empirical phenomenon by a model, one is crossing the line between 
formal description and assumption, which is quite visible from the interpretation of 
model 1.2 in this paragraph: by applying model 1.2 to a settlement structure, one 
implicitly assumes a decomposition of the settlement structure into a settlement pattern 
and a trend element where the settlement pattern is regarded as a basic habit of the 
inhabitants of the sites which are influenced by some additional spatial phenomena. Since 
all elements of this model, settlement pattern and some additional spatial phenomena, are 
regarded as nonrandom, model 1.2 assumes that the process (observed) is in fact a 
combination of at least two processes: 

(2.0) 

Traditionally, the settlement pattern is regarded as a social phenomenon that adapts to the 
natural conditions. Therefore, model 2.0 can be written as 

 
(2.1) 

or 

   

A more realistic model of an archaeological landscape would include a process that 
stands for the loss of sites for one reason or the another, therefore, 

(2.1.1) 
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Before actual computations will be undertaken, some implicit assumptions have to be 
discussed. Consider the process (soc). Firstly, a point has to represent the properties of a 
site. Of course, since a site is not a point but an area, the distances measured between 
sites are exact only to a certain degree and a measurement error will be present in the 
results of the computations. Technically, this can be easily compensated for by blurring a 
pattern thus producing a certain number of simulated realizations of the original data to 
get an idea of variation. Secondly, at a nontechnical level of consideration, the key 
assumption of the process (soc) as a point process is that the distances between sites are 
of importance. Usually, the reason to investigate a pattern of sites is the conception that a 
settlement structure is nonrandom, that is, distances are meaningful. In this case, the 
distances between sites measure the territories of sites. Then the coordinates used to 
localize the sites localize their territories as well, replacing the more common conception 
of site by a concept of space (Neustupný 1998:9). Here the problem of dependent data 
comes in: if the territory size is of importance, then the location of a site and its territory 
is chosen with reference to all other sites and territories thus establishing a direct relation 
to all the other sites (Mayer 2001:272). Under this assumption, the application of 
statistics for independent data is not appropriate. 

Furthermore, if one uses 2.1 or 2.1.1 as a model for an archaeological landscape, one 
investigates the reaction of the process (soc) on the process (nat). This means that only 
one aspect of the process (soc) is considered. 

Finally, to validate the model, one has to estimate the parameters of two processes. 
This complicates the situation, since process (nat) is considered as a systematic effect 
influencing the realization of the process (soc). Process (nat) may not be the only 
systematic effect in the process observed, since a Local Density Function may be inherent 
in process (soc). Consequently, the analysis has to be conducted in a way that systematic 
effects in the process (soc) and the process (nat) are estimated separately. If a Local 
Intensity Function found in the data can be replaced by the process (nat) and this 
hypothesis can be verified by the validation approach 1.7, then process (soc) has no Local 
Intensity Function. 

7.4. A Case Study: Medieval Settlement Structure 

7.4.1 The Model 

To carry out the analysis of these data, model 2.1 has been chosen. Process (loss) of 
model 2.1.1 will not be discussed here. Therefore process (soc) and the process (nat) have 
to be estimated. Process (soc) is a point process since the medieval settlements enter the 
analysis as points. 

The process (nat) is not a point process since the attributes of a landscape are spatial 
varying continuously. Therefore, process (nat) has to be turned into a point process 
implying a set of assumptions. 
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7.4.2 Basic Assumptions, Causative Elements, Direction of Analysis 

Viewing an archaeological landscape as a point process only works if the points 
considered are a sample for the phenomenon under study. Points represent—in the 
statistical sense—villages, as long as only their geographical position is concerned. 

To model a landscape, the choice of data is crucial. Of course, soils, climate, geology, 
and so forth are obvious candidates but the model of process (nat) would require a 
specification of the interaction of all these components, which, if successful, would 
certainly be a major contribution to the environmental sciences. Because the chances of 
obtaining such a solution are poor, data on landuse and crop yield have been chosen for 
modeling process (nat), since plants provide not only a good summarization of a 
landscape but illustrate a farming civilization’s view of a landscape as well. In fact, that 
assumption infers a causative element into the model: the settlement pattern is a result of 
natural conditions. 

Of course, properties of a landscape vary spatially continuously. To compare these 
data to a point process, it has to be turned into a point process by sampling the 
landscape’s properties of interest by a set of points that are associated with a distribution 
of the properties investigated in a defined vicinity. To make the expression “defined 
vicinity” meaningful as a social element, it is defined as the area in which the 
requirements of an agricultural civilization are met. Of course, the defined vicinity in this 
context is the territory of a site and is estimated by the cadastral units as recorded in the 
land register. 

According to this layout the analysis has to take the following steps: 

• Estimate the distance distributions of the settlement pattern. 
• Determine the influence of systematically distorting effects on the pattern. 
• Estimate the Local Intensity Function. 
• Estimate the distribution of distances after the removal of systematically distorting 

effects and characterize the pattern. 
• Determine the trends of the variables collected to model process (nat). 
• Determine a set of variables that gives the best account of the landscape under 

investigation. 
• Compare the Local Intensity Function to the trends estimated from the variables that 

characterize the landscape. 
• Compute a reproduction of the distance distributions of the pattern by substituting the 

Local Intensity Function by the trends of characteristic variables of process (nat). 

7.4.3 Data 

Data consist of 74 existent villages in a region of 1247 km2 northeast of the Austrian 
capital of Vienna (Figures 7.1 and 7.2). Seventy-two of them lay on Austrian territory. 
Two Slovakian villages were added to provide a rectangular working area. 

The region in which data has been collected changes from a hilly landscape in the 
north to a plain in the south. Elevations reach from 270 m in the north to 145 m in the 
south. In the middle of the region there is an area with a relative elevation of between 15 
and 7 m stretching from east to west. Two rivers dominate the landscape. The River 
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March in the east and the Danube River in the south both have deep impacts on the 
landscape. There are only  

 

FIGURE 7.1 Map of Austria. 

three more watercourses of some importance which cross the working area from 
northwest to southeast. During summertime, these three usually do not have much water 
but in spring and fall they bring water from the hilly regions outside the study area. 

This part of Austria is extremely fertile except for a region in the middle of the 
working area, visible in Figure 7.2, by its relative elevation of about 15 m over the flood 
plain in the south. While the other parts of the working area are covered by black soils, 
this one is covered by soils originating from gravel and is extremely dry. Altogether, 
there are no mineral resources except for some oil in the north. 

Today’s appearance of the working area is extremely uniform. Originally, the 
landscape was structured by boggy areas, ponds, and flood areas of the watercourses. The 
transformation of the original landscape into the present situation started with massive 
deforestation in the Middle Ages resulting even in the uncovering of areas of drifting 
sand, a problem lasting until the end of the 18th century when trees of a special kind 
imported from Italy were planted in the endangered areas. By draining wet places, 
diverting watercourses since the middle of the 18th century, and damming up the 
Danube, the March, and their contributors at the beginning of the 20th century and the 
intensive use of heavy machinery, the landscape has created the present situation. 

Due to the lack of mineral resources and the fertility of soils in the region, agriculture 
soon flourished resulting in the intensive cultivation of grain and its delivery to the 
markets in Vienna. Some dynamics entered the population development by the building 
of railways at the end of the 19th century and the following erection of some industrial 
plants, which are more or less connected to the processing of agricultural products. In 
fact, their impact on the development of population is still visible in the statistics. 
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FIGURE 7.2 Recent and abandoned 
villiages. 

Of course, the modern settlement structure is only the remnant of an older one going 
back to the 11th century. In fact, in the working area there were at least 38 more 
settlements, most of them abandoned during the 15th century. For 33 settlements the 
location is known, for 5 more only names are recorded. Interestingly, the territories of 
some of these villages survived and are still recorded as cadastral units in the land 
register. 

Existing and abandoned villages are stored as coordinates in a database. Associated 
with the coordinates, data on landuse, and yield of certain fruits according to the cadastral 
units of the villages from a survey undertaken in the late 1930s were recorded (Mayer 
2001:274). 
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7.4.3.1 Data on Landuse and Crop Yield of Recent Settlements 

Data on landuse consists of per cadastral unit of: 

• size of cadastral unit and population (average of the years 1880–1935). 
• acreage of land used for cultivating grain, vine growing, meadow, pasture, for farming 

including non-grain fruits, forestry, and uncultivated land (Mayer 2001:274). 

Data on yield includes: 

• yield of summer and winter barley, summer and winter wheat, oats, summer and winter 
rye, potatoes, sugar beet, beets for animal fodder, clover, and lucern. 

7.4.3.1.1 Exploratory Data Analysis 

Data of population, territory size, acreage of land used for cultivating grain, and farmland 
exhibit lognormal distributions. Exploratory data analysis showed that pasture, vine 
growing, and meadows are of little importance for the region since the portion of land 
used for these purposes is very small if it occurs at all. Six factors of a principal 
components analysis out of nine (population was not included in the analysis) comprise 
95% variation within the data, where the first factor alone comprises 29.5% variation. 
This clearly means that there is no systematic dependency between variables on landuse 
and the combinations and amount of land used for certain agricultural activities do not 
follow a discernable rule. 

The correlation between population and size of cadastral unit is 0.68 (including 
outliers) and nearly as high as the correlation between population and tillage. From this 
follows that the size of a unit satisfies the needs of its inhabitants and therefore meets the 
requirements of section 7.4.2 to serve as a defined vicinity. 

Data on yield showed no special distribution form which is because the data is 
available only in blocked form. The portions of variation expressed by the factors of a 
principal components analysis show the presence of factors with a high amount of 
variation expressed, but all in all there is no hint that data could be reduced to a low 
number of variables or factors. No preference for a single fruit is visible in the data. 

The joint data sets analyzed by a principal components analysis do not show a leading 
factor. A canonical correlation analysis between data on landuse and yield gave a highly 
significant value for A, proving that landuse is closely tied to the expected yield. 

A detailed discussion of factors of the principal components analysis will not be 
undertaken. Compared to the results of another study (Mayer 2001:274), results show the 
homogeneity of the agricultural activities in the study area. 

7.4.3.1.2 Trend Phenomena 

Trends have been extracted by putting data on a 150×150 m grid and performing median 
polish. Principal components were computed finding three factors for the data set on 
landuse and three other ones for the data on yield of relevance. The two data sets were 
additionally compared by canonical correlation analysis. Highly significant values for õ 
were obtained, proving the close correspondence of the variables. Certainly, the factors of 
yield can be interpreted as the result of regional fertility, and it is quite obvious that 
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landuse adapts to regional fertility. Trends of population and size of cadastral units have a 
correlation of 0.7 (not corrected for outliers), underlining that cadastral units are an 
estimator for the defined vicinity (see section 7.4.2). Similar results have been obtained in 
an analysis of the same variables in another region (Mayer 2001:275) confirming the 
findings from this region. 

7.4.3.2 The Distribution of Distances 

7.4.3.2.1 Local Intensity Function 

To estimate the Local Intensity Function, distances were computed and ordered according 
to the rank of the neighbor. Median polish was performed for each neighbor of order n. 
Principal components were extracted from these data showing 13 factors (out of 73) 
relevant to express 95% of the variation within the data. Of course, one hopes to find a 
single factor to express all variation, but this would only happen if the underlying pattern 
is perfectly regular. At least, the low number of factors for the data investigated show a 
high degree of regularity in the material. 

7.4.3.2.2 The Pattern 

All statistics, K-functions, L-functions, Paircorrelation Function, and Thompson 
statistics, show regularity after the removal of systematic effects. Regularity is visible in 
Figures 7.3 and 7.4 by the graph of detrended data having values higher than 1. The 
graph of the Paircorrelation Function of detrended data (Figures 7.5 and 7.6) has values 
of 0 up to a distance of 2.5 km which means there are no neighbors below this distance. 
The median of the distance to the nearest neighbor suggests this minimum distance at 2.1 
km. The sharp  

 

FIGURE 7.3 Recent villages, 
Thompson statistics. 
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FIGURE 7.4 Empirical probabilities. 

 

FIGURE 7.5 Recent villages, 
Paircorrelation. 

ups and downs in the graph are result of the regularity of the pattern. Since a regular 
pattern was detected, the intensity computed from the medians for neighbor 1 to n should 
equal the actual number of villages. Estimating the intensity by the medians from the 1st 
to nth neighbor a number of 75 villages was found, only one more than actually exist. 

 

FIGURE 7.6 Empirical probabilities. 
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7.4.3.3 Estimation of the Local Intensity Function of the Recent 
Settlement Structure 

From the fact that the distance structure of the data cannot be expressed by a single factor 
(section 7.4.3.2.1), it follows that the Local Intensity Function cannot be estimated 
directly but only its impact on the distribution for each the distances of order n (Cressie 
1993:579, 654). To check the validity of the model, the iterative approach of model 
validation in section 7.2.7 was used finding an error of 0.069±0.1703 km. It is obvious 
that data is reproduced sufficiently. Compared to the distribution of the residuals 
(−0.008±0.177 km), the measurement error does not differ significantly, therefore the 
model is valid. 

7.4.4 Abandoned villages 

The abandoned villages were added to the data set of existing villages and the Local 
Intensity Function and the pattern were determined. Again a regular pattern was detected 
after removal of systematic effects (Figures 7.7 and 7.8). A minimum distance is quite 
obvious in the graphs and is  

 

FIGURE 7.7 Recent and abandoned 
villages, Paircorrelation. 

 

FIGURE 7.8 Empirical probabilities. 
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about 1.91 km. A principal components analysis was performed on the systematic effects 
in x- and y- directions finding 15 factors (out of 105) relevant to express 95% variation in 
the data. Again, variation could not be reduced to a single factor, but the low number of 
relevant factors underline the regularity found by the statistics on distances. The number 
of villages in the settlement pattern was estimated to be 107, which is only one more then 
the observed number. The recomputation of distances yielded an error of 0.0038±0.13 km 
(Figure 7.10). 

7.4.5 Trend or Local Intensity Function? 

Between the results of the estimated Local Intensity Functions of the data sets, with and 
without abandoned villages, a canonical correlation analysis was performed, yielding 
highly significant values of A without a leading canonical variate. The correlations 
between the estimated Local Density Functions by order of neighbor n of the two data 
sets vary between 0.771 and 0.276. From the conception of canonical correlation 
analysis, one would expect that both data sets are connected by a single canonical variate 
if the process that generated both data sets has a Local Intensity Function. Since this is 
not true, the systematic effects in the distance distributions are trend, and therefore not a 
property of the pattern. 

Consequently, a canonical correlation analysis between the data on trends of landuse 
and yield and the estimated Local Intensity Functions has been performed, finding high 
values of A but no leading canonical variate. Therefore trend components have been 
fitted to the systematic effects of distances by linear regression, and the results were used 
to recompute the distance distributions of the data sets with and without abandoned 
villages, finding a measurement error of 0.069±0.206 km and 0.004±0.122 km, 
respectively. For comparison, a recomputation of the distances has been undertaken using 
a randomly distributed trend plotted in Figures 7.9 and 7.10. 

 

FIGURE 7.9 Difference in observed 
and estimated order. 
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FIGURE 7.10 Difference in observed 
and estimated distances. 

Compared to the recomputation from the extracted x- and y- effects of the distances of 
0.0076±0.17 km and 0.017±0.13 km, it is clear that the systematic effects in the distance 
distributions is an external impact on the settlement pattern. Therefore, the settlement 
structure in the model consists of a settlement pattern of some regularity that is adopted 
to the natural conditions in the working area. This conforms to model 2.1, which is 
validated by the measurement errors presented: the settlement structure can be 
sufficiently modeled by an interaction of two processes, a point pattern and a spatial 
process realized by variables to describe natural conditions in a landscape. The point 
pattern has no Local Intensity Function, all systematic effects in the settlement structure 
stem from the impact of natural conditions on the pattern. 

7.5 Discussion 

Of course, the results in section 7.4 rely only on a single realization of the modern 
settlement structure since only one data set has been considered. In a comparable study, 
the results are confirmed by using the same model (Mayer 2001). This study includes not 
only historical and modern data but settlement structures of prehistoric periods as well. 
Some of these settlement structures do not only involve regular patterns but clustered 
ones as well. In all cases the model proved to be valid and the estimation of the 
parameters of systematic effects of the underlying processes have been estimated 
satisfyingly by the methods in section 7.2. 

Stoyan (1988) analyzes a medieval settlement structure consisting of existing and 
abandoned settlements in eastern Germany by means of spatial statistics. The data was 
considered to be a realization of a thinned Poisson process without systematic effects. 
Parameters of the point process were estimated, finding the results not quite satisfying 
(Stoyan 1988:55). Under the aspect of the results of section 7.4, the model applied by 
Stoyan lacked a sufficient specification of parameters to reproduce the settlement 
structure analyzed. On the other hand, that study shows the abilities of the explicit use of 
spatial processes as a tool to model settlement structures by including methods to assess 
the validity of a model. Nevertheless, the analyses of the settlement structure presented in 
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this paper and by another study (Mayer 2001) demonstrate the flexibility of the spatial 
processes as a general model for human behavior. Additionally, the specification of a 
suitable set of parameters in a model formulated by spatial processes allows the 
substitution of results of other sciences in the same methodical framework, opening new 
aspects of interdisciplinary research. 
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8 
Integrating Spatial Statistics into 
Archaeological Data Modeling 

Kevin R.Schwarz and Jerry Mount 

ABSTRACT Spatial analyses of archaeological data typically have 
suffered from methodological, sampling, and statistical problems. 
Previous approaches to archaeological inference based on common 
statistical procedures are briefly discussed. This chapter suggests that 
wider use of spatial statistical tests, which are designed for spatial 
inference, can be integrated into geographic information systems (GIS) 
and similar spatial analyses that are often graphically displayed. A series 
of examples is presented using archaeological data that demonstrate the 
utility of the spatial statistical methods. 
The problems of previous approaches include lack of proper sampling and 
violation of the assumptions of normality and independence. The 
independence assumption underlies many aspatial statistical tests such as 
the t-test, correlation, ANOVA, and regression methods. It suggests that 
each case of a particular variable is drawn separately and independently of 
the influences of other cases of the same variable, as in experimental 
design. Much spatial data violates this assumption through the existence 
of spatial autocorrelation. This concept suggests that values of 
observations that are in close spatial proximity will be similar, as 
described by Tobler’s first geographical law. 

The solution provided is a suite of spatial statistical techniques 
designed to overcome biases associated with aspatial statistics. The 
diagnostic use of spatial autocorrelation statistics such as Moran’s I and 
Geary’s C allows the researcher to assess the need for more powerful 
spatial models. In cases where modeling of spatial processes is needed, 
spatial regression can be used. Ripley’s K statistic allows researchers to 
examine successive neighbors to understand clustering or dispersion of 
observations. Nearest-neighbor hierarchical clustering provides a means to 
present clustering as a deviation from spatial randomness. Mapping 
software such as ArcView GIS and Golden Surfer can be extended to 
utilize these spatial statistical methods with links to S-Plus and CrimeStat 
statistical packages. 



8.1 Introduction 

The use of statistical methods in archaeological analyses has a long and checkered 
history. Beginning with the Spaulding-Ford debate of the 1950s, archaeologists have 
argued over the types, methodologies, and utility of various statistical methods and 
techniques (e.g., see reviews of this era in Thomas 1978; Cowgill 1975). Oftentimes the 
haphazard application of littleunderstood statistical methods to poorly sampled data sets 
creates problems. This chapter discusses a particular subset of statistical issues in 
archaeology, namely the use of statistics in spatial analysis. 

The rise of interest in settlement patterns in archaeology (Willey 1953; Willey et al. 
1965; Aldenderfer 1996) and intrasite artifact pattern analysis (Whallon 1973, 1974; 
Hietala 1983; Carr 1984) created an explicitly spatial component to many statistical 
problems, though this fact often is not recognized. For example, many statistical 
treatments of settlement patterns developed in the 1970s dealt with the degree to which 
human settlement locations (and site characteristics such as size or inferred population) 
correspond to ecological variables such as land quality or water resources (e.g., Vita-
Finzi and Higgs 1970; Brumfiel 1976; Kowalewski 1982). These studies take the 
approach of applying traditional regression and correlation techniques, in the hopes of 
identifying statistically significant association between human and land variables. Many 
of these studies have problematic findings for the statistical reasons described below. 

The use of geographic information systems (GIS) and similar mapping software in 
settlement pattern analysis since the 1980s has greatly increased the tools available to 
archaeologists (Kvamme 1993; Allen et al. 1990; Lock and Stančič 1995). Not only is 
map creation, display, and manipulation facilitated, but new analytical capabilities such 
as buffering and map overlay improve the archaeologist’s tool kit for spatial analysis. The 
interest in predictive modeling, both for its research potential and for archaeological 
resource management, led to the elaboration of many statistical models for predicting site 
location from ecological variables (Wood 1978; Carr 1985; Kvamme 1992; Warren 
1990a, 1990b). Logistic regression and discriminant function analysis have been the 
preferred statistical techniques of these modeling efforts. 

The problem with many traditional statistical approaches lies in their aspatial nature. 
Because phenomena distributed in space are related by their proximity to each other, 
these phenomena may suffer from a problem known as spatial autocorrelation (Odland 
1988; Griffith 1987). Autocorrelation creates bias in parameter estimates and makes 
significance testing difficult (Griffith 1996). Only recently have archaeologists attempted 
to deal with the spatial nature of many archaeological phenomena by introducing spatial 
statistics into archaeological data analysis. Spatial statistical tests are based on 
conventional statistics but incorporate locational data within them, and through this 
modification provide for more robust findings. As recently as 1998, spatial statistics was 
the province of only those who could master matrix algebra and code SAS or other 
statistical macro languages. Currently, however, spatial statistical tests are appearing in 
user-friendly formats such as S-PLUS SpaceStat and CrimeStat statistical packages and 
are seamlessly integratable with GIS packages (such as ESRI’s ArcView GIS) and usable 
with other mapping software (such as Golden Surfer). This capability allows 
archaeologists with some knowledge of the theory and method of spatial statistics to use 
these improved procedures in their settlement-pattern and intrasite spatial analyses. 
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In Section 8.2 we briefly review some theoretical considerations involved in the use of 
spatial statistics. In subsequent sections we present a guide to a few of the more useful 
statistical procedures, including Moran’s I and Geary’s C, spatial autoregressive models, 
Ripley’s K, and nearest-neighbor hierarchical clustering. Several examples are given 
from archaeological settlement-pattern and intrasite artifact-distribution studies. Finally 
we conclude with a cautionary note on the use of aspatial models in predictive modeling 
and other spatial contexts. 

8.2 Theory and Method of Spatial Statistics 

It would be difficult for an archaeologist and a geographer to try to describe the 
mathematics of spatial statistics as they exist now. It is a specialized, complex, and fast-
changing field of endeavor (Griffith and Amrhein 1997). Rather, we will describe some 
of the conceptual structures involved: specifically why spatial statistics are necessary in 
the first place and what spatial autocorrelation entails. The preferred methodology is to 
apply basic diagnostic tests of Moran’s I and Geary’s C to determine if a spatial statistical 
estimation is necessary. More specialized spatial tests are readily available in statistical 
packages for those engaged in spatial analysis. 

It is well-known that several formal assumptions are requirements for data sets before 
traditional inferential statistical techniques are attempted. These include the assumption 
of randomness, the assumption of normality, and the assumption of independence 
(Griffith and Amrhein 1997). The first two assumptions are frequently discussed (though 
just as frequently violated) by nonexperimental social scientists like archaeologists. The 
assumption of independence is more subtle, however, and many introductory statistics 
textbooks fail to even mention it (e.g., Pedhazur 1982; Hinkle et al. 1994). The idea of 
statistical independence requires that the cases of a variable are not intercorrelated. In 
randomized tests of intelligence or other controlled settings, this idealized requirement 
may be close to accurate. However, in the natural world, and space and time in particular, 
most “observations” are part of larger and more continuous phenomena in which 
characteristics in a given region or interval are at least partially dependent on antecedent 
events or on neighbors (Odland 1988; Griffith 1984). For the continuum of time, time-
series statistics have been developed. Consider the case of a long-distance runner for 
whom 1-mile splits are measured in a 26.2-mile marathon. These splits are actually part 
of an autocorrelated continuum. If a runner has a slow split-time on mile 22, then it is 
likely that he/she will have a slow split-time on mile 23 because of underlying factors of 
the structure of the race, his/her own physiology, and ultimately time itself. 

The same dependence applies to space. There are two types of spatial autocorrelation 
we can discuss: positive spatial autocorrelation and negative spatial autocorrelation. 
Positive spatial autocorrelation is described graphically as clustering of similar attributes 
or values (Figure 8.1). In any region, site, or archaeological excavation block, it is likely 
that the characteristics of one point in that region, site, or excavation square is related in 
its attributes or values to that of its neighbors. Thus soils of a particular series may be 
found in one survey grid, and it may be more likely to be encountered again in a 
neighboring block than in a more distant block, depending on the type of topography and 
scale of the blocks. Likewise, a larger settlement may attract smaller settlements to its 
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near periphery for the purposes of trade or alliance, forming a cluster of settlement. 
Elevated concentrations of artifacts in one excavation square may be due to a broader 
artifact scatter. All other things being equal, we may expect adjacent squares to also 
feature relatively high concentrations of artifacts in comparison with a square selected by 
chance. This characteristic of geographic phenomena was formalized by Waldo Tobler 
(1979) as Tobler’s first law (or the first law of geography). It suggests that: “E very thing 
is related to everything else, but near things are more related than others” (Chrisman 
1997). The relationship of dependence is called positive spatial autocorrelation and can 
be considered as a deviation from randomness (Odland 1988). Negative spatial 
autocorrelation is described as the interpositioning  

 

FIGURE 8.1 Positive spatial 
autocorrelation. 

of regions of differing value and is visible as a checkerboard or alternating pattern 
(Figure 8.2). 

Spatial autocorrelation means that using standard statistical procedures on spatialized 
data sets may result in serious biases because the data may contain undescribed spatial 
dependencies. For example, regression and correlation coefficients are overestimated 
(Griffith 1996), significance tests are biased, and estimates of regression-equation 
parameters (such as the slope) may not be accurate. That said, it should be emphasized 
that not all spatially distributed data sets are spatially autocorrelated. Test statistics have 

Integrating spatial statistics into archaeological      157



been developed to gauge the degree of autocorrelation that exists within a data set. Two 
are reviewed in the following section. 

8.3 Tests of Spatial Autocorrelation 

Two easy-to-use statistical tests have been designed to diagnose spatial autocorrelation: 
Moran’s I and Geary’s C. Both are available in the S-Plus SpaceStat module and 
CrimeStat program. Moran’s I or the Moran coefficient (Moran 1948) measures the 
covariation of juxtaposed map values of a given variable of interest (Griffith 1987). The 
interpretation of the statistic is similar  

 

FIGURE 8.2 Negative spatial 
autocorrelation. 

to that of a correlation coefficient. The expected value (of nonassociation) of the Moran 
coefficient is MC=−1/n−1. Positive autocorrelation indicates spatial clustering, with a 
significant MC approaching 1. Negative autocorrelation approaching −1 indicates a 
checkerboard distribution of the variates in space. Nonsignificant findings suggest a 
random relationship (Griffith 1987). Geary’s C or the Geary ratio (GR) is similar in 
concept to the Moran coefficient. The interpretation of the statistic differs in that the 
expected value of nonassociation is 1. If similar values cluster in space, then GR 
approaches 2 and positive autocorrelation exists. If dissimilar values tend to cluster, then 
GR will approach 0 and negative autocorrelation exists (Griffith 1987). 
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It is possible to test sample distributions with the Moran coefficient and Geary ratio as 
an end in itself. For example, artifact distributions can be explored with this technique. 
Consider the following examples. Recent household excavations by Schwarz (2004) of 
Postclassic (A.D. 1000–1525) Maya sites from the Petén Lakes region of Guatemala have 
revealed numerous in situ artifact scatters. For example, at a domestic site know as 
Petenxil Group 1, the author discovered scatters and concentrations of chert flakes on and 
in front of a masonry platform, the remains of an ancient house. Flakes were recorded in 
1×1-m provenience units in a roughly rectangular excavation block. Flake counts were 
paired with the northing and easting information for each excavation square, and the data 
was tabulated in a Microsoft Excel spreadsheet. The output is viewed as an isopleth map 
of flake concentrations across the floor of the structure and in front of it, prepared in 
Surfer (Figure 8.3). Given the apparently strong spatial concentration of chert flakes 
existing to the west  

 

FIGURE 8.3 Isopleth map structure 
100, lithic debitage. 
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of the platform, further exploration of this data was undertaken. The Moran coefficient 
(N=103; MC=0.031; Z=3.01) indicates a significant finding of positive spatial 
autocorrelation. Geary’s C (GR=0.081; Z=3.41) provides the same information. 
Interestingly, the relatively weak coefficients suggest that the western flake concentration 
is not of sufficient size and intensity to create a strongly autocorrelated global distribution 
and does not overwhelm the intensity of flake concentrations in the surrounding regions. 

Global measures of autocorrelation can mask significant amounts of locallevel spatial 
variation. Anselin’s local Moran statistic is designed to measure point-to-point (or zone-
to-zone) autocorrelation. It adapts Moran’s I to assess whether points (or zones) are 
related in the value of an intensity variable to neighboring points. The adaptation was 
accomplished by Anselin (1995), who specified the local indicator of spatial association 
(LISA). The LISA indicates the extent of similarity of the observation or zone in relation 
to its neighbors. Values are produced for each observation, and the output can be viewed 
in map form. Levine (2002:289) states that a significance measure has yet to be worked 
out for this statistic, but generally, high negative values indicate dissimilarity of values in 
comparison with neighbors, while high positive values indicate similarities of value. 

An example of the local Moran statistics utility comes from a complex scattering of 
different artifacts from the vicinity of a small temple in the Quexil Basin in Guatemala. 
Structure Q1 sits on the Eastern Island in Lake Quexil. A small temple is fronted by a 
staircase around which three different artifact scatters were found (Figure 8.4). Fragments 
of ceramic incensarios (incense burners), chert flakes, and broken and burnt turtle shell 
fragments were found in nonoverlapping concentrations in the 6×7-m excavation block. 
The count data of the three classes then were tabulated with the total artifact count for the 
squares outside the concentrations. Using the artifact counts for each block, Moran’s I 
and Geary’s C both indicate no spatial autocorrelation within the sample (N=84, 
MC=−0.01; Z=0.0007; GR=0.0001, Z=2.39). The counts were then standardized. The 
resulting variates were analyzed using the local Moran statistic in CrimeStat. The 
resultant output of the I statistic for each excavation unit was then remapped in Surfer. 
The isopleth map (Figure 8.5) demonstrates three interesting local characteristics. The 
two largest and most intense concentrations (the incensario fragments in the northeast 
and the turtle shell fragments in the south) are visible as large areas of negative value 
(local MC<−0.90), which result from the neighboring much-lower-value areas outside the 
scatter. The flake scatters, consisting of elevated levels in single excavation units, are not 
visible against the background of all artifacts. The surrounding areas, such as the sides of 
the temple, are of low negative value and are not aggregated, suggesting that the counts 
of all artifacts in this excavation are not organized on a local scale. 

8.4 Spatial Statistical Models 

Griffith (1987, 1989, 1996) and Amrhein (Griffith and Amrhein 1997) developed a series 
of spatial statistical tests based on the regression methodology (generalized least squares) 
that they adapted to spatial data. In this short chapter, we cannot hope to describe the 
reasoning and complexity underlying the development of spatial statistics. However, a 
few points can be emphasized in relation to autocorrelation statistics. The first is that 
Griffith (1987) recommends regressing two or more variables of interest in a spatialized 
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data set and testing the residuals for spatial autocorrelation with Moran’s I or Geary’s C. 
One graphs the regression residuals with the fitted values in a scatter plot. If the plot 
appears to be random, then the existence of autocorrelation is not likely. However, if a 
linear pattern appears in the residual plot, then autocorrelation is likely present and needs 
to be addressed  

 

FIGURE 8.4 Isopleth map structure 
Q1, concentrations. 

(this is the linear dependence described above). Significant positive or negative spatial 
autocorrelation may indicate the need for a spatial autoregressive model as developed by 
Griffith (1987; Griffith and Amrhein 1997) and others. Readers should consult the 
original sources for a more in-depth discussion. 
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When significant spatial autocorrelation exists in a data set, it is often worthwhile to 
pursue a spatial statistical model. However, it should be noted that sometimes linear 
dependencies in data sets can be dealt with through simpler means than employing spatial 
autoregressive models. For example, one author of this paper (Schwarz 1997) 
encountered this problem in assessing settlement-pattern and ecological data from the 
pre-Hispanic Basin of  

 

FIGURE 8.5 Isopleth map structure 
Q1, concentrations, local Moran’s I. 

Mexico and Valley of Oaxaca (Schwarz 1997; Sanders et al. 1979; Blanton 1982; 
Kowalewski et al. 1989). For this example, the 17 largest sites (with more than 800 
estimated population) were selected for the Valley of Oaxaca Period IIIa (A.D. 200–500; 
see Figure 8.6). The population estimates were regressed against an environmental index. 
Site population was estimated by site size and intensity of occupation, and an 
environmental index of land quality was tabulated from a summation of areas with 
differing agricultural productivity (alluvium, piedmont, etc.) from within a 3-km-radius 
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catchment. The results of the regression analysis demonstrate a strong positive correlation 
of the two variables (adj. r2=0.593, p=0.0001). However, a puzzling linearity appears in 
the residual plot (Figure 8.7). It may be that population clustering or autocorrelation 
derived from the land-productivity zones created this linearity. Upon consideration, the 
raw variates were normalized and converted to base-10 logarithms and then regressed 
again (adj. r2=0.328, p=0.001; Figure 8.8). At this point, the visible linearity in the  

 

FIGURE 8.6 Site catchment analysis, 
Valley of Oaxaca, Period IIIa. 

 

FIGURE 8.7 Residual plot, Oaxaca, 
Period IIIa, raw variates. 

residual plots was reduced (Figure 8.9). A laboriously constructed Moran coefficient test 
was performed using Mini tab macros (as described by Griffith 1989). The Moran test 
indicated that no significant spatial autocorrelation  
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FIGURE 8.8 Scattergram, Oaxaca, 
Period IIIa. 

 

FIGURE 8.9 Residual plot, Oaxaca 
IIIa, normalized log-ten variates. 
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existed in the converted data, so no autoregressive model was needed. It should be noted 
also that some investigators recommend using standard nonlinear regression techniques 
to eliminate spatial dependencies in the data (Odland 1988) before proceeding to an 
autoregressive (or spatial regression) model. Griffith and Amrhein (1997) give an 
extensive exploration of this complex field focusing on logistic, Poisson, and binomial 
distribution approaches to estimation. 

The last resort of statistical analysis of spatially dependent data sets is the spatial 
autoregressive model (or spatial regression). The basic necessity of incorporating spatial 
dependence in the model means that the analyst must account for the spatial relationships 
among the observations of variates in some way, most often by a spatial connectivity 
matrix. This device is an N× N matrix that specifies the contiguity (border relationships) 
or spatial weights among all observations. The specification of the model incorporates an 
autoregressive component that relies on a Monte Carlo-type iterative process to estimate 
parameters of the statistic. The specialists in this procedure stress that it is still 
experimental in nature and involves methodological and mathematical complexities. As 
such, discussion of its mathematical basis goes beyond the scope of this chapter. 

8.5 Ripley’s K Statistic 

Ripley’s K statistic compares the spatial data input by the analyst with a homogeneous 
Poisson distribution (which represents complete spatial randomness). A scaled-distance 
algorithm is introduced, and the output is the K(t) statistic, a measure of global spatial 
clustering. In practice, the use of L(t) as an estimator has replaced K(t). L(t) can be 
derived from K(t) via the formula: 

L(t)=(K(t)Π)1/2   

L(t) is then charted against distance and can be compared with complete spatial 
randomness (L(csr)=0). Values of L(t) above 0 indicate spatial clustering, while negative 
values indicate dispersion. The Ripley’s K function is also used to create simple and 
multivariate spatial models (Ripley 1981; Cressie 1991; Bailey and Gatrell 1995). 
Ripley’s K has the advantage of characterizing spatial relationships at different distance 
scales, unlike, for example, nearest-neighbor analysis (Dixon 2001). 

The graph of L(t) versus distance for an example given above is illustrative. The data 
from the lithic scatter at structure 100 indicated the existence of positive spatial 
autocorrelation. Ripley’s K function was performed, and the resulting output of L(t) was 
graphed using a locally weighted smoothing process (Figure 8.10). This reduced to a 
smooth line the jagged linear  
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FIGURE 8.10 Ripley’s L(t) plot, 
structure 100. 

output that resulted from graphing the grid work of excavation units. The finished graph 
depicts spatial clustering at scales of less than 3 m, consistent with the areal breadth of 
the western flake concentration. At a scale of 3 m, the distribution is completely spatially 
random. At scales of more than 3 m, the distribution is dispersed. This suggests that the 
western concentration is the major spatial cluster present within the scatter and that no 
larger clusters exist. 

8.6 Nearest-Neighbor Hierarchical Spatial Clustering 

This statistic is a clustering technique that identifies and groups observations that are 
spatially close. This clustering routine is based on the nearest-neighbor method. It 
clusters observations into hierarchical groups of nearest neighbors based upon three 
criteria that the user inputs. The user specifies a threshold distance that is compared with 
all pairs of points. The second criterion is a minimum number of points to be included in 
each first-order cluster. For second- and higher-order clusters, the routine is run using the 
centers of the lower-order clusters as points. A third criterion specifies the magnitude of 
the standard deviational ellipse that defines the spatial clusters. The clustering routine 
runs until all observations are united in one highorder cluster or the clustering fails 
(Levine 2002:216–221). 
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An example of nearest-neighbor hierarchical spatial clustering (NNHSC) as an 
analysis technique derives from the work of one of the authors (Mount) in mapping a 
multicomponent site in Tennessee (40DV392) as a salvage project. The site includes 
Archaic, Mississippian, and historic components, though it is the Mississippian period 
occupation that provides most of the burials and features analyzed here (historic features 
were excluded from the analysis). The site sits on the floodplain of the Cumberland River 
and a secondary drainage and extends to a gently sloping hill on the western section of 
the site. Two discrete cemeteries exist: the western cemetery on the hill and the northern 
cemetery on a low rise between the river and drainage. The eastern part of the site was an 
important habitation area and included many features, such as postmold outlines of 
houses, pit features, and hearths (Figure 8.11). 

Given the complexity of feature and burial patterning it was thought that NNHSC 
analysis would be a fruitful means of identifying clusters of different scales. It was 
decided also to use a battery of simpler spatial statistical indicators to assess the spatial 
patterning in this very large data set (N= 1559). These include mapping the geometric 
mean of features, calculating Moran’s I for features and burials, and graphing Ripley’s K 
function for both. Moran’s I statistic for burials indicates that no spatial autocorrelation is 
present in the sample (MC=0.0001, Z=0.78), while the Moran’s I for features indicates 
the existence of slightly positive spatial autocorrelation (MC= 0.0006, Z=1.96). 

Nearest-neighbor hierarchical spatial clustering of the burials was run for minimum 
groups of three, five, and eight burials (Figure 8.12). The interpretation of the output of 
such clustering routines is impressionistic. It appears that cluster minimums of three 
create too many insignificant clusters when viewed against the raw data (Figure 8.11). A 
cluster minimum of three creates seven first-order clusters and one second-order cluster, 
while a cluster minimum of eight produces sparse output. Therefore five-observation 
minimum clustering is preferred here. Running a NNHSC routine for features with the 
same clustering minimums produces quite interesting results (Figure 8.13). Clearly, the 
distribution of nonburial features across the site is more complex than that of the burials. 
A plot of the geometric mean of features may indicate the center of site activity. All three 
iterations of the NNHSC provide valuable insight on the distribution of features, but our 
impression is again that the five-observation minimum clustering strikes the right balance 
in identifying clusters and hierarchical groups. The three-observation-minimum analysis 
presents a more detailed look at the patterning within the site. It is also possible to depict 
the probabilistic nature of the cluster ellipses, as seen in Figure 8.14. Here three-
observation-minimum clusters are drawn as concentric ellipses at distances of 1, 2, and 3 
standard deviations. These different solutions for the boundary of particular clusters are 
essentially spatial-confidence intervals (Levine 2002:221). 

An analysis of Ripley’s K function further clarifies the spatial patterning of the site. A 
plot of L(t) for burials indicates positive spatial clustering from 0 to 25 m in distance and 
spatial randomness and dispersion beyond that distance (Figure 8.15). This is 
approximately the length of both the northern and western cemeteries (25 m). The finding 
is consistent with the Moran’s I analysis of no global spatial autocorrelation (between the 
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FIGURE 8.11 Distribution of features 
and burials, Tennessee. 

two cemeteries) and the NNHSC analysis, which failed to unite the two cemeteries 
into a global cluster. A graph of L(t) for features reveals clustering from approximately 0 
to 35 m in distance and randomness and then dispersion beyond (Figure 8.16). 
Interestingly, the curvilinear character of L(t) below 35 m suggests increasing clustering 
with distance from scales of approximately 0 to 15 m and decreasing clustering from 15 
to 35 m. This distribution corresponds to the complex patterning observable in the 
NNHSC clustering maps for features and is consistent with the positive finding from the 
Moran’s I test. The use of NNHSC and the other spatial statistical analyses here 
demonstrates how researchers can characterize spatial data through multiple 
complementary means. 
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FIGURE 8.12 NNHSC burials, 
Tennessee. 

8.7 Notes on Applications 

The foregoing applications of spatial statistics are greatly facilitated by the seamless 
integration of S-Plus SpaceStat and CrimeStat with mapping software such as ArcView 
GIS and Golden Surfer. Data can be input from database programs such as Microsoft 
Access, from spreadsheets such as Microsoft Excel, or as text files. Output for many of 
these statistical procedures can be viewed graphically in ArcView GIS as *.shp files or in 
Surfer as contour maps. Data from excavation grids or point data (settlementpattern data 
or point-provenience data) can be handled without problem, although it must be kept in 
mind that particular data-collection methodologies have advantages and disadvantages. 
For example, excavation block data is subject to edge effects that can distort the findings. 
Several test statistics, such as Ripley’s K function in CrimeStat, allow the researcher to 
neutralize these border effects. 

The ability to integrate georeferenced data from an archaeological database with these 
spatial statistical tests holds both promise and peril. The promise is that, by giving 
archaeologists the capability to use these improved statistical tests, they will be able to 
build more realistic causal  
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FIGURE 8.13 NNHSC features, 
Tennessee. 

 

FIGURE 8.14 NNHSC features, 
different standard deviations (1, 2, and 
3), Tennessee. 
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FIGURE 8.15 Ripley’s K, burials, 
Tennessee. 

and management-based models that deal with the reality of spatial dependencies. The 
peril is that archaeologists, as investigators who are generally untrained in the use of 
these complex statistical tools, will adopt a shotgun approach that will introduce 
problems of suitability and interpretation (as suggested by Griffith and Amrhein 
1997:322). It is hoped that the latter scenario can be avoided. 

8.8 Discussion and Conclusion 

The current state of the art in GIS approaches to archaeology involves the development 
and deployment of predictive models of site location through modeling of environmental 
variables. This effort can be seen as an outgrowth of the quantitative bent archaeology 
has taken in recent decades and the cultural ecological framework of the 1960s to the 
1980s. As a theoretical goal or a cultural resource management tool, this sort of activity 
holds much promise. Despite the complaints of some that ecologically oriented modeling 
ignores aspects of past cultural behavior (Gaffney 1995), the ability to predict site 
locations sucessfully is a first step in providing plausible causal accounts  
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FIGURE 8.16 Ripley’s K, features, 
Tennessee. 

of ancient cultures and is an effective tool for resource management. In this sense, this 
chapter tries to contribute to such an effort by suggesting some sounder footings for 
spatial modeling. That is, by incorporating spatial autocorrelation, nonlinear and 
autoregressive models, and scalar and spatialized clustering routines in one’s tool kit, a 
more accurate and valid model of a given archaeological data set can ultimately be 
developed. Intrasite spatial analyses are also aided in bringing newer, more robust tools 
to the search for behavioral patterning. It is hoped that this introduction to the topic of 
spatial statistics spurs further interest in the primary sources (e.g., Odland 1988; Griffith 
1987, 1996; Griffith and Amrhein 1997), rather than immediate application, considering 
the limited description of theory and method that could be presented here. 

Two other points emerge from the pioneering work of Griffith (1996; Griffith and 
Amrhein 1997). The first is that spatial statistical approaches are increasingly being 
implemented within the GIS context because autocorrelation statistics can be displayed 
graphically, promoting visualization of spatial relationships previously only described 
statistically (Vasilev 1996). The second is that for certain types of aspatial statistical 
procedures, such as logistic regression, there is not yet a well-developed complementary 
spatial statistical procedure. Griffith and Amrhein (1997:315) state that a proper spatial 
statistical companion for logistic regression is virtually impossible; current modeling 
efforts involve many troubling violations of assumptions and post hoc modifications. The 
authors note that discriminant function analysis is a much easier statistic to adapt to 
spatial dependencies. Given this finding, it is suggested that logistic regression findings 
from spatial data sets be treated with a certain skepticism until autocorrelation can be 
assessed and more-robust spatial statistics can be utilized. 

 

GIS and archaeological site location modeling       172



References 

Aldenderfer, M., introduction to Anthropology, Space, and Geographic Information Systems, 
Aldenderfer, M. and Maschner, H.D., Eds., Oxford University Press, Oxford, 1996, pp. 1–18. 

Allen, K.M., Green, S.W., and Zubrow, E.B., Eds., Interpreting Space: GIS and Archaeology, 
Taylor and Francis, Philadelphia, 1990. 

Anselin, L., Local indicators of spatial association: LISA, Geographical Analysis, 27, 93–115, 
1995. 

Bailey, T.C. and Gatrell, A.C., Interactive Spatial Data Analysis, Longman Scientific and 
Technical Publishers, Harlow, U.K., 1995. 

Blanton, R.E., Ed., Monte Alban’s Hinterlands, Part I: Pre-Hispanic Settlement Patterns of the 
Central and Southern Parts of the Valley of Oaxaca, Mexico, Memoirs of the Museum of 
Anthropology, No. 15, University of Michigan, Ann Arbor, 1982. 

Brumfiel, E., Regional growth in the Eastern Valley of Mexico: a test of the “population pressure” 
hypothesis, in The Early Mesoamerican Village, Flannery, K.V., Ed., Academic Press, New 
York, 1976, pp. 234–250. 

Carr, C., The nature and organization of intrasite archaeological records and spatial analytic 
approaches to their investigations, in Advances in Archaeological Method and Theory, Vol. 7, 
Schiffer, M.B., Ed., Academic Press, New York, 1984. 

Carr, C., Introductory remarks on regional analysis, in For Concordance in Archaeological 
Analysis: Bridging Data Structure, Quantitative Technique, and Theory, Carr, C., Ed., Westport 
Publishers, Kansas City, MO, 1985. 

Chrisman, N.R., Exploring Geographic Information Systems, John Wiley and Sons, New York, 
1997. 

Cowgill, G.L., A selection of samplers: comments on archaeostatistics, American Antiquity, 33, 
367–375, 1975. 

Cressie, N.A., Statistics for Spatial Data, John Wiley and Sons, New York, 1991. 
Dixon, P.M., Ripley’s K Function, Department of Statistics, Iowa State University, Ames, 2001. 
Gaffney, V., Postscript: environmental determinism and archaeology, in Archaeology and 

Geographical Information Systems, Lock, G. and Stančič, Z., Eds., Taylor and Francis, Bristol, 
PA, 1995, pp. 367–369. 

Griffith, D.A., Theory of spatial statistics, in Spatial Statistics and Models, Gaile, G.L. and 
Willmott, C.J., Eds., D.Reidel Publishing, Dordrecht, Holland, 1984, pp. 3–16. 

Griffith, D.A., Spatial Autocorrelation: A Primer, Association of American Geographers, 
Washington, DC, 1987. 

Griffith, D.A., Spatial Regression Analysis on the PC: Spatial Statistics Using Minitab, Institute of 
Mathematical Geography, Department of Geography, Syracuse University, Syracuse, NY, 1989. 

Griffith, D.A., Introduction: the need for spatial statistics, in Practical Handbook of Spatial 
Statistics, Arlinghaus, S.L., Ed., CRC Press, Boca Raton, FL, 1996, pp. 1–15. 

Griffith, D.A. and Amrhein, C.G., Multivariate Statistical Analysis for Geographers, Prentice Hall, 
Upper Saddle River, NJ, 1997. 

Hietala, H., Ed., Intrasite Spatial Analysis in Archaeology, Cambridge University Press, London, 
1983. 

Hinkle, D.E., Wiersma, W., and Jurs, S.G., Applied Statistics for the Behavioral Sciences, 
Houghton Mifflin, Boston, 1994. 

Kowalewski, S.A., Population and agricultural potential: early I through V, in Monte Alban’s 
Hinterlands, Part I: Pre-Hispanic Settlement Patterns of the Central and Southern Parts of the 
Valley of Oaxaca, Mexico, Memoirs of the Museum of Anthropology, No. 15, University of 
Michigan, Ann Arbor, 1982, pp. 149–180. 

Kowalewski, S.A., Feinman, G.M., Finsten, L., Blanton, R.E., and Nicholas, L.M., Monte Alban’s 
Hinterlands, Part II: Pre-Hispanic Settlement Patterns in Tlacolula, Etla, and Ocotlan, the Valley 

Integrating spatial statistics into archaeological      173



of Oaxaca, Mexico, Memoirs of the Museum of Anthropology, No. 23, University of Michigan, 
Ann Arbor, 1989. 

Kvamme, K.L., A predictive site location model on the high plains: an example of an independent 
test, Plains Anthropologist, 37 (138), 19–40,1992. 

Kvamme, K.L., Spatial statistics and GIS: an integrated approach, in Computing the Past: 
Computer Applications and Quantitative Methods in Archaeology, CAA 1992 proceedings, 
Andresen, J., Madsen, T., and Scollar, I., Eds., Aarhus University Press, Aarhus, Denmark, 
1993, pp. 91–102. 

Levine, N., CrimeStat: A Spatial Statistics Program for the Analysis of Crime Incident Locations, 
Ver. 2.0, Ned Levine and Associates, Houston, TX, and the National Institute of Justice, 
Washington, DC, May 2002. 

Lock, G. and Stančič, Z., Eds., Archaeology and Geographical Information Systems, Taylor and 
Francis, Bristol, PA, 1995. 

Moran, P., The interpretation of statistical maps, Journal of the Royal Statistical Society, 10B, 243–
251, 1948. 

Odland, J., Spatial Autocorrelation, Sage Publications, Newberry Park, CA, 1988. 
Pedhazur, E., Multiple Regression in Behavioral Research, Holt, Reinhart, Winston, Orlando, FL, 

1982. 
Ripley, B.D., Spatial Statistics, John Wiley and Sons, New York, 1981. 
Sanders, W.T., Santley, R.S., and Parsons, J.B., The Basin of Mexico: Ecological Evolution of a 

Civilization, Academic Press, New York, 1979. 
Schwarz, K.R., Reconsidering Human-Land Relationships in Pre-Hispanic Central Mexico, 

unpublished M.A. thesis, Department of Anthropology, Southern Illinois University, 
Carbondale, 1997. 

Schwarz, K.R., Understanding Classic to Postclassic Household and Community Spatial 
Transformation: The Rural Maya of the Quexil-Petenxil Basins, Guatemala. Unpublished Ph.D. 
dissertation, Department of Anthropology, Southern Illinois University, Carbondale, 2004. 

Thomas, D.H., The awful truth about statistics in archaeology, American Antiquity, 43 (2), 231–
244, 1978. 

Tobler, W.R., Cellular geography, in Philosophy in Geography, Gale, S. and Olsson, G., Eds., John 
Wiley, London, 1979, pp. 379–386. 

Vasilev, I.R., Visualization of spatial dependence: an elementary view of spatial autocorrelation, in 
Practical Handbook of Spatial Statistics, Arlinghaus, S.L., Ed., CRC Press, Boca Raton, FL, 
1996, pp. 1–15. 

Vita-Finzi, C. and Higgs, E.S., Prehistoric economy in the Mount Carmel area of Palestine: site 
catchment analysis, Proceedings of the Prehistoric Society, 36, 1–37, 1970. 

Warren, R.E., Predictive modeling in archaeology: a primer, in Interpreting Space: GIS and 
Archaeology, Allen, K.M., Green, S.W., and Zubrow, E.B., Eds., Taylor and Francis, 
Philadelphia, 1990a, pp. 90–111. 

Warren, R.E., Predictive modeling of archaeological site location: a case study in the Midwest, in 
Interpreting Space: GIS and Archaeology, Allen, K.M., Green, S.W., and Zubrow, E.B., Eds., 
Taylor and Francis, Philadelphia, 1990b, pp. 201–215. 

Whallon, R.R., Spatial analysis of occupational floors I: applications of dimensional analysis of 
variance, American Antiquity, 38 (3), 266–278, 1973. 

Whallon, R.R., Spatial analysis of occupational floors II: nearest neighbor analysis, American 
Antiquity, 39 (1), 16–34, 1974. 

Willey, G.R., Prehistoric Settlement Patterns in the Viru Valley, Peru, Bureau of American 
Ethnology, Bulletin 155, Washington, DC, 1953. 

Willey, G.R., Bullard, W.R., Jr., Glass, J.B., and Gifford, J.C., Prehistoric Maya Settlements in the 
Belize Valley, Papers of the Peabody Museum of Archaeology and Ethnology, Harvard, Vol. 
LIV, Peabody Museum, Cambridge, 1965. 

GIS and archaeological site location modeling       174



Wood, J.J., Optimal location in settlement space: a model for describing location strategies, 
American Antiquity, 43 (2), 258–270, 1978. 

Integrating spatial statistics into archaeological      175



 

9 
Quantifying the Qualified: The Use of 

Multicriteria Methods and Bayesian Statistics 
for the Development of Archaeological 

Predictive Models 
Philip Verhagen 

ABSTRACT Over the past ten years, archaeological predictive modeling 
for cultural resource management (CRM) in the Netherlands has 
experienced a shift from the dominant use of quantitative methods to a 
more qualitative approach, where expert judgment plays an important role 
in the definition of zones of high and low archaeological value. However, 
the use of expert judgment poses a problem for the development of 
predictive models. The process leading to the 
establishment?/specification? of expert judgment is often vague; the 
criteria for inclusion of areas in certain archaeological zones are poorly 
specified; and as a consequence, mapping between regions is often 
incompatible. In many cases, the process is vague; the criteria for 
inclusion of areas in certain archaeological zones are poorly specified; and 
mapping between regions is frequently incompatible. This chapter 
demonstrates the use of a multicriteria decision-making framework that 
increases the transparency of “expert judgment” in predictive mapping. 
The chapter also evaluates the potential of Bayesian statistical methods for 
use in developing weights for the criteria involved. Hopefully, this will 
lead to the development of models that, although subjective to a certain 
extent, are at least consistent and comparable between regions. The 
proposed methodological framework is demonstrated using a case study 
for the municipality of Ede in the central part of the Netherlands. 

9.1 Introduction 

Over the past ten years, archaeological predictive modeling in the Netherlands has been 
the subject of a sometimes-heated debate (see Verhagen et al. 2000). After seminal 
publications by Wansleeben (1988), Ankum and Groenewoudt (1990), and Soonius and 
Ankum (1990), a number of predictive maps have been produced by public 
archaeological institutions in the Netherlands (RAAP1 and ROB2). At the same time, 
academic archaeologists have studied the methodological and theoretical aspects of 



predictive modeling, and some have criticized the modeling concepts used in public 
archaeology in several publications (Wansleeben and Verhart 1997; van Leusen 1993, 
1995, 1996; Kamermans and Rensink 1999). 

The inferential or inductive approach, already criticized by Brandt et al. (1992) for its 
inability to cope with the low quality of many archaeological data sets, has gradually 
been replaced by a more intuitive way of model development that tries to make the best 
of both worlds by including quantitative data when they are available. Coupled to this 
development toward more-deductive mapping, it is notable that the multivariate approach 
has been replaced by the use of a reduced number of variables that are supposed to have 
the strongest predictive power for a particular region or archaeological period. These 
models can best be characterized as hybrids and are essentially descriptions of existing 
knowledge rather than extrapolations. A consequence of this approach is that error 
margins and uncertainties are never specified, and on the whole the models lack a clear 
formalized methodology for including both “hard” and “soft” knowledge. 

The current chapter discusses the possibilities of improving the applied methodology 
by focusing on the formalization of the inclusion of “expert judgment” or subjective 
knowledge into the mapping. Two methodological innovations are suggested for this: the 
application of a multicriteria decision-making framework to the modeling, and the use of 
Bayesian statistics for developing the knowledge base needed for the model. This 
methodological framework is tested on a case study in the municipality of Ede (Figure 
9.1), where the model of Soonius and Ankum (1990) was originally applied. 

9.2 Multicriteria Decision Making and Its Relevance to Predictive 
Modeling 

Multicriteria decision making (MCDM) is a set of systematic procedures for analyzing 
complex decision problems. By dividing the decision problem into small, understandable 
parts and then analyzing these parts and integrating them in a logical manner, a 
meaningful solution to the problem can be achieved. Decision making includes any 
choice among alternative courses of action and is therefore of importance in many fields 
in both the natural and social sciences. These types of decisions usually involve a large 
set of feasible alternatives and multiple, often conflicting and incommensurate evaluation 
criteria. Archaeological predictive modeling fits into this framework, as it is a way to 
evaluate the archaeological potential of an area and provide the basis for decision making 
in prospection design as well as in  
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FIGURE 9.1 Location of Ede. 

planning procedures. In fact, it is recognized as such by Kvamme (1990): “A [predictive] 
model is a decision rule conditional on other nonarchaeological features of locations” 
[emphasis added]. 

Many archaeologists may not be familiar with the concepts and terminology used in 
MCDM, so a condensed description of its core notions follows here. This description 
closely follows the outline presented by Malczewski (1999); a slightly different 
terminology can be found in other publications, such as Nijkamp et al. (1990). MCDM 
can be broken down into the following components (Malczewski 1999:82): 

• The definition of a goal that the decision maker attempts to achieve 
• The selection of a set of evaluation criteria (called objectives or attributes) 
• The decision maker and his or her preferences with respect to the evaluation criteria 
• The definition of a set of decision alternatives 
• The calculation of a set of outcomes associated with each attribute/ alternative pair 

9.3 Defining Goals 

A goal is a desired state of affairs. In a predictive modeling context, the goal can for 
example be defined as minimizing the impact of planning measures on the archaeological 
record. A similar goal could be a maximum reduction of the costs associated with 
archaeological investigations in the area under consideration. The defined goal can be 
broken down into several objectives, which can best be thought of as intermediate goals. 
This conceptual framework forms the basis of the analytical hierarchy process (Saaty 
1980), a widely used method for MCDM. By defining objectives, a hierarchical structure 
of decision making can be developed. Decisions can then be made by comparing 
objectives or, at the lowest level of the hierarchy, by comparing attributes. Attributes are 
measurable quantities or qualities of a geographical entity or of a relationship between 

GIS and archaeological site location modeling       178



geographical entities. These are the basic information sources available to the decision 
maker for formulating and achieving the objectives. An attribute is a concrete descriptive 
variable; an objective is a more abstract variable with a specification of the relative 
desirability of that variable. The attributes used for archaeological predictive modeling 
are usually a limited number of environmental variables; they can be supplemented with 
expert knowledge on less measurable variables. 

Given the goal of minimizing the impact of planning measures on archaeology, one of 
the objectives under consideration might be the selection of areas of minimal site density, 
and another the selection of building methods that are not damaging to the archaeological 
remains. In this example, predictive modeling is only a way of defining an objective, 
rather than a way of achieving an immediate goal. Archaeological predictive modeling is 
a typical example of multiattribute decision making (MADM) that obtains preferences 
directly for the attributes in the form of functions and weights. MADM problems are 
those that have a predetermined, limited number of alternatives, as is common in 
environmental impact assessments where, for example, a limited number of railway 
alignments must be compared. However, in a GIS-context, each single raster cell or 
polygon can be seen as a decision alternative, as outcomes are calculated for each entity. 

When applying the MCDM framework to a predictive-modeling study, such as was 
done in Ede by Soonius and Ankum (1990), it is easy to break down the model into a 
hierarchical structure of objectives (Figure 9.2). The final model presented is aimed at 
predicting the potential of every single raster cell for finding undisturbed remains of 
prehistoric settlements. It has two objectives at the highest level: an assessment of the 
chance of survival of archaeological remains, and an assessment of overall site density. 
The assessment of overall site density is achieved by combining five intermediate 
objectives: determining site density for five separate archaeological periods. Each of 
these subobjectives is in turn evaluated using six attributes, selected by means of a χ2 test. 

9.4 Selection of the Evaluation Criteria 

In this phase of MCDM, the attributes to be used are specified, and a measurement scale 
is established. This is equivalent to the selection of the predictor variables and 
establishing their values, for example, in terms of site density or probability. Attributes 
may be used for different objectives, possibly with other values attached. 

Attributes should be complete, operational, decomposable, nonredundant, and 
minimal. A set of attributes is complete if it covers all relevant aspects of the decision 
problem and indicates the degree to which the overall objective is achieved. One of the 
enduring criticisms of archaeological predictive modeling is that the set of attributes used 
is not complete; especially social and cultural variables are assumed to be missing from 
the full set of attributes. A set of attributes is operational if it can be used meaningfully in 
the analysis (it is understandable), so that decision makers can understand the 
consequences associated with alternative decisions. Furthermore, an attribute should be 
comprehensive (have a direct relation to the decision problem) and measurable. This last 
condition in many cases implies choosing a proxy attribute; so instead of “a dry piece of 
land to live on,” the more tractable variable “groundwater table” might be employed. The 
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use of proxy attributes implies that there is a missing link between the information 
available and the information necessary (Beinat 1995). 

 

FIGURE 9.2 Hierarchical structure of 
objectives. 

In the model created by Soonius and Ankum (1990), the environmental variables used 
were selected by means of a χ2 test using the known archaeological sites. As has been 
shown by van Leusen (1996), the actual application of the test was not done correctly. 
The violations of the statistical assumptions for the Ede model are, however, not too 
grave as long as the analysis is not considered per period. Even with Yates’s correction 
applied, the values of χ2 are high enough to justify the selection of the analyzed variables 
for the predictive mapping on methodological grounds. However, this does not mean that 
the set of attributes analyzed is complete, although quite a number of environmental 
descriptors were analyzed. 

Furthermore, it may be suspected that some of the variables used are redundant, as no 
independence check was performed. Spatial cross-correlation indices (Goodchild 1986) 
can be calculated for pairs of raster maps and used as a first measure of the independence 
of the attributes used. The calculation should be based on the attribute values associated 
with the different maps. Correlation values range from +1 to −1. A positive correlation 
indicates a direct relationship between two layers, such as when the cell values of one 
layer increase, the cell values of another layer are also likely to increase. A negative 
correlation means that one variable changes inversely to the other. A correlation of 0 
means that two layers are independent of each other. 

 
  

where 

cij=  reflecting the similarity of i and j attributes 
z=attribute value 
i=any cell in grid 1 
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j=any cell in grid 2 (on the same location)  

TABLE 9.1 Correlation Matrix for Six Variables 

  1 2 3 4 5 6 

1 1.00000 0.17658 0.10074 0.18295 0.33574 −0.11646 

2 0.17658 1.00000 0.55118 0.43743 −0.01326 −0.08668 

3 0.10074 0.55118 1.00000 0.36713 −0.15656 −0.09246 

4 0.18295 0.43743 0.36713 1.00000 0.16368 −0.14212 

5 0.33574 −0.01326 −0.15656 0.16368 1.00000 −0.07790 

6 −0.11646 −0.08668 −0.09246 −0.14212 −0.07790 1.00000 

Note: 1=soil type; 2=geomorphological unit; 3=groundwater table; 4=distance to dry valley; 
5=distance to ecological gradient; 6=distance to surface water. 
Source: Soonius, C.M. and Ankum, L.A., Ede, II: Archeologische Potentiekaart, RAAP rapport 49, 
Stichting RAAP, Amsterdam, 1990. 

From Table 9.1 it is clear that at least two variables should be regarded with suspicion for 
use in the predictive model, i.e., groundwater table and distance to dry valleys, both of 
which seem to be somewhat correlated to the geomorphological map. This is not very 
surprising, as the groundwater table is related to elevation, and the map for the distance to 
the dry valleys was obtained by extracting the dry valleys from the geomorphological 
map. A third possible correlation can be observed between the soil map and the distance 
to ecological gradient. This seems to indicate that certain soil types are related to the 
presence or absence of an ecological gradient. 

9.5 Defining Measurement Scales 

Measurement scales can be obtained by using normalization, value (or utility) functions 
(Keeney and Raiffa 1976); probabilistic methods; and fuzzyset membership (e.g., see 
Burrough 1989 and Burrough et al. 1992). A distinction can be made between objective 
probability (like site-density measures) and subjective probability. The latter is also 
known as “prior belief” in the context of Bayesian statistics. 

The objective probability approach received a lot of attention in archaeological 
predictive modeling in the 1980s, and in particular the use of multivariate statistical 
techniques like logistic regression that can be used to obtain objective weights (e.g., see 
Warren 1990). However, in many cases the weights obtained by multivariate statistics are 
not as objective as one would like them to be. As was noted at the outset, the use of 
quantitative, multivariate methods for predictive modeling in the Netherlands has been 
replaced over the past 10 years by qualitative or semiquantitative methods. The main 
reason for this is the fact that frequency statistics have not been able to deliver their 
promise of objective predictions because of the poor quality of the archaeological data 
sets used. Many archaeological data sets are biased toward certain site types that have 
been recorded under specific terrain conditions, so there will be many situations where 
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the available archaeological data set cannot be used as a representative sample of the 
target population. In those cases, expert judgment or subjective belief may be used to 
estimate map weights. 

9.6 Defining Preferences 

The decision maker’s preferences with respect to the evaluation criteria should be 
incorporated into the decision model; they express the importance of each criterion 
relative to other criteria. The decision maker is simply the person(s) involved in trying to 
achieve the defined goal. Ideally, experts provide facts and decision makers values 
(Beinat 1995). In predictive modeling, however, the decision makers are often also the 
experts. They might judge that, for the prediction of Bronze Age graves, other evaluation 
criteria should be used than for Medieval settlement locations. Similarly, different 
preferences can be specified for the Bronze Age graves and Medieval settlements when 
making a decision on what to investigate under the constraints of the available budget. 

A number of methods are available to obtain a numerical representation of 
preferences. Of these methods, pairwise comparison (Saaty 1980) seems to be the most 
effective, but ranking methods and rating methods are easier to apply. The important 
element is that these methods are all meant for the comparison of value judgments, and as 
such involve expert opinion and subjective reasoning. 

The definition of the preferences, in fact, takes place at all hierarchical levels of the 
decision-making process: attributes can be compared, but objectives can be as well. For 
example, the decision maker might decide that groundwater table is more important for 
site location than soil texture. After finishing this evaluation, he or she might decide that 
Neolithic sites are not as important as Roman sites. And after this evaluation, he or she 
might decide that site density is a less important criterion than site preservation. In this 
way, a nested hierarchy of decision making is created, in which all decisions can be 
subjected to the same cycle of criterion selection, establishment of measurement scales, 
definition of alternatives, and preference definition (the analytic hierarchy process). It 
should be noted that the definition of preferences can be avoided only when the criteria 
used are truly independent and can be measured in terms of objective probability (for 
example in a logistic regression equation when all statistical requirements have been 
fulfilled). In all other cases, value judgments will be necessary to weigh the evaluation 
criteria. 

The procedures of establishing measurement scales and criterion preferences, as for 
example applied by Dalla Bona (1994, 2000), who refers to it as the “weighted value 
method,” and even of nesting objectives are of course not new in archaeological 
predictive modeling (e.g., Kohler and Parker 1986, who distinguish a Hierarchical 
Decision Criteria Model). However, they are usually not recognized as belonging to the 
more generic class of MCDM methods. Van Leusen (1993) for example suggested that 
“translating” archaeological intuition into weighting schemes and other types of 
classification rules and embodying them in an expert system would at least make 
“intuitive” approaches reproducible, which seems an adequate description of applying 
MCDM methods. It should be noted, however, that this methodology, which heavily 
relies on expert judgment, has not been the dominant one in (especially American) 
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literature on the subject up to today, as is illustrated by most of the applications found in 
Wescott and Brandon (2000). An example of the rather suspicious attitude toward 
subjective weighting can be found in the paper by Brandt et al. (1992), who rejected the 
use of purely deductively derived weights for map layers and features, basically because 
the current state of archaeological theory would not be able to give more than rough 
notions about human locational behavior. However, at the same time, these authors could 
not achieve complete reliance on inductive methods either (van Leusen 1996), leading to 
the “hybrid approach” that was also used by Soonius and Ankum (1990). Recently, some 
interest can be observed in the use of land-evaluation methods as a purely deductive 
technique for predictive modeling (Kamermans 2000), an approach that has been applied 
previously in archaeological studies of prehistoric land use (Kamermans 1993; Finke et 
al. 1994). However, one should not necessarily equate deductive modeling with expert 
judgment weighting: the experts usually arrive at their judgment through a combination 
of deductive and inductive arguments. 

9.7 Establishing the Decision Rules 

This phase brings together the preceding three steps for the overall assessment of the 
alternatives (ranking of alternatives). The most commonly applied method is simple 
additive weighting, also known as weighted linear combination. Similarly, probabilistic 
additive weighting can be used to obtain a ranking of alternatives. The prerequisite of all 
addition methods is that the attributes used be conditionally independent. 

Kohler and Parker (1986) review four different types of decision rules that can be 
applied to archaeological predictive models. The Fatal-Flaw Decision Criteria Model is 
the most constraining of these; it results in a binary response (yes or no). In MCDM, this 
decision rule is known as a noncompensatory method called conjunctive screening. 
Under conjunctive screening, an alternative is accepted if it meets specified standards or 
thresholds for all evaluation criteria (Boolean AND). The Hierarchical Decision Criteria 
Model is a variant of this; it performs a conjunctive screening as well, but each time for a 
different objective. Conjunctive screening is also found in the application of land 
evaluation, where a land unit can only be classified as being suitable for certain kinds of 
cultivation if it meets all evaluation criteria. Disjunctive screening, on the other hand, 
accepts the alternative if it scores sufficiently high on at least one of the criteria (Boolean 
OR). This is a method not usually found in archaeological predictive modeling. 

If no direct binary response is desired, compensatory methods are applied. They 
require a value judgment for the combination of (possibly conflicting) criteria, and can be 
applied only when all the evaluation criteria are measured in the same units. Afterward, a 
constraint can be placed on the outcome of the decision rule, for example, to distinguish 
crisp zones of high and low probability. Kohler and Parker (1986) distinguish the 
unweighted Decision Criteria Model and the Weighted Additive Decision Criteria Model. 
The unweighted model is in fact a special case of additive weighting, as all weights are 
equal—which is a value judgment in itself. 

The combination of nonindependent attributes can be done by means of multiplication. 
This is to be avoided in most cases, as it implies that the interactions between the 
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attributes are known, and these must then serve as the input for the multiplication 
equation. 

9.8 Bayesian Statistics and Predictive Mapping 

9.8.1 Combining Objective and Subjective Weights 

It is important to note that between the extremes of purely objective and purely subjective 
weighting, compromises of the two can be used. Two routes can then be followed: the 
first starts with an objective weighting, and the weights are adapted afterward by 
consulting experts. This is basically the method employed by Deeben et al. (1997). This 
form of combination lacks a set of formal rules for application and therefore does not 
produce a transparent model unless all modifications to the objective weighting are 
clearly specified. The second route, which is further explored in this chapter, starts with a 
subjective weighting and uses any quantitative data available to modify the weights, but 
only when the data are considered to be a representative sample. In essence, this is the 
concept of Bayesian statistics, where a subjective prior belief is modified using 
quantitative data to obtain a posterior belief: 

posterior belief=conditional belief×prior belief   

The few published applications of Bayesian statistics in predictive modeling inside (van 
Dalen 1999) and outside archaeology (Aspinall 1992; Bonham-Carter 1994) have one 
thing in common: the assumption of a uniform prior probability for all map categories. 
This assumption is the simplest possible form of formulating prior beliefs, and it equates 
to a situation where no prior information is available. In the studies mentioned, most 
attention is paid to the establishment of the conditional beliefs. It can be shown that the 
ps/pa ratio4 (a commonplace indicator of site density that is also used by Deeben et al. 
[1997]) is equivalent in a Bayesian context to the ratio of prior to conditional 
probabilities under the assumption of a uniform prior probability (see Buck et al. 1996). 
This is the reason that Bonham-Carter (1994) uses ps/pa ratios as well for the 
development of a Bayesian geological predictive model. Similarly Aspinall (1992), in an 
ecological application of Bayesian statistics, comments that conditional probabilities can 
be expressed as relative frequencies of occurrence. If the condition of independence of 
the variables is met, the calculation of posterior probabilities is then simply a question of 
multiplying the ps/pa ratios per variable with the prior probabilities. When using a 
logarithmic normalization, the posterior probabilities can even be calculated by simple 
addition instead of multiplication (Bonham-Carter 1994). 

The uniform prior probabilities are based on the currently found site density per area 
unit. When combined with ps/pa ratios used as conditional probabilities, the sum of the 
predicted posterior probabilities per area unit should equal the number of observed sites, 
as ps/pa is a dimensionless number indicating relative site densities. Bonham-Carter 
(1994) notes that the ratio of observed to predicted sites can therefore serve as a measure 
of violation of the assumption of conditional independence of the variables. However, it 
may be desirable not to predict an absolute number of sites, as the size of the target 
population is not known. In that case, the prior probabilities should be normalized on a 
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scale of 0 to 1. When using a uniform prior probability, this implies that any Bayesian 
predictive modeling exercise equates to calculating the ps/pa ratios per map category. 

Apart from the uniform probability distribution, Buck et al. (1996) show a number of 
other distributions, either discrete or continuous, that can be used to model both prior 
(Orton 2000) and posterior probabilities. In the case of categorical maps, a binomial 
distribution can be implemented by breaking down the nominal variables into binary ones 
(Bonham-Carter 1994). The prior and posterior belief for each map category can 
subsequently be modeled by means of a (continuous) Beta distribution (Buck et al. 1996), 
allowing for the establishment of standard deviations around the mean of the posterior 
belief. The form of the Beta distribution is directly dependent on the sample size and the 
conditional probability derived from it. The larger the sample size, the smaller the 
standard deviations will become, and the closer the mean of the distribution will be to the 
conditional probability found. A useful aspect of Beta distributions is that they will also 
yield a mean and a standard deviation in cases where no sites have been found on the 
map unit of interest. They can be used when the available sample is small. 

9.8.2 Formulating the Priors 

The following question to be answered is: If we do not want to use an assumption of 
uniform probability, how can we establish prior probabilities based on expert judgment? 
This brings us back into the realm of multicriteria decision making and, precisely, the 
issue of specifying preferences by the decision maker. Three basic methods can easily be 
applied: 

1. Ranking methods: The decision maker expresses a ranking of the criteria under 
consideration, and the following equations can then be used to obtain numerical 
weights from the rank-order information (rank sum weights): 

wj=n−rj+1/Σ(n−rk+1) 
  

or (rank reciprocal weights) 

wj=(1/rj)/Σ(1/rk) 
  

where 
wj=weight for criterion j 
n=number of criteria under consideration 
r=rank position of the criterion 
In general, the larger the number of criteria to be ranked, the less useful the 
method will become. 

2. Rating methods: The decision maker tries to estimate weights on a 1 to 100 scale (or 
any other conceivable numerical scale). This is the most widely applied method in 
archaeological predictive mapping (e.g., Dalla Bona 1994, 2000). 

3. Pairwise comparison method (as part of the analytical hierarchy process; Saaty 1980): 
Criteria are compared in pairs, and intensities of importance are attributed to each pair. 
It can only be performed if all criteria are measured on the same scale. It is suggested 
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by Malczewski (1999) that the method is the most effective technique for spatial 
decision making, and as such should receive more attention. A good introduction to 
the technique is given in Eastman et al. (1993). The number of comparisons involved 
can become very large if the number of criteria increases. Comparisons are made in 
linguistic terms (Table 9.2). A maximum number of nine comparison levels is given 
that can be related to an intensity number. An intensity number of 1 implies equal 
importance (the diagonal in the comparison matrix), an intensity of 9 is translated as 
extreme importance. This means that when a zone of high archaeological value is 
judged to be “extremely more important” than a zone of low archaeological value, a 
value of 9 is given to the 

TABLE 9.2 The Scale Used for Pairwise 
Comparison 

Intensity of Importance Definition 
1 Equal importance 

2 Equal to moderate importance 

3 Moderate importance 

4 Moderate to strong importance 

5 Strong importance 

6 Strong to very strong importance 

7 Very strong importance 

8 Very to extremely strong importance 

9 Extreme importance 

Source: Malczewski, J., GIS and Multicriteria Decision Analysis, John Wiley and Sons, New York, 
1999. 

“high compared to low” cell in the comparison matrix. A value of 1/ 9 
should then be given to the “low compared to high” cell, resulting in a 
reciprocal matrix. 

In essence, the procedures described above solve the problem of formalizing the use of 
subjective information in a predictive map. 

9.9 Bayesian Statistics and Inductive Learning 

The available methods for preference specification demand that the expert express his or 
her preferences in a numerical manner, or at least be able to provide a preference ranking. 
One might therefore ask: Is it of any use to specify preferences in a numerical way, apart 
from specific cases where a numerical answer is desired? Two arguments can be given in 
favor of using numerical preferences: 
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1. The measurement scales should be comparable when applying decision rules; some 
form of quantification is necessary to judge the outcome of any multicriteria decision-
making process. 

2. The fact that predictive maps will be nothing but a representation of current knowledge 
makes it necessary that the models produced be amenable to improvement, i.e., the 
models should be able to learn. To achieve this, the modeling procedure should be 
transparent and reproducible; this is more easily done using numerical preferences 
than by using linguistic terms. 

The second point may need some clarification. Let us take the case where a map unit has 
been qualified as having a low archaeological value. The definition of “low value” in this 
case may imply a relatively low density of archaeological finds. However, the linguistic 
definition does not include an assessment of the actual quantities or probabilities 
involved. Suppose that, in the course of several years, a number of new settlement sites 
are found within this particular unit, e.g., because of the use of new prospection methods. 
When do we decide that the archaeological value of this particular unit no longer is low 
but should be intermediate or high? Without a numerical decision rule, the interpretation 
of the archaeological value of the unit is neither transparent nor reproducible. 

Advocates of Bayesian statistics are always very confident that it offers a way of 
“inductive learning.” Venneker (1996), for example, states that “it constitutes a 
computationally efficient recursive process in which the entire data stream is captured in 
the posterior belief of a hypothesis and need not be recalculated each time new or 
additional independent data become available.” The bottleneck in this statement is the 
fact that the new data should be independent from the old data in order to be able to adapt 
the posterior belief; otherwise there is the very real danger of self-fulfilling prophecies. 
This is precisely the problem of using archaeological predictive maps for guiding 
surveys: there will be a natural tendency to select those areas where high site densities are 
predicted, and this may lead to an ever-increasing amount of biased-sample data. Even 
though the Bayesian approach has the appeal of being a formal method applicable in a 
rather straightforward way to data that are far from optimal, the approach itself does not 
solve the problem of using biased data. One advantage of Bayesian statistics, however, is 
that if the new data are collected independently, there is no need for random sampling 
(Orton 2000); representative sampling—a task that may be difficult enough in itself—is 
good enough. 

9.10 Application: The Predictive Map of Ede 

To illustrate the approach outlined above, a case study was performed using the new 
predictive map of the municipality of Ede that was recently made by RAAP (Heunks 
2001) (Figure 9.3). This map was commissioned by the municipality to replace the 1990 
map, which had become outdated. The new map is primarily based on a qualitative 
interpretation of the 1:50,000 soil map of the area. Map units were combined to arrive at 
what can best be described as “archaeological land units” that were subsequently 
evaluated for their archaeological value (Table 9.3). In essence, we are dealing with a 
single-attribute map that can be evaluated for different criteria, such as site density per 
period or site-preservation conditions. 
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The prior probabilities were obtained by contacting four experts on the archaeology of 
the region. Of these, one refused to cooperate on the grounds that the land-units map 
alone could not be used for a predictive  

 

FIGURE 9.3 Predictive map of the 
municipality of Ede. 

TABLE 9.3 Archaeological Land Units Used as the 
Basis for the Ede Predictive Map 

Number Land Unit 
Low-Lying Sandy Plain (Geldersche Vallei) 

1 Low ridges and hillocks 

2 Low ridges and hillocks with anthropogenic soils 

3 Undulating plains 

4 Valleys and depressions 

Lateral Morainic Hills (Veluwe) 

5 Late Pleistocene aeolian sands with moder podzol soils 

6 Late Pleistocene aeolian sands with anthropogenic soils 

7 Late Pleistocene aeolian sands with humic podzol soils 
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8 Fluvial and periglacial sands with moder podzol soils 

9 Fluvial and periglacial sands with anthropogenic soils 

10 Fluvial and periglacial sands with humic podzol soils 

11 Depressions 

12 Stream valley 

13 Drift sands, both covered and deflated areas 

14 Drift sand, deflated areas 

Source: Heunks, E., Gemeente Ede: archeologische verwachtingskaart, RAAP-rapport 654, RAAP 
Archeologisch Adviesbureau BV, Amsterdam, 2001. 

model as it does not try to take into account social and cultural factors that might have 
influenced site location. The other three experts were willing to evaluate the map units 
using the ranking, rating, and pairwise comparison methods that were outlined in Section 
9.8.2 for both site-density and site-preservation potential. 

The responses received indicated that the rank reciprocal method results in 
inconsistent weights when compared with the other three methods. There is no evidence 
that any of the remaining three methods performs better than the others. Pairwise 
comparison is without any doubt a lot more time consuming, even though it is 
theoretically the most appropriate and efficient (Malczewski 1999). The main reason for 
applying pairwise comparison is to obtain weights that are independent of the overall 
weighting obtained with the rating and ranking methods. However, when confronted with 
all three methods, the experts took the exercise as a test of maintaining consistency 
between methods, resulting in a relatively consistent weighting between methods. Apart 
from that, the experts were hesitant to indicate differences between units that they were 
uncertain about, preferring to attribute equal weights instead (or in Bayesian terms, 
specifying uninformative priors). 

Comparison of weights between experts showed that some disagreement exists on the 
importance of the land units, both for site-density as well as for site-preservation 
potential. Whereas one expert took soil type as the most important factor influencing site 
density, a second one evidently believed that geomorphology was more important. There 
was also a strong disagreement on the importance of the partly deflated drift-sand areas 
for site preservation. This may have been the consequence of not fully explaining the 
map legend to the experts. This particular unit was thought to be important in terms of 
site preservation, as drift sand may have covered the previously existing surface. In fact, 
site-preservation potential is influenced by two factors—the presence of a soil cover and 
the groundwater table—and one expert clearly believed that a high groundwater table was 
much more important, possibly reflecting a preference for well-conserved organic 
remains. Of course, this brings us to the question of who to believe. As it will in most 
cases be impossible to weigh the experts’ opinions on a scale of reliability of response, 
the obvious solution is to take the mean weight of the experts’ responses as the prior 
belief (Beinat 1995). This also implies that it is possible to calculate the variance of the 
experts’ responses. An alternative option is to consider each expert’s opinion as an 
independent sample. 
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9.11 Site Density 

For the site-density mapping, a Beta distribution was used to model the prior and 
posterior belief. The Beta distribution has the following form (for a more detailed 
description, see Buck et al. 1996): 

C.pa−1·(1−p)b−1   

where 
C=a normalizing constant dependent on a and b 
p=the proportion of sites in unit X 
1−p=the proportion of sites not in unit X 
a−1=the number of “successful draws” from a sample of size n 
b−1=the number of “unsuccessful draws” from a sample of size n, where (b=n+2−a) 
The prior form of the Beta distribution is obtained by setting a to 1, as no sample data 

are available (Orton 2000). The value of b and the corresponding standard deviation can 
then be calculated directly, as the mean of the distribution (the weight attributed by the 
expert to the map category) is given by a/(a+b), and the variance by ab/[(a+b)2 (a+b+1)] 
(Buck et al. 1996). Once sample data become available, the β distribution can be updated 
by simply adding the number of “successful” and “unsuccessful” draws to a−1 and b−1, 
respectively. Eventually, the mean of the distribution will move closer toward the mean 
of the actual sample, and standard deviations will decrease with increasing sample size. 
In this particular case we are dealing with three experts. If each of these experts’ opinions 
is treated as an independent sample, the total value of a increases to 3, and the value of b 
to the sum of b for each independent sample. 

Alternatively, by taking the mean of all experts’ opinions and calculating the variance 
of the responses, one can obtain values for a and b using the equations given in 
Robertson (1999).3 This will result in a radically different outcome for the prior-
probability distribution, and consequently will have a profound effect on the influence of 
the conditional probabilities on the posterior belief. This method will attribute much more 
weight to the experts’ opinions (especially when they are in agreement), whereas the first 
method will tend to emphasize the importance of the incoming data for a new site. 

When setting a to 1 for formulating the prior probabilities, the relatively large number 
of 235 known sites in the municipality of Ede leads to posteriors that are very close to the 
conditional probabilities. The experts’ judgment will become quickly less important once 
considerable amounts of data become available. Unfortunately, it seems improbable that 
the data set can be considered a representative sample of the total area. The most 
important reason for this seems to be a research bias of the registered archaeological data 
set toward areas that are open to field survey. However, large areas of the municipality 
are covered in woodland or grassland, and even though no quantitative data are currently 
available to estimate the importance of this effect, it can be suspected that certain land-
use types are related to specific land units. 

The use of the mean and standard deviation of the experts’ opinions to define prior 
probabilities leads to posteriors that are closer to the prior probabilities in cases where the 
experts more or less agree. Where strong disagreement exists (larger standard deviations), 
the posterior probabilities are closer to the conditional probabilities. Whether this 
alternative method of prior formulation is preferable is probably dependent on the 
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importance attributed to the available site data. Given the fact that the existing site 
sample is viewed with suspicion, in this particular case it may be the best method for 
formulating priors. 

It is possible to determine confidence intervals around the prior and posterior means, 
but as we are not dealing with a normal distribution, the standard deviations cannot be 
used to create confidence intervals; these must be calculated in a statistical package. 
Plotting the prior distribution together with the posterior distribution shows how far the 
posterior beliefs are removed from the prior beliefs. Tables 9.4a and 9.4b show how the 
model develops if all available site data in the municipality of Ede are included to obtain 
posterior beliefs for both methods of prior formulation. 

TABLE 9.4a Development of Weights for Site 
Density Using Beta Distributions for All Units on 
the Ede Predictive Map 

Number 
a 

Prior 
Mean 
(%) 

Conditional 
Mean (%) 

Posterior 
Mean (%) 

Posterior 
Std. Dev. 

(%) 

95% Confidence 
Interval (%) 

          Lower 
Bound 

Upper 
Bound 

1 9.99 6.94 7.06 1.63 4.22 10.56 

2 12.31 28.95 28.40 2.87 22.94 34.20 

3 3.00 3.03 3.03 1.04 1.34 5.38 

4 1.38 1.98 1.84 0.76 0.66 3.61 

5 12.59 11.37 11.41 2.03 7.75 15.67 

6 12.79 10.17 10.25 1.93 6.78 14.34 

7 7.40 2.29 2.57 1.00 0.99 4.85 

8 9.44 3.57 3.82 1.22 1.81 6.53 

9 8.64 0.42 0.80 0.57 0.10 2.23 

10 4.20 0.63 0.96 0.60 0.16 2.44 

11 0.73 0.42 0.53 0.38 0.06 1.48 

12 9.99 29.97 29.16 2.89 23.67 34.97 

13 4.07 2.28 2.45 0.95 0.95 4.64 

14 3.46 3.03 3.08 1.06 1.36 5.46 

Note: Based on all available site data (n=235). The prior Beta distribution was calculated by 
assuming a=1 and taking the mean of the experts’ opinions to calculate b. The conditional means 
were corrected for the effect of land-unit size. The resulting posterior weights should therefore not 
be interpreted as the percentage of sites to be found on each land unit. The 95% confidence interval 
is shown in the last two columns. 
a As defined in Table 9.3. 
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9.12 Site-Preservation Potential 

The initial goal of finding the areas with a minimal number of well-preserved sites was 
broken down into two objectives: mapping of site-density and site-preservation potential. 
The same attribute (the land-units map) was used for both criteria, but different weights 
were applied. However, when the two objectives are combined, it is clear that site-density 
and site-preservation potential are not independent objectives that can simply be added to 
arrive at a final weight. Indeed, a multiplicative weighting is needed. This is simple in the 
case of complete destruction (e.g., in quarries) or in the case of perfect preservation (e.g., 
under 2 m of drift sand), but a more subtle approach is needed in the intermediate 
situations where sites may have been partially destroyed. The experts’ weighting can 
provide a first estimation in this respect, and these weights can be normalized to reflect 
the range from optimal to minimal preservation. However, when these weights are 
multiplied with the site-density estimates, the resulting weights highly favor the areas 
where some form of protection is present (Table 9.5). 

TABLE 9.4b Development of Weights for Site 
Density Using Beta Distributions for All Units on 
the Ede Predictive Map 

Number 
a 

Prior 
Mean 
(%) 

Conditional 
Mean (%) 

Posterior 
Mean (%) 

Posterior 
Std. Dev. 

(%) 

95% Confidence 
Interval (%) 

          Lower 
Bound 

Upper 
Bound 

1 9.99 6.94 7.85 1.41 5.31 10.83 

2 12.31 28.95 23.51 2.24 19.26 28.03 

3 3.00 3.03 3.47 0.69 2.24 4.94 

4 1.38 1.98 2.07 0.69 0.95 3.61 

5 12.59 11.37 11.65 1.35 9.14 14.42 

6 12.79 10.17 12.47 1.34 9.95 15.22 

7 7.40 2.29 3.90 1.04 2.13 6.17 

8 9.44 3.57 4.01 1.22 1.98 6.71 

9 8.64 0.42 2.20 0.84 0.87 4.12 

10 4.20 0.63 4.07 0.32 3.47 4.72 

11 0.73 0.42 0.94 0.09 0.78 1.12 

12 9.99 29.97 15.34 1.26 12.95 17.88 

13 4.07 2.28 2.59 0.82 1.23 4.42 

14 3.46 3.03 3.28 0.88 1.78 5.22 
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Note: The same as Table 9.4a, but the prior Beta distribution was calculated by using the mean and 
standard deviation of the experts’ opinions to obtain values for a and b. 
a As defined in Table 9.3. 

TABLE 9.5 Combined Weighting of Land Units 
for Site-Density and Site-Preservation Potential 

Numbers 
a 

Site-
Density 
Weight 

(%) 

Site-
Preservation 
Weight (%) 

Normalized 
Site-

Preservation 
Weight (%) 

Product of Site 
Density and 
Preservation 

(%) 

Normalized 
Product (%) 

1 9.99 4.11 29.78 2.98 5.27 

2 12.31 13.81 100.00 12.31 21.78 

3 3.00 4.83 34.94 1.05 1.86 

4 1.38 7.64 55.30 0.76 1.35 

5 12.59 5.60 40.57 5.11 9.04 

6 12.79 13.57 98.21 12.56 22.22 

7 7.40 4.45 32.24 2.39 4.22 

8 9.44 4.45 32.24 3.04 5.38 

9 8.64 13.39 96.95 8.38 14.83 

10 4.20 4.60 33.30 1.40 2.48 

11 0.73 10.94 79.19 0.58 1.02 

12 9.99 5.33 38.61 3.86 6.83 

13 4.07 6.67 48.25 1.96 3.48 

14 3.46 0.59 4.29 0.15 0.26 

Note: Site-density and -preservation potential are both based on the mean of the experts’ opinions. 
Preservation was normalized to reflect the assumption that the highest ranking unit equates to 
perfect preservation. The final weighting was again normalized to a 100% scale. 
a As defined in Table 9.3. 
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TABLE 9.6 Development of Weights for Site 
Density Using Beta Distributions for All Units on 
the Ede Predictive Map 

Numbers 
a 

Prior 
Mean 
(%) 

Conditional 
Mean (%) 

Posterior 
Mean (%) 

Posterior 
Std. Dev. 

(%) 

95% Confidence 
Interval (%) 

          Lower 
Bound 

Upper 
Bound 

1 4.11 6.25 5.44 2.81 1.35 12.11 

2 13.81 6.25 7.41 3.77 1.86 16.31 

3 4.83 6.25 5.76 2.97 1.44 12.80 

4 7.64 5.00 5.65 3.14 1.20 13.19 

5 5.60 15.00 12.10 4.25 5.10 21.57 

6 13.57 11.25 11.61 4.61 4.24 22.03 

7 4.45 5.00 4.80 2.68 1.02 11.27 

8 4.45 25.00 17.61 4.78 9.29 27.90 

9 13.39 3.75 5.27 3.21 0.91 13.10 

10 4.60 12.50 9.72 3.74 3.71 18.17 

11 10.94 2.50 4.07 2.79 0.51 11.04 

12 5.33 12.50 10.21 3.92 3.91 19.06 

13 6.67 15.00 12.73 4.45 5.37 22.63 

14 0.59 3.75 1.20 0.75 0.20 3.05 

Note: Based on data from preserved sites (n=38). The prior Beta distribution was calculated by 
assuming a=1 and taking the mean of the experts’ opinions to calculate b. The 95% confidence 
interval is shown in the last two columns. 
a As defined in Table 9.3. 

It is important to note that quantitative data on the preservation aspect can actually be 
obtained. For example, find spots in the Dutch national archaeological database ARCHIS, 
maintained by the ROB, can be registered as being intact, partially disturbed, or fully 
disturbed, and as such could be used to get some idea of the actual condition of sites in 
the various land units. However, the majority of find spots turn out not to have the 
relevant information registered. Of the 585 find spots registered in the territory of Ede as 
of April 2001, only 90 (15.4%) had information concerning the state of conservation at 
the time of discovery. Of these, 35 were completely disturbed, 45 were partially 
disturbed, and only 10 remained intact. For a traditional inferential model, these numbers 
are far too small to justify a statistical analysis. However, in a Bayesian model it is 
perfectly acceptable to add this information to the expressed priors. By counting the 
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partially disturbed sites as 50% intact, the ratio of disturbed to intact sites becomes 52/38. 
As was done for the site densities, a Beta distribution was also used to model both the 
prior and posterior beliefs. Table 9.6 shows the results of including the site-disturbance 
data. 

9.13 Conclusions 

The case study presented here is a first effort at incorporating multicriteria decision 
making and Bayesian statistics into predictive modeling. Obviously, a number of 
potential problems still need to be addressed: 

1. The “objective” data used in this case study are not likely to be a representative 
sample. Bayesian statistical methods are not dependent on the strict sampling 
conditions that must be observed with frequency statistics, but the sample should in 
some way reflect the target population. 

2. Modeling by means of Beta distributions becomes considerably more complex when 
multivariate modeling is undertaken. The interplay of various distributions leads to 
increasingly complex mathematical models that are difficult to interpret. However, in 
the context of this chapter—modeling Dutch cultural resource management (CRM), 
which usually deals with univariate models—this is (at least at the moment) not a 
major obstacle. 

3. The Beta distribution itself may not be the most appropriate statistical distribution, as it 
is a form of the binomial distribution, which is applicable to very large target 
populations. However, in this particular case, the total number of sites in the area may 
not be extremely large, and a considerable proportion of it will already have been 
sampled. Furthermore, this sampling is done without replacement, unlike in the 
binomial situation. In such cases, the hypergeometric distribution is more appropriate 
(Davis 1986), but its density function cannot be calculated when the size of the total 
population is unknown. This means that the area under consideration should be 
divided into equal-area sampling units (Nance 1981). The actual size of these units 
will then highly influence the outcome of any statistical modeling. 

4. Sometimes experts are consulted only after a quantitative model has been constructed 
(e.g., Deeben et al. 1997). Bayesian statistics assumes that any new information that 
becomes available is in the form of a sample comparable with the one used for the first 
calculation. A potential solution is to treat the “conditional” experts’ opinions 
similarly, as an independent sample, with corresponding means and standard 
deviations. 

5. The attributes chosen may be ill-considered. In theory, if an attribute is not important, 
it should—in the course of Bayesian model development—“average out” and become 
unimportant. However, it will be harder to add a previously neglected attribute or to 
incorporate a “revised” attribute (e.g., a new edition of a soil map or an improved 
DEM) into the model without going back to the basics of model construction. 

Having said this, it is nonetheless clear that the methodological framework outlined is 
promising and can readily be applied to archaeological predictive modeling. Indeed, apart 
from the use of Beta distributions, the proposed methodology does not use any techniques 
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that are drastically different from earlier studies, although it does place predictive 
modeling in the wider context of multicriteria decision making. As such, this approach 
offers a more structured approach to the modeling, promises to be useful for the 
formalized inclusion of expert judgment in the model, and provides an easy way to 
develop the model once new data become available. The use of the Beta distributions can 
also tell us something about the strength or subjectivity of the model: if the posteriors are 
not backed up by quantitative data, then the standard deviations will become larger. The 
Beta distributions should also provide insight into the sample size needed to restore 
uncertainties to an acceptable level. 
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Notes 
1. RAAP is a private archaeological consultancy firm, specialized in archaeological survey and 

predictive modeling. 
2. Rijksdienst voor het Oudheidkundig Bodemonderzoek (ROB) is the Dutch national 

archaeological service. 
3. a=µ{[µ (1−µ)/σ2]−1}; b=(1−µ) {[µ (1−µ)/σ2]−1}; from Iversen (1984). 
4. ps=proportion of sites found in map unit X. 

pa=proportion of area taken up by map unit X. 
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Section 5:  
Large Databases and CRM 



 

10 
Points vs. Polygons: A Test Case Using a 
Statewide Geographic Information System  

Philip B.Mink, II, B.Jo Stokes, and David Pollack 

 
Since 1997, the Kentucky Heritage Council, the University of Kentucky Department of 
Anthropology, and the Kentucky Transportation Cabinet have been working together to 
develop geographic information systems (GIS) coverages for the cultural resources of the 
state of Kentucky. The project is funded, in part, by ISTEA and TEA-21 Transportation 
Enhancement funds provided by the Kentucky Transportation Cabinet. The goal of the 
project is to link the existing textual databases of the Kentucky Office of State 
Archaeology (KOSA) and Kentucky Heritage Council (KHC) with GIS coverages that 
were developed by digitizing archaeological site areas, survey areas, and historic 
resources. This project was designed to provide a GIS that could be used as a planning 
tool by the Kentucky Transportation Cabinet and other land-managing agencies and by 
researchers to learn more about prehistoric and historic settlement patterns. 

To gain a better understanding of prehistoric and historic settlement patterns, 
archaeologists are often interested in interpreting and predicting the spatial distribution of 
archaeological sites on the landscape. To accomplish this task they have begun to use 
GIS to develop locational models (Lock and Stančič 1995; Maschner 1996; Wescott and 
Brandon 2000). In archaeology, these models have two major objectives: (1) to generate 
maps that can be  

used by land managers to manage cultural resources more effectively and (2) to gain 
insights into prehistoric and historic landscapes and settlement patterns (Judge and 
Sebastian 1988). 

Locational models are only as dependable as the data used to create them (Altschul 
1988), and in the current study the question is whether points or polygons produce more 
reliable models. This question was answered by using a sample of Archaic sites from 
Henderson County, Kentucky, to develop test models using both polygon and point data 
and then comparing the results of each test model. Before we describe the results of our 
evaluation of the different models, a brief discussion is presented concerning the benefits 
to cultural resources managers of digitizing site locations from maps and for using 
polygon rather than point data to manage cultural resources. 

 

 



10.1 Digitizing Site Locations and Using Polygons to Manage 
Archaeological Sites 

In Kentucky, when an archaeological site is recorded, a site inventory form is submitted 
to KOSA, and the information on the form is entered into the site inventory database. 
These forms require the submission of both written UTM coordinates and a copy of the 
appropriate part of a USGS Quadrangle map with the site boundaries drawn upon it. 
During the creation of the Kentucky cultural resources GIS, the original UTM 
coordinates on the site forms were compared with the calculated GIS-derived coordinates 
from the hand-drawn map locations provided with the site forms. As a result of this 
comparison, numerous instances were found where the coordinates recorded on site 
forms were hundreds of meters and sometimes several kilometers from the locations 
drawn on a USGS Quadrangle map (Figure 10.1). In developing the GIS coverages, it 
thus was assumed that the locations digitized from maps were more accurate than the 
recorded UTM coordinates recorded on the site survey forms and included in the site 
inventory database. Site recorders appear to be able to visually locate and draw the site on 
a topographic map more reliably than they can calculate the actual geographic 
coordinates. As a consequence, the choice to digitize the sites from site areas drawn on 
topographic maps has resulted in greater accuracy than if sites had simply been plotted as 
points using the coordinates recorded in the site inventory database. 

The question of how to represent archaeological sites in a GIS is one faced by many 
archaeologists. The norm in most statewide systems, where the archaeological site is the 
unit of analysis, is to use a point to represent the site. However, the decision to digitize 
archaeological sites as polygons rather than points was made early in the process of 
creating the Kentucky GIS. The advantage of polygon data over point data is that 
polygon data provide a more accurate representation of the size and shape of a site and 
provide a more complete representation of the spatial distribution of archaeological 
resources within a project or study area. In addition, once the polygons were digitized, 
calculating a centroid (site-point representation) for each polygonal site area could easily 
be done. Therefore, in Kentucky, where polygons were digitized, both types of data are 
available to cultural resource managers and researchers. 

As previously stated, digitizing sites as polygons allows differences in site size and 
shape to be depicted on maps. While a single point may work well for showing the 
location of an Archaic rock shelter or a Woodland burial mound, it does not work as well 
for characterizing the spatial limits of a Late Prehistoric village that covers 14 ha. For the 
latter, a polygon that shows the actual site limits does a better job of depicting the size of 
this site and distinguishing it from smaller sites. An example of the range in variation in 
archaeological site size and shape is illustrated in Figure 10.2, which shows 
archaeological sites along a portion of the Ohio River. In this area, many sites are 
extremely long, yet narrow. A point does not adequately reflect the size and shape of 
these sites. 

In addition to more adequately representing the area encompassed by a site, polygons 
provide a more complete representation of the spatial distribution of archaeological 
resources on the landscape. This is a particularly important point for site management and 
planning. For example, a fictional scoping study of a highway corridor demonstrates that 
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polygon data provide a much better sense of the project impacts than a map using point 
data (Figure 10.3). These two maps illustrate, that when sites are represented as  

 
 

 

FIGURE 10.1 Example of sites 
plotted by UTM coordinates vs. 
corrected with reference-map polygon. 

 

FIGURE 10.2 Differences in site-size 
representation between points and 
polygons. 
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FIGURE 10.3 Highway corridor with 
polygons and points. 

points, there are 53 located within the corridor, but when polygons are used, the project 
impacts 64 sites. In other words, there is an 11-site increase in sites potentially affected 
by the project when using polygon data to represent sites rather than point data. From a 
cultural resource management perspective, this type of locational information is 
invaluable. 

10.2 Locational Models: Points vs. Polygons 

While there are some advantages to using polygon information rather than points to 
manage cultural resources, the question arises as to whether the spatial information 
associated with polygon data is useful in other ways. After all of the archaeological site 
and survey coverages for Kentucky were digitized into a GIS, the decision was made to 
explore the usefulness of polygon data in developing locational models. A review of 
predictive modeling in archaeology (Cordell and Green 1983; DeBloois 1975; Stevenson 
1993; Weed et al. 1996; Wescott and Brandon 2000) showed that point data are the site 
representation used for most if not all modeling procedures. However, because the 
Kentucky GIS allows for the use of either point or polygon data, it presented an excellent 
opportunity to evaluate the respective benefits of either data source in predictive 
modeling. To accomplish this task, a sample archaeological site from the Kentucky site 
inventory was used to generate models using point and polygon data to represent the 
location of archaeological sites. 
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10.2.1 Archaeological Data 

The archaeological sample used to develop the models consisted of Archaic period 
(8000–1000 B.C.) sites from Henderson County, Kentucky. Henderson County was 
chosen because of the large number of Archaic sites recorded in the county (n=123) and 
the high percentage of the county previously surveyed (7%) (Figure 10.4). 

 

FIGURE 10.4 Archaic sites in 
Henderson County. 

The Archaic period is traditionally divided into three subperiods: the Early, Middle, and 
Late Archaic (Jefferies 1996; Lewis 1996; Stoltman 1978). The Early Archaic (8000–
6000 B.C.) is seen as a time of cultural transition between the Archaic and the preceding 
Paleo-Indian period. Early Archaic groups exploited local flora (such as nut-bearing trees 
like oak, hickory, and walnut) and fauna (such as white-tailed deer and turkey) and 
followed a highly mobile subsistence pattern similar to their Paleo-Indian forebears 
(Jefferies 1996:40). In Henderson County, there are 48 sites with an Early Archaic 
component located in both lowland (e.g., Ohio and Green River floodplains) and upland 
environments (e.g., bluff tops and interior ridge tops). 

The Middle Archaic (6000–3000 B.C.) corresponds to the Hypsithermal, which 
resulted in drier, warmer conditions that may have restricted the distribution of 
subsistence resources and encouraged more-intensive exploitation of more-local food 
items (Jefferies 1996). In addition, there seems to be increased cultural regionalization 
expressed through the development of varied projectile point types (Cook 1976; Fowler 
1959; Nance 1986). The Middle Archaic is underrepresented in Henderson County, with 
only 13 sites designated as having a Middle Archaic component. A majority of Middle 
Archaic sites are located in the northwest portion of the county. These sites are associated 
with the same types of environments as Early Archaic sites. 
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An emphasis on hunting and gathering continued into the Late Archaic (3000–1000 
B.C.), with some important changes. People became more dispersed on the landscape and 
became increasingly reliant on starchy seeds (such as goosefoot and marsh elder) and 
freshwater mussels (Jefferies 1996:54). This period also corresponds to distinct social 
changes identified by the development of large shell middens along the Green River 
(Conaty 1985; Fowler 1959; Nance 1985; Rothschild 1979). In Henderson County, the 
number of sites increases to 51, and the increased utilization of mussels can be seen in the 
development of sites with thick shell middens along the Green River. Sites in the Late 
Archaic fall into the same environmental settings as the earlier two periods. 

Overall, little is known about the specific adaptations of Archaic people in Henderson 
County. Primarily, attention on Archaic sites here has focused on large shell-midden sites 
located along the Green River, such as Bluff City (15He160), and several smaller Archaic 
camp sites (15He580, 15He589, 15He635, 15He631, and 15He638) (Hockensmith 1984). 
However, most Archaic sites in Henderson County that are located along the Green 
River, Ohio River, and their tributaries do not have shell-midden components. Archaic 
sites are found in various environmental zones in Henderson, including floodplains 
(15He537 and 15He538), upland ridge tops (15He804, 15He805, 15He820), and a 
hillside (15He10, a rock shelter). The association of Archaic sites with a variety of 
landforms points to multiple zones of resource use consistent with a hunting and 
gathering subsistence base. 

While we recognize that there were changes in sedentism, mobility patterns, and 
resource use during the long span of time covered by the Archaic, all of the Archaic 
period sites were grouped together for the purpose of modeling a general hunter-gatherer 
settlement pattern. It was hoped that by choosing a time period characterized by a general 
pattern of high mobility and a subsistence strategy reliant upon multiple environmental 
zones, such as floodplain and upland ridges for hunting game and collecting nuts and 
seeds, a model could be developed using a wide range of environmental variables. 

10.2.2 Points vs. Polygons 

As suggested by Kvamme (1990), the 123 Henderson County Archaic sites used in this 
study were divided into two groups (a training group and a test group) in order to “train” 
the decision rules on which the models were to be built. The training group consisted of 
63 archaeological sites and 125 nonsite locations, and the test group consisted of the 
other 60 archaeological sites. The training group was analyzed to create the model, and 
sites in the test group were used to test the validity of the model. 

The modeling approach chosen, empirical correlation, is an inductive modeling 
strategy that fits mathematical functions to a training data set (Kvamme 1990). In these 
models, the underlying assumption is that environmental factors influenced the location 
of prehistoric settlements. Kohler and Parker (1986) note that the long history of this 
approach can be traced back to the works of Steward (1938) and Willey (1953). 
Examples of environmentally based GIS models include those developed by Duncan and 
Beckman (2000) for West Virginia and Pennsylvania as well as the model developed by 
Warren and Asch (2000) for the Eastern Prairie Peninsula of Illinois. While it is 
recognized that culture plays a role in determining site location (Hill 1971; Wobst 1976), 
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the difficulties in extracting quantifiable cultural variables for a locational model led us to 
rely upon available environmental data. 

When quantifying the environmental data, it is also important to choose the right unit 
of analysis. In most archaeological predictive models, a parcel of land is preferred 
(Kvamme 1990), represented in a GIS by a uniformly sized grid cell. Warren (1990) 
indicates that high-resolution data (e.g., small grid-cell size) are more desirable than low-
resolution data (large grid-cell size). The readily available North American data provided 
by the United States Geological Survey (utilized by most North American model 
builders) are high-resolution data typically provided at a 30×30 m grid-cell resolution 
(900 m2), which is potentially smaller than an average site size (e.g., in this study the 
average site area is 14,338 m2). Therefore, it is hypothesized that an archaeological site 
represented by a point that is then used to extract environmental data for model 
construction will likely result in a high potential for underrepresentation of certain 
environmental variables and the diversity of environmental zones associated with a 
particular site. Conversely, a site represented by a polygon that is then used to extract 
environmental data for model construction should result in a more precise representation 
of the environmental variables that may have influenced site placement. 

To test this hypothesis, relatively simple correlative models were used to assess the 
applicability of using polygons or points to represent sites in archaeological locational 
modeling. The nature and availability of existing data necessitated this approach. While 
more-robust statistical techniques such as logistic regression have been used to develop 
models (Kvamme 1990), the data for this study were not appropriate for inclusion into 
regression analysis. It was felt that, because the purpose of this study was to compare and 
contrast models developed using points and polygons, a simpler approach would be best. 

One of the most common strategies followed in creating locational models is to 
develop a decision rule that is then used to create a probability surface by calculating the 
intersection of a set of nonarchaeological variables that are indicators of archaeological 
site presence (Kvamme 1990). The following method was used to create and test the 
models. 

1. Primary data-set collection 
2. Secondary data-set derivation 
3. Independent-variable sampling for both training and test data sets for both points and 

polygons 
4. Statistical analysis of the data sets 
5. Creation of decision rule 
6. Development of decision surfaces 
7. Testing of the models 

Primary data sets were assembled from a variety of sources, including the KOSA, 
Kentucky Geological Survey, Kentucky Environmental Resources Cabinet, and the 
Governors Office of Technology, Office of GIS. The data acquired from these sources 
include: archaeological site boundaries, digital elevation models (DEMs), stream data, 
soil data, and landform data. ESRI’s Arc View 3.2 GIS software, along with the Spatial 
Analyst Extension and the Grid Analyst Extension Version 1.1 developed by Dr. Arun 
K.Saraf (2000), was used to develop the models. Many of the primary data sets had to be 
imported into Arc View and converted to the appropriate formats. The landform, soil, and 
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stream data were all provided as ArcInfo export files (*.e00) and were imported into 
ArcView and converted to shapefiles. The DEMs were provided in the standard USGS 
STDS format and imported into ArcView as grids. The archaeological data were 
provided in shapefile format as polygons representing the site boundaries and did not 
need to be modified. 

Derivation of secondary data sets included modifying the archaeological, hydrological, 
and elevation data sets. The archaeological data provided by KOSA were transformed 
into two data sets: (1) the original polygonal site boundaries and (2) a calculated centroid 
point. To complete the training data set, 125 random points were created within the study 
area using an ArcView Avenue script (Cederholm 2000). These randomly created points 
were joined with 63 randomly selected Henderson County Archaic sites to complete the 
training point data set used to develop the point models. To create a random set of 
polygons for the polygon models, the average Henderson County Archaic site size was 
calculated (n=14,338 m2). That number was used to calculate the appropriate buffer size 
(n=64 m) around the randomly generated points created for the point data set. Ultimately, 
this created a random set of polygons matching the random set of points. The newly 
created buffer polygons were then merged with the polygon representation of the same 63 
sites as in the point training data set to create a polygon training data set. 

Secondary data sets also were derived for the independent environmental data, 
including slope, elevation, aspect, and distances to the various rankordered streams. The 
DEMs were used to create elevation, slope, and aspect grids. These surfaces were created 
using the embedded script in the Arc View Spatial Analyst extension. The hydrological 
data were provided in polyline form with attribute data as to name and Strahler (1957) 
rank order. The stream data were divided into three classes: rank-order 8 (the Ohio and 
Green Rivers), rank-order 4–6 (there are no rank-order 7 streams in Henderson County), 
and rank-order 1–3 streams. Once the hydrologic data were divided into these classes, an 
Arc View Spatial Analyst-extension-embedded script was used to create three distance 
grids showing the Euclidian distance to each of the stream classes. 

To sample the independent (environmental) variables of both the point and polygon 
training data sets, a third-party software extension for Arc View 3.2, Grid Analyst Ver. 
1.1 (Saraf 2000), was used. Continuous surfaces (elevation, slope, distance to rank-order 
x streams) were sampled for the point training set using the “Extract X, Y and Z Values 
for Point Theme from Grid Theme” routine. This routine extracts the z-value for every x-, 
y-location within a point data set. Noncontinuous categorical surfaces (soil, aspect, and 
landform) were sampled for the point training data set by utilizing a spatial join. This 
procedure allows the user to join attributes of features in separate surfaces based on their 
relative locations (Kennedy 2001). Thus, by performing a spatial join on the polygon soil 
data set and the point training data, the soil type located at that point is recorded. The 
advantage of using a GIS to develop locational models is that this type of operation could 
be performed on all of the training sample data at the same time in a matter of seconds, 
compared with the tedious methodology of deriving this data by hand, like that required 
less than two decades ago (Judge and Sebastian 1988). 

Sampling the environmental data for the polygon training data set also was 
accomplished using the Grid Analyst Ver. 1.1 (Saraf 2000) extension. Utilizing two 
routines—“Extract Grid Theme Using Polygon” and “Convert Grid Theme to X, Y, Z 
Text File”—the values for all of the grid cells under the polygons were obtained. This 
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methodology resulted in an increased sample size for the polygon training data, as many 
sites crossed into multiple grid cells versus the single-cell point training data. The actual 
increase in sample size depended on the individual environmental variables and how 
fractured their surfaces were. This increase in sample size is a particularly important 
consideration, as many modelers lament the small sample size provided when using 
archaeological sites for developing predictive models (Stevenson 1993; Weed et al. 
1996). Handling polygons in this manner also seems to create a more accurate 
representation of the preferable variables for archaeological site placement. If the land 
parcel is truly the unit of investigation, then every parcel intersected by an archaeological 
site should be counted. 

Once the archaeological data sets were chosen, variables were selected based on the 
availability of information and the statistical likelihood that they actually contributed to 
determining site location. Possible variables for this analysis included: landform, soil, 
aspect, slope, elevation, and distance to rank-order 1–3, 4–6, and 8 streams. Each 
potential noncontinuous environmental variable considered for the model was subjected 
to a χ2 goodness-of-fit analysis. 

χ2=∑(Oi−Ei)2/Ei   

The goodness-of-fit χ2 test questions how well a model fits the observed data. Small 
observed significance levels (i.e., less than 0.10) indicate that the model does not fit well 
(Sherman 1997). Variables subjected to this procedure included landform, soil, and 
aspect variables. For one of these to be included in the model, the null hypothesis—that 
sites are randomly located on the landscape—had to be rejected. For both the point and 
polygon models, the noncontinuous variables included in the model building were 
landform, aspect, and soil classification. Within these variables, categories were chosen 
based on a positive difference between the number of observed occurrences in each 
category versus the expected number of occurrences in a random distribution (Table 
10.1). 

Continuous variables available for use in the point and polygon models included 
elevation, slope, distance to rank-order 1–3 streams, distance to rank-order 4–6 streams, 
and distance to rank-order 8 streams. In these cases, the χ2 analysis cannot be used 
effectively for choosing viable variables. Instead, each of these variables was subjected to 
a Mann-Whitney test. An independent, random sample of 125 sites was generated for 
comparison with  

TABLE 10.1 Noncontinuous (Categorical) 
Variables and Their Values Included in Both the 
Point and Polygon Models 

Environmental 
Variable 

Initial Point Model 
Value(s) 

Extra Point Model 
Value(s) 

Polygon Model 
Value(s) 

Landform 22,82 22,82 22,82 

Soil 10, 30, 100, 190 10, 30, 100, 190 100, 130, 180 

Aspect N, NW, SW, E N, NW, SW, E N, NW 
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the point model, and another independent, random sample was generated for comparison 
with the polygon model. The Mann-Whitney test is the most popular and powerful of the 
nonparametric, two-independent-samples tests. It is equivalent to the Wilcoxon rank sum 
test and the Kruskal-Wallis test for two groups (Sherman 1997:66). 

Mann-Whitney tests whether two populations are equivalent. This test is used in place 
of a two-sample t test when the populations being compared are not normal. It requires 
independent random samples of sizes n1 and n2. The test is very simple and consists of 
combining the two samples into one sample of size n1+n2, sorting the result, assigning 
ranks to the sorted values (giving the average rank to any “tied” observations), and then 
letting T be the sum of the ranks for the observations in the first sample. If the two 
populations have the same distribution, then the sum of the ranks of the first sample and 
those in the second sample should be close to the same value. The p value for the null 
hypothesis is that the two distributions are the same. Small significance values (<0.05) 
indicate significant variance between the locations of each set (Sherman 1997:66–67). In 
this case, if a variable showed a small significance value, it was included in the model. 
Table 10.2 highlights the continuous variables chosen for the point and polygon models. 

For the point model, only distance to rank-order 8 streams was shown to be significant 
in the Mann-Whitney test. Interestingly, the polygon set produced significant results for 
not only the rank-order 8 streams, but for the elevation and the distance to rank-order 4–6 
streams as well. These additional data sets were therefore added to the polygon predictive 
models. Ranges were based on the standard deviation for each variable. The upper and 
lower bounds for the range are one standard deviation above and below the mean for a 
variable.1 

The resultant models produced in Arc View give a range of grid-cell values where 
variables overlap. For the point model, a total of four variables was used to define the 
model parameters. As such, the result produced five possible combinations of output: 0, 
1, 2, 3, 4. This included all combinations  

TABLE 10.2 Continuous Variables and the Value 
Ranges Entered into Both,the Point and Polygon 
Models 

  Value Ranges 

Environmental Variable Initial Point 
Model 

Extra Point 
Model 

Polygon 
Model 

Elevation None 107–144 m 107–144 m 

Slope None None None 

Distance to rank-order 1–3 
streams 

None None None 

Distance to rank-order 4–6 
streams 

None 67–10,290 m 67–10,290 m 

Distance to rank-order 8 streams 0–856 m 0–856 m 60–8,184 m 
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of variables overlapping (or none in the case of the 0 return). Consequently, the polygon 
model included two additional variables (distance to rank-order 4–6 streams and 
elevation), so the range of outputs increased to seven: 0, 1, 2, 3, 4, 5, 6. 

Because GIS-based locational models are actually just sets of decision rules that 
assign a grid cell to an event class (i.e., site present or site absent) based on 
characteristics of that location (Kvamme 1990), results from the various statistical 
analyses were used to develop decision rules used to construct the models. Given that the 
statistical analysis of both the polygon and point training data sets resulted in different 
outcomes, two sets of decision rules had to be developed. 

In the following decision rules, 
M=(model indicates archaeological site present) 
M′=(model indicates archaeological site absent) 
the decision rule for the point model is as follows: 
M={(landform=floodplain or side-slope) ∩ (soil group #=10 or 30 or 100 or 190) ∩ 

(aspect=N or NW or SW or E) ∩ (354 m≤ distance rank order 8 streams ≤6,832 m)} 
M′={(landform ≠ floodplain or side-slope) ∩ (soil group # ≠ 10 or 30 or 100 or 190) ∩ 

(aspect ≠ N or NW or SW or E) ∩ (354 m> distance to rank order 8 streams >6,832 m)} 
and the decision rule for the polygon model is as follows: 
M={(landform=floodplain or side-slope) ∩ (soil group #=100 or 130 or 180) ∩ 

(aspect=N or NW) ∩ (60 m≤ distance to rank order 8 streams ≤8,184 m) ∩ (67 m≤ 
distance to rank order 4–6 streams ≤ 10,290 m) ∩ (107 m≤ elevation ≤144 m)} 

M′={(landform ≠ floodplain or side-slope) ∩ (soil group # ≠ 100 or 130 or 180) ∩ 
(aspect ≠ N or NW) ∩ (60 m > distance to rank order 8 streams >8,184 m) ∩ (67 m> 
distance to rank order 4–6 streams > 10,290 m) ∩ (107m> elevation >144 m)} 

Additionally, to ensure that the lesser number of variables included in the point model 
did not masquerade as a legitimate difference between using points and polygons, a third 
set of decision rules was developed and used to compensate for this. To this end, a second 
point model was developed that included, along with the variables used in the initial point 
model, elevation and the distance to rank-order 4–6 streams (i.e., all of the same variables 
used in the polygon model), even though statistically they should have been left out of the 
model. The following is the decision rule for the extra point model: 

 

FIGURE 10.5 Model developed using 
points to represent site area. 
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M={(landform=floodplain or side-slope) ∩ (soil group #=10 or 30 or 100 or 190) ∩ 
(aspect=N or NW or SW or E) ∩ (354 m≤ distance rank order 8 streams ≤6,832 m) ∩ (67 
m≤ distance to rank order 4–6 streams ≤10,290 m) ∩ (107 m≤ elevation ≤144 m)} 

M′={(landform ≠ floodplain or side-slope) ∩ (soil group# ≠10 or 30 or 100 or 190) ∩ 
(aspect ≠ N or NW or SW or E) ∩ (354 m> distance to rank order 8 streams >6,832 m) ∩ 
(67 m> distance to rank order 4–6 streams >10,290 m) ∩ (107 m> elevation >144 m)} 

Once the decision rules for each model were created, the process of developing the 
models began. An identical procedure was followed to develop each model, including 
converting all of the data into binary grids using the “Map Calculator” function in Arc 
View 3.2 Spatial Analyst extension: 

1=favorable value for site presence, e.g., (landform=22 or 82) 
0=unfavorable value for site presence, e.g., (landform ≠ 22 or 82) 

After all of the binary grids were created, they were added together (once again using 
“Map Calculator”) to create a new surface containing a range of values of 0 to 4 for the 
initial point model and of 0 to 6 for the polygon and extra point model. The values are 
representative of the number of favorable archaeological variables intersecting at that 
grid cell. Thus, a value of 2 would indicate the intersection of two variables (e.g., soil and 
aspect); a value of 3 would indicate the intersection of three variables (e.g., soil, aspect, 
landform), and so forth. Not surprisingly, a higher number of intersecting variables (three 
or four for the point models and five or six for the polygon models) indicated a high 
probability for site presence. The resulting probability surfaces are shown in Figures 10.5 
through 10.7. 

The effectiveness of the probability surfaces had to be tested after their creation. 
Kvamme (1988, 1990) discusses various methodologies for assess- 

 

FIGURE 10.6 Model developed using 
polygons to represent site area. 
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FIGURE 10.7 Extra model developed 
using points to represent site area but 
including the same environmental 
variables used in the polygon model. 

ing the effectiveness of predictive models, including the first assessment method chosen 
for this investigation. This method focused on comparing the percentage of correctly 
predicted training sites (percent-correct statistic) with the percentage of the study area 
considered to have a high probability of containing sites (study area percent-occupied 
statistic). The second assessment is a more robust test of model effectiveness: the gain 
statistic (Kvamme  

TABLE 10.3 Comparison between the Study Area 
Percent-Occupied Statistic (Listed by Number of 
Intersecting Variables, Value) and the Percent-
Correct Statistic of Both the Training and Testing 
Data Sets 

Number of 
Intersecting 
Variables 

Study Area 
Percent-Occupied 

Statistic 

Training Sites 
Percent-Correct 

Statistic 

Testing Sites 
Percent-Correct 

Statistic 
Initial Point Model 

0 5.70 3.17 5.00 
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1 16.01 7.94 10.00 

2 32.11 17.46 31.67 

3 32.37 42.86 43.33 

4 13.81 28.57 10.00 

Extra Point Model 

0 3.29 0.00 0.00 

1 4.64 3.17 6.67 

2 13.02 11.12 5.00 

3 27.92 14.29 20.00 

4 30.52 26.98 38.33 

5 16.62 28.57 26.67 

6 3.99 15.87 3.33 

Polygon Model 

0 0.48 0.00 0.00 

1 2.88 0.00 0.00 

2 8.91 0.50 0.50 

3 29.14 10.80 7.60 

4 41.03 41.60 41.70 

5 15.63 39.80 40.20 

6 1.93 7.30 10.00 

1988). This statistic provides an effective means for comparing models and is discussed 
in more detail below. 

Table 10.3 presents the results for comparing the percent-correct statistics of the three 
models. The grid-class column shows the cell values (number of intersecting variables) 
for each predictive model. The other three columns show the percentages of the study 
area occupied by the various values and the percentages of the training and testing sites 
that occur in each individual class. When comparing the results of the three models, one 
can see that the polygon models seem to have a smaller portion of the study area 
classified as high probability and a larger percentage of sites occurring within those high-
probability areas than the point models. The point models, in many cases, have an almost 
equal percentage of the study area classified as high probability in comparison with the 
percent-correct statistics. 

The initial point model has a total of five potential cell values (0 to 4). Cell values of 
either 3 or 4 (cells representing the intersection or either three or four of the variables) are 
considered high-probability cells, i.e., they have a high likelihood of containing sites. The 
combination of those two cell values results in the high-probability zone. The high-
probability zone in this model covers 46.18% of the study area. The percentage of 
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training and testing sites occurring in that high-probability zone is 71.43 and 53.33%, 
respectively. While the ratio between study-area percentage and training-site percentage 
seems to indicate some predictive utility for the model, the almost equal ratio between 
study-area percentage and testing sites seems to indicate a model with very little 
predictive value. When only a cell value of 4 is considered to be the high-probability 
zone, then the ratio between study-area percentage, training-site percentage, and testing-
site percentage (13.81, 28.57, and 10.00%, respectively) shows a further decline in the 
predictive value of the model. The ratio between study-area percentage and the 
percentage of testing sites in the high-probability zone is indicative of a model with 
absolutely no predictive value. 

The extra point model—developed to ensure that no biases were introduced into the 
point versus polygon comparison due to the difference in the number of variables used to 
develop the model—has seven potential cell values (0 to 6). If high probability is 
considered to be the intersection of four or more environmental variables, then the 
percentage of the study area considered high probability is 51.3%, with 71.42% of the 
training sites and 68.33% of the testing sites occurring in the high-probability zone. 
Comparing these percent-correct statistics indicates that the extra point model’s 
performance is equal to or possibly slightly worse than the initial point model. This 
pattern holds even if the criterion for high probability is increased to a higher number 
(five or six) of intersecting environmental variables. 

The polygon model also has seven potential cell values (0 to 6) representing the 
intersection of environmental variables. If the intersection of four or more variables is 
considered high probability, then the comparison between studyarea percentage 
considered high probability (58.59%) with the percent-correct statistic for training sites 
(89.77%) and testing sites (91.9%) indicates a model with a positive predictive value. The 
fact that there is a higher percentage of test sites falling within the high-probability zone 
than the initial training sample is also a good indication of the predictive value of the 
polygon model. Both of these patterns continue when the number of environmental 
variables intersecting to create the high-probability zone is increased. 

Overall, neither point model seems to have any predictive utility based on a 
comparison of the percent-correct statistics. The percentage of the study area considered 
to be high probability is too high, no matter how many intersecting variables are used, 
when compared with the percent-correct statistic of both the training and testing data sets. 
On the other hand, the polygon model does seem to have some predictive utility. The 
percent-correct statistic of both the training and testing data sets is far higher than the 
percentage of the study area considered high probability. 

Comparing the ratio between the percentage of total study area considered to be high 
probability with the percent-correct statistic of both the training and testing data sets is a 
good way to begin assessing the effectiveness of a model. However, to actually compare 
two or more models, a measure of gain must be computed. Kvamme (1988:320) proposes 
the use of the gain statistic to measure gain. 
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TABLE 10.4 Gain Statistic and Predictive Utility 
Comparison for the Three Models 

Number of Intersecting 
Variables 

Data Set Gain Statistic Predictive Utility (gain) 

Initial Point Model 

3,4 Training 0.36 None 

3,4 Testing 0.13 None 

4 Training 0.52 Positive 

4 Testing −0.38 Negative 

Extra Point Model 

4,5,6 Training 0.29 None 

4,5,6 Testing 0.25 None 

5,6 Training 0.54 Positive 

5,6 Testing 0.31 None 

6 Training 0.75 Positive 

6 Testing -0.20 Negative 

Polygon Model 

4,5,6 Training 0.34 None 

4,5,6 Testing 0.36 None 

5,6 Training 0.63 Positive 

5,6 Testing 0.65 Positive 

6 Training 0.74 Positive 

6 Testing 0.81 Positive 

Gain=1−[(percentage of total area covered by model)/(percentage 
of total sites within model area)] 

  

When using this statistic a value close to 1 indicates a model with predictive utility; a 
value closer to 0 suggests the model has no predictive function. A gain calculated as a 
negative value implies a model with reverse predictive utility (Kvamme 1988:320). The 
gain statistic was calculated for all of our models, and the results are shown in Table 
10.4. An examination of the results indicates that the polygon models result in greater 
predictive utility than the point models. 

The following parameters were used to interpret the gain statistic (gs) of our models: 

gs>0.5=positive predictive utility 
gs >0 but <0.5=no predictive utility 
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gs <0=negative predictive utility 

The gain statistic calculated for the initial point model shows no predictive utility when 
the intersection of three or more variables is considered the high-probability surface and 
tested with the percent correct of both the training and testing data sets. Furthermore, 
when the intersection of all four relevant environmental variables is indicated as the high-
probability surface, a negative predictive utility is indicated when the statistic is 
calculated with the testing data set. Clearly, the gain statistic indicates a model with no 
predictive utility for the combination of environmental variables when their ranges are 
acquired by using a point to represent archaeological site location. 

When the gain statistic was calculated for the polygon model, the result indicated a 
model with an increased predictive utility as well as one demonstrating an increase in the 
number of intersecting variables creating the high-probability surface. When the quantity 
of intersecting variables is reduced to a minimum of four intersecting variables, the 
predictive utility of the polygon model becomes null. However, when the number of 
environmental variables composing the high-probability surfaces is set at five or greater 
intersecting variables or at six intersecting variables (all of the pertinent environmental 
variables), the predictive utility of the model increases. This increase in predictive utility 
again indicates a benefit of using polygons to develop locational models. 

10.3 Conclusions 

In this study, the applicability of using points and polygons to represent archaeological 
sites in the development of locational models was examined. A sample of archaeological 
data (Archaic sites from Henderson County, Kentucky) derived from the Kentucky 
statewide site inventory was used to develop and test several models. The results of our 
study suggest that there are advantages to using polygons rather than points to develop 
archaeological locational models. 

When a point is used to extract the environmental data, only one value for each 
variable can be selected for that site, regardless of its size and the number of 
environmental zones it is associated with. This sampling strategy can limit the 
development of the model by not adequately reflecting the relationship between 
archaeological sites and environmental factors. Though models derived using point data 
are slightly less labor intensive, in regard to digitizing site boundaries and extracting 
environmental data, they appear to perform poorly when compared with polygon models 
derived using the same data set. 

On the other hand, the use of polygons allows for a more accurate sampling of 
environmental variables that may affect the placement of archaeological sites on the 
landscape. By utilizing a multiparcel sampling strategy, afforded by using polygonal site 
boundaries, even a limited sample of archaeological sites and environmental variables 
allows for the creation of a model with a gain in predictive utility over a purely random 
or a point-generated model. While polygon models are more labor intensive to develop, 
they do seem to perform better than point models. 

The results of the polygon models also have the potential to contribute to studies of 
Archaic site-distribution patterns. Association with a variety of resource areas, with a 
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focus on the Ohio and Green Rivers (rank-order 8 streams) appears to reflect the highly 
mobile hunter-gatherer settlement pattern that has been suggested for the Archaic period 
in the Ohio Valley. Additional avenues of research into Archaic settlement patterns in 
Kentucky would be to compare the pattern identified within Henderson County with the 
distribution of Archaic settlements in other parts of the state or within specific drainages. 

In conclusion, there seem to be advantages of utilizing polygons rather than points in a 
statewide GIS. From a resource-management perspective, polygons provide a more 
accurate representation than points of the size and shape of a site and allow for a more 
complete representation of the spatial distribution of archaeological resources within a 
project or study area. Cultural resource managers need to know the full extent of the sites 
to ensure that they are adequately protected and, if they cannot be protected, that impacts 
to archaeological sites are taken into account in project planning. From a locational-
modeling viewpoint, polygons allow for a better sampling of environmental variables in 
the development of a model. This increased sampling ability allows for the development 
of a model with greater predictive utility than an analogous model based on point data. 

Notes 
1. This standard was applied even though large ranges resulted for the rank-order 4–6 and rank-

order 8 stream variables. 
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11 
Relating Cultural Resources to Their Natural 

Environment Using the IEDROK GIS: A 
Cultural Resources Management Tool for the 

Republic of Korea1 
Bruce Verhaaren, James Levenson, and James Kuiper 

ABSTRACT Under the Status of Forces Agreement (SOFA) negotiated 
between the United States and the Republic of Korea, U.S. forces 
stationed in Korea are required to take into account the effects of their 
actions on Korean cultural properties. In addition to this legal requirment, 
cultural resource management is important in maintaining good 
relationships between U.S. forces and the local population. The Integrated 
Ecosystem Databases for the Republic of Korea (IEDROK) geographic 
information system (GIS) provides information on natural and cultural 
resources to U.S. Forces Korea (USFK) resource managers. Focused on 
areas surrounding USFK installations, it is a rapid-assessment tool that 
alerts managers to the presence of protected resources that could be 
affected by USFK undertakings. 

Geographic information systems are ideal tools for the management of 
archaeological and other cultural resources. A graphic display of cultural 
resources against the backdrop of significant natural geographic features 
permits a rapid visual assessment of the relationship of the cultural world 
to the natural world. Displaying cultural resources of a functional or 
temporal class in relation to such features as hydrology, soil type, slope, 
vegetation cover type, and the contemporary built environment provides 
the cultural resource manager with the necessary tools to locate and 
manage known cultural resources. This capability can also enable the 
manager to predict the likelihood of encountering significant cultural 
resources in similar but not-yet-investigated areas. IEDROK is an 
example of such a tool. It was designed for the cultural resource managers 
at USFK installations. Those managers have stewardship responsibility 
for significant natural and cultural resources, even though their primary 
mission is not resource management. 

 



11.1 Introduction 

Korea has spent much of the last century under foreign domination, and Koreans place 
great value on preserving things that are distinctively Korean and that highlight the 
accomplishments of the Korean people. The Status of Forces Agreement (SOFA) 
between the governments of the United States and the Republic of Korea establishes 
environmental governing standards (EGS) for Korea (USFK 1997) that U.S. forces are 
committed to follow. These include the inventory and preservation of natural and cultural 
resources in areas under their control. However, the Cold War never ended on the Korean 
Peninsula, and the need for security and military preparedness is intense. In this context, 
the Integrated Ecosystem Databases for the Republic of Korea (IEDROK) geographic 
information system (GIS) is a tool designed to aid U.S. Forces Korea (USFK) planners 
and resource managers in meeting their SOFA obligations in support of their military 
mission. 

Typically, military bases by their very nature provide important protections to both 
natural and cultural resources. Because access to USFK-managed lands is limited, these 
lands have been protected from the effects of urban growth and industrialization that are 
frequently characteristic of the civilian society surrounding them. USFK installations 
include extensive buffer zones, where access is limited even for military personnel. These 
areas often become refuges for wild species. Archaeological sites and other cultural 
resources in these areas also remain relatively undisturbed. For USFK, cultural resources 
include any structures, natural features, artifacts, or archaeological remains important to 
Korean or American history or culture. They form a part of the legacy that the U.S. 
Department of Defense (DoD) seeks to exercise responsible stewardship over. 

The primary mission of cultural and natural resource managers of USFK installations 
is to support the military defense of the Republic of Korea. However, as resource 
managers, they manage the cultural resources present on USFK installations on a daily 
basis. Many managers are young military officers trained in engineering, without 
extensive training or experience in archaeology, anthropology, history, or the natural 
sciences. For the most part, they first encounter the Korean culture during their military 
tour. IEDROK was designed for them. It is not solely or even primarily a database of 
cultural information. Rather, it graphically presents both the natural and cultural features 
of the Korean Peninsula, placing cultural resources in their broader environmental 
contexts. IEDROK provides basic information about Korea’s natural and cultural 
environment, information that was previously available only in disparate sources and 
formats accessible only to local specialists. It is a flexible framework that can be 
customized by the end user to focus on a particular installation by adding additional detail 
or by modifying installation configurations as conditions change. 

11.2 IEDROK and the Legacy Resource Management Program 

The development of IEDROK was funded by the DoD Legacy Resource Management 
Program. The Legacy Resource Management Program was established by Congress in 
1990 to provide for the stewardship of all DoD-controlled or -managed air, land, and 
water resources and establish inventories of all scientifically significant biological, 
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geophysical, cultural, and historical assets on DoD lands. Such inventories catalog the 
attributes of these resources, their scientific and cultural significance, and their 
interrelationship to the surrounding environment, including the military mission carried 
out on the land upon which they are found. 

Legacy Program managers have developed the following statement of purpose (DoD 
2001): 

1. Legacy will determine how to better integrate the conservation of irreplaceable 
biological, cultural, and geophysical resources with the dynamic requirements of 
military missions. To achieve this goal, the DoD will give high priority to 
inventorying, conserving, and restoring biological, cultural, and geophysical resources 
in a comprehensive, cost-effective, state-of-the-art manner, in partnership with federal 
and local agencies and private groups. 

2. Legacy activities will help ensure that the DoD better understands the need for 
protection and conservation of natural resources and that the management of these 
resources will be fully integrated with, and support, DoD mission activities and the 
public interest. 

3. Legacy, through the combined efforts of DoD components, will achieve the legislative 
purposes of Legacy with cooperation, industry, and creativity to make the DoD the 
federal environmental leader. 

These Legacy Program goals mesh well with the commitments made by USFK in the 
EGS (USFK 1997). Chapter 12 of the EGS includes the following cultural resources 
management criteria: 

Criterion 12–3b: “If financially and otherwise practical, installations will 
inventory cultural property and resources in areas under USFK control.” 

Criterion 12–3d: “Installations will establish measures sufficient to 
protect known cultural property or resources identified on the installation 
inventory and for mitigation of adverse effects.” 

Criterion 12–3e: “Installations will establish measures to prevent 
excavation of cultural properties. Areas known to contain buried or 
submerged historic properties shall not be excavated or disturbed.” 

Criterion 12–3i: “Installations will ensure that planning for major 
actions includes consideration of possible effects on cultural or 
archeological property or resources.” 

EGS Chapter 13 deals with the management of natural resources and commits USFK 
installations to “develop a program for conserving, managing, and protecting natural 
resources,” “maintain a current list of endangered species and specified wild species,” 
“initiate surveys for endangered species and specified wild species,” and “take reasonable 
steps to protect and enhance known endangered or specified wild species and their 
habitat.” 

In other words, USFK managers must be able to take cultural and natural resources 
into account in their planning and mitigate any projected adverse effects on these 
resources. IEDROK assists USKF resource managers in this task. IEDROK presents the 
locations of protected resources in their environmental context. By overlaying the area or 
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potential effect of a proposed action on this underlying base data, a manager can rapidly 
identify the potential impacts to known natural and cultural resources likely to result from 
planned USFK actions, thus providing a framework for analyzing new information 
generated during environmental reviews. Resource managers can use IEDROK in their 
environmental review process and in the development of the installation’s master plans. 

IEDROK is a flexible GIS tool that assists in achieving the first two Legacy Program 
goals, thereby furthering the third. IEDROK brings together natural- and cultural 
resource inventory information and provides a tool for integrating them into the USFK 
planning process. As guests in a foreign country, USFK planners and resource managers 
are often presented with new issues regarding natural and cultural resources. IEDROK is 
designed to aid the managers by locating and identifying those resources on and in the 
vicinity of their installations. The GIS accommodates the entry of more-precise, recently 
recorded information as it is encountered. Current DoD guidance emphasizes an 
interdisciplinary and ecosystems approach to resource management. IEDROK integrates 
natural and cultural resources information in support of this approach. 

11.2.1 IEDROK Structure: The Data Layers 

IEDROK is broad in scope and includes the best available data (see Table 11.1). The data 
sets included come from a variety of sources and vary in scale and detail. DoD standard 
National Imagery and Mapping Agency (NIMA) products were used for the baseline 
layers. Natural and cultural resource data were obtained from Korean sources augmented 
by field observations. This section briefly identifies each of the data sources and 
discusses the reliability of the data from each source. Table 11.1 lists the GIS data layers 
in the system and summarizes the nature of each layer and the data sources. 

IEDROK should be thought of as a screening tool intended for use early in the 
planning process. It alerts managers to the potential of natural and cultural resource issues 
rather than presenting a detailed representation of resource locations. The earlier in the 
planning process it is used, the more time will be available to assess and mitigate any 
adverse impacts. For Korean security reasons, none of the source maps include the 
locations or boundaries of any military facilities. It is assumed that users can integrate 
IEDROK with the GIS at their own installations.1 

TABLE 11.1 Sources for the IEDROK GIS 

Shapefile 
Legend 
Name 

Data 
Descr 
iption 

Date Source For 
mat 

Data 
Type 

Num
ber of 
Reco
rds 

Projec
ion 

Scale Conve 
rsion 
Func 
tion 

Caveats 

Baseline Layers 

See Table 
11.2 

Coast 
lines 
and 
political 
boun 
daries 

1973–
1989 

Vector 
Map 
Level 1 
(VMap1) 
(NIMA 
1998) 

Vector 
Product 
Format 
(VPF) 
on CD 
and

Ploygan 
and line 

2 
themes

UTM 
datum 
WGS84

1:250 
,000 

Arc 
view 
VPF 
exten 
sion 

Some 
sources 
as old as 
1996 
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tape 

See Table 
11.3 

Land 
use, 
topog 
raphy, 
veget 
ation, 
soils, 
hydro 
logy 

1995–
2000 

Vector 
Product 
Interim 
Terrain 
Data 
(VITD) 
(NIMA 
1996) 

VPF on 
CD and 
tape 

Poly 
gan and 
line 

10 
themes

UTM 
datum 
WGS84

1:50,000 Arc 
view 
VPF 
exten 
sion 

Projec 
tion 
more 
accurate 
than 
VMap1 

Natural Resources—Points 

natural_ 
point.shp 
Protected  
species 

Provi 
ncial 
prot 
ected 
species 

1980 Rare and 
Enda 
ngered 
Wildlife 
in Gang 
wweon 
Do, 
Korea 
(KACN 
1980) 

Book Point 466 UTM 
zone 52

≈1:8,000 
,000 

Direct 
constr 
uction 
of 
shape 
file 

Source 
scale 
smaller 
than 
baseline; 
points 
approx 
imate 

Natural 
_point.shp 
Protected 
 species 

Rare 
and 
ending 
ered 

1990 Current 
Condition 
of 
Korea’s 
Rare and 
Endan 
gered 
Flora 
and 
Fauna 
(KACN 
1990) 

Book Point 1,558 UTM 
zone 52

≈1:8,000,
000 

Direct 
constr 
uction 
of 
shape 
file 

Source 
scale 
smaller 
 than 
baseline; 
points 
approxi 
mate 

natural_ 
point.shp 
Protected 
species 

Fresh 
water 
fishes 

1990 Coloured 
Illustr 
ations of 
the Fresh 
water 
Fishes of 
Korea 
(Choi et 
al. 1990) 

Book Point 486 UTM 
zone 52

≈1:80,00 
0,000 

Direct 
constru 
ction 
of 
shape 
file 

Source 
scale 
smaller 
than 
baseline; 
points 
approx 
imate 

natural_ 
point.shp 
Protected  
species 

Endan 
gered 
and 
reserved 
species 

2000 Enda 
ngered  
Wild 
Species of 
Korea

Inte 
rgraph 
GeoMedia 
and ESRI 
ArcView

Point (1 
poly 
gon) 

916 Geog 
raphic, 
Korean 
datum 

≈1:8,00 
0,000 

Section 
4.2.1.2 

Source 
scale 
smaller 
than 
baseline;
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(KACN 
2000a) 

shapefiles 
on CD 
ROM 

points 
approx 
imate 

natural_ 
point.shp 
Protected  
species 

Field 
observa 
tions 

2000 Field 
observ 
ations at 
Kunsan 
 AB and 
Osan AB 
by J. 
Levenson 

Sheet  
map 

Point 20 UTM 
zone 52 

1:30,0 
00 

Direct 
constru 
ction of 
shapefile 

Source 
scale 
larger 
than 
baseline 

natural_ 
mon_ 
point.shp  
Natural 
monu 
ments 

Natural 
mon 
uments 

1997 The 
Manag 
ement 
Atlas of 
State 
Desig 
nated 
Cultural 
Properties 
(KCPA 
1997) 

Sheet 
maps 

Point 112 TMX—
trans 
verse 
Mercator 
with five 
different 
Korean 
zones 
and 
datums 

1:5,000 
1:25,000
1:50,000

Section 
4.2.1.3 

Source 
scale 
larger 
than 
baseline; 
some 
displace 
ment 
possible 

Natural Resources—Polygons 

natural_ 
mon_poly. 
shp 
Natural 
mon 
uments 

Natural 
monu 
ments 

1997 The 
Manag 
ement 
Atlas of 
State 
Desig 
nated 
Cultural 
Properties 
(KCPA 
1997) 

Sheet 
maps 

Polygon 137 TMX—
trans 
verse 
Merca 
tor with 
five 
different 
Korean 
zones 
and 
datums 

1:5,000 
1:25,000
1:50,000

Section 
4.2.1.3 

Source 
scale 
larger 
than 
baseline; 
some 
displace 
ment 
possible 

Cultural Resources—Points 

cultural_ 
point.shp 
Cultural 
properties 

National 
treasures 

1997 The 
Manag 
ement 
Atlas of 
State 
Designated 
Cultural 
Properties 
(KCPA 
1997) 

Sheet 
maps 

Point 37 TMX—
trans 
verse 
Mercator 
with five 
different 
Korean 
zones 
and 
datums 

1:5,000 
1:25,000
1:50,000

Section 
4.3.2 

Source 
scale 
larger 
than 
baseline; 
some 
displace 
ment 
possible 

Shap 
efile

Data 
Descri 

Date Source For
mat

Data 
Type 

Num
ber

Projec 
tion 

Scale Conve 
rsion

Caveats 
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Legend 
Name 

ption of 
Reco
rds 

Func 
tion 

cultural_ 
point.shp  
Cultural 
properties 

Other 
national 
cultural 
properties 

1997 The 
Manag 
ement 
Atlas of 
State 
Desig 
nated 
Cultural 
Properties 
(KCPA 
1997) 

Sheet 
maps

Point 22 TMX—
trans 
verse 
Merc 
ator with 
five 
different 
Korean 
zones  
and 
datums 

1:5,000 
1:25,000 
1:50,000 

Section 
4.3.2 

Source 
 scale  
larger 
 than 
baseline; 
some 
displacem 
ent possi 
ble 

cultural_ 
point.shp  
Cultural 
properties 

Seoul 
prope 
rties 

1997 The 
Manag 
ement 
Atlas of 
State 
Desig 
nated 
Cultural 
Prope 
rties 
(KCPA 
1997) 

Sheet 
maps

Point 38 TMX—
trans 
verse 
Mercator 
with five 
different 
Korean 
zones 
and 
datums 

1:5,000 
1:25,000 
1:50,000 

Section 
4.3.2 

Source 
scale 
larger 
than 
baseline; 
some 
displace 
ment 
possible 

cultural_ 
point.shp  
Cultural 
properties 

Local 
cultural 
prope 
rties 

1995–
1997 

The Comp 
endium of 
Cultural 
Relics 
(NRICP 
1995–
1997) 

CD Point 194 UTM 
zone 52 

1:30,000–
1:100, 
000 

Direct 
constr 
uction of 
shapefile 

Source  
maps 
general; 
some 
displace 
ment  
likely 

cultural_ 
point.shp 
Cultural 
properties 

Local 
recorded 
cultural 
prope 
rties 

1995–
1997 

The Comp 
endium of 
Cultural 
Relics 
(NRICP 
1995–
1997) 

CD Point 495 UTM 
zone 52 

1:30,000–
1:100, 
000 

Direct 
constru 
ction of 
shapefile 

Source  
maps 
general; 
some 
displace 
ment l 
ikely 

Cultural Resources—Polygons 

cultural_ 
poly.shp  
Cultural 
properties 

National 
treasures 

1997 The Mana 
gement 
Atlas of 
State 
Designated 
Cultural

Sheet 
maps

Polygon 17 TMX—
tran 
sverse 
Merc 
ator with 
five

1:5,000 
1:25,000 
1:50,000 

Section 
4.3.2 

Source  
scale  
larger 
 than 
baseline; 
some
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Properties 
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1.2.1.1 Base Layers 

The best available base map data for the Korean Peninsula came from NIMA. While 
NIMA data sets include important environmental information, they are designed to meet 
the tactical needs of the DoD (e.g., factors affecting the movement of troops), not its 
environmental stewardship requirements. NIMA layers indicate slope (topography), soil 
type, water resources, and vegetation cover. However, because these same layers depict 
significant factors affecting the range and distribution of both natural and cultural 
resources, they also provide a sound baseline for the construction of a useful management 
tool. Soil, vegetation, and water clearly constrain the kinds of plants and animals that are 
able to live in a given area. All of these factors constrain human settlement and land use. 
For centuries, Koreans have considered the physical environment when selecting a site 
for the construction of a dwelling, shrine, or grave. The principles of chǒnghyǒlbǒp or 
geomancy, relate the cultural to the natural environment, and a propitious site location is 
based on spatial relationships with mountain ridges and water (Choi 1997; Feuchtwang 
1974). 

Two NIMA products with multiple components were used to construct the baseline 
data set: Vector Product Interim Terrain Data (VITD) and Vector Map Level 1 (VMap1). 
Because access to these products is restricted, data layers of IEDROK cannot be depicted 
in this report, and generic illustrative background layers have been substituted in the 
illustrations presented. There are no such restrictions on the IEDROK natural and cultural 
resource layers. 

For IEDROK, the themes most relevant to cultural and ecological analyses were first 
extracted from the VITD and VMap1 data sets. Although there is some overlap between 
the themes available in VITD and VMap1 formats, the two data sets are not identical. 
VMap1 data include a simplified rendition of Korea’s coastlines and internal political 
boundaries and are used for small-scale displays. VITD source maps are at a larger scale, 
provide more detail, and form the heart of the baseline data set. VITD coastlines are used 
for larger scale views. 
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The VITD data set was designed principally for military unit mobility analysis. A full 
suite of data includes themes such as slope, vegetation, surface materials (soils), surface 
drainage, transportation, and obstacles. Source data for the VITD is typically taken from 
l:50,000-scale hard-copy maps (NIMA 1996). The NIMA VITD data for this region were 
produced during 1996, but the dates of the source materials are not specified. VMap1 is a 
vector-based electronic data set that provides basic cartographic data for larger areas. The 
VITD data are believed to be more precise than the VMap1 data, which are horizontally 
less accurate in absolute terms than VITD data sets as the distance from Seoul increases. 

11.2.1.2 Cultural Resource Layers 

IEDROK displays the locations of nationally and locally designated cultural properties. 
Icons are used to indicate the type of resource (Figure 11.1), and  

 

FIGURE 11.1 IEDROK icons. 

more-detailed information is available by clicking on the symbol. The Republic of Korea 
divides cultural properties into four categories. The most significant properties are 
designated “national treasures” Therefore, IEDROK incorporates the locations of all 
national treasures throughout South Korea. Resources falling in other categories—
treasures, historic sites, and important folk materials—are included in IEDROK only 
when they are located relatively close to a major USFK facility. 

The locations of cultural resources were obtained from source maps supplied by the 
Korean Cultural Properties Administration (KCPA), located in Taejon, and the National 
Research Institute for Cultural Properties (NRICP), located in Seoul. The locations of the 
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nationally designated properties were digitized from map sheets found in The 
Management Atlas of State-Designated Cultural Properties (KCPA 1997). The positions 
of the locally designated cultural properties and locally recorded cultural resources were 
derived from maps provided electronically by the National Research Institute for Cultural 
Properties in The Compendium of Cultural Relics (NRICP 1995–1997). The source maps 
varied in scale and precision. The precise locations of military installations are not shown 
on the maps. Screening for cultural resources near or on USFK facilities was based on the 
authors’ knowledge of the installation locations. The most precise locations are 
determined by the individual user when the IEDROK layers are incorporated into an 
installation’s GIS, or vice versa. 

Cultural resources are abundant throughout the Korean Peninsula. However, due to 
constraints of time and resources, with the exception of national treasures, the basic 
IEDROK includes only those resources in relatively close proximity to major USFK 
installations. Three classes of cultural resources are included in IEDROK: (1) nationally 
designated cultural properties, (2) locally designated cultural properties, and (3) locally 
recorded cultural resources. Nationally and locally designated cultural properties have 
special status under Korean law and are protected against damage or destruction. 
Designation of cultural properties on the national level occurs under the authority of the 
Ministry of Culture and Tourism upon the advice of the Cultural Properties Committee. 
Provincial and local departments of culture may designate locally important properties. 
Once designated, properties are listed by the Cultural Properties Administration by 
category and receive a unique number (e.g., Treasure 43 or Monument 88). Locally 
recorded cultural resources receive no designation number and have fewer legal 
protections. They remain locally important, however, and are included in IEDROK so 
they will not be inadvertently harmed. Some are currently in the designation process. 

11.2.1.3 Natural Resource Layers 

IEDROK natural resource layers were compiled from four types of data resources, 
including: (1) distribution maps in published works on Korea’s flora and fauna, (2) hard-
copy maps of designated Korean natural monuments found in The Management Atlas of 
State-Designated Cultural Properties (KCPA 1997), (3) electronic distribution point data 
generated for this project by the Korean Association for the Conservation of Nature 
(KACN), and (4) field observations made at USFK facilities sources (see Table 11.1). For 
the most part, these sources indicate the distribution of threatened or endangered species 
using points to indicate where the species were observed or reported. Because of 
discrepancies in scale between these sources and the baseline sources, points should be 
interpreted to indicate the presence of a species in the general area, but not at the exact 
location of the point. The location information based on field observations by Argonne 
personnel at U.S. Air Force bases in Korea, while also displayed as points, is more 
precise because the exact locations of the observations are known. 

The Ministry of Culture and Tourism designates specific species, wildlife refuges, 
forests, groves, or even individual trees as nationally protected natural monuments. 
Designated natural monuments are considered cultural properties in the Republic of 
Korea. Cultural Properties Administration data often refer to specific places with known 
addresses or legal descriptions. The Cultural Properties Administration provided data in 
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the form of larger-scale maps. Data sets included point and polygon data. Because of the 
larger scale, the Cultural Properties Administration data sets could be projected with 
more precision than the published and electronic point data. IEDROK includes all of the 
natural monuments on the topographic maps in the Cultural Properties Administration’s 
Atlas of State-Designated Cultural Properties (KCPA 1997). 

11.2.2 Creating the Layers: Source Data 

One of the major challenges in constructing IEDROK was blending data derived from a 
variety of sources. As an integrated database, IEDROK includes previously existing GIS 
baseline data; data sets derived from maps that were scanned, screen digitized, and 
georeferenced; data from maps that were digitized on a tablet and georeferenced; and 
point data from published sources that were entered directly into the GIS. 

An ArcView®2-structured GIS data set was constructed to form the baseline data set 
for IEDROK. The baseline data set was derived from two NIMA products with multiple 
components (VITD and VMap1). NIMA products use World Geodetic System 1984 
(WGS84) as the horizontal datum. The vertical datum on the topographic layer is mean 
sea level. 

Vector Product Interim Terrain Data (VITD) is a vector-based electronic data set 
designed principally for military-unit mobility analysis. Sources used by NIMA in the 
compilation of VITD may include aerial photography, topographic maps, soil surveys, 
hydrographic studies, land-use inventories, and transportation reports. Information may 
also have been derived from hard-copy tactical terrain analysis data bases (TTADB) at a 
scale of 1:50,000 or conversion from interim terrain data (ITD) in standard linear format 
(SLF). The data sets for the VITD were produced during 1996; however, the specific 
dates of the data sources are not identified in the release notes of the VITD product 
(NIMA 1998). 

VITD includes physical features such as vegetation type, surface materials (soils), 
degree of slope, and surface drainage. These themes are of ecological significance. Other 
useful VITD parameters include transportation corridors and obstacles. Of these, the 
themes shown in Table 11.2 were selected as most  

TABLE 11.2 VITD Themes Included in IEDROK 

Theme Description 
Slope (polygon) Slope 

Soils (polygon) Soils 

Land use (polygon) General vegetation 

Forest vegetation (polygon) Forest vegetation 

Open water and built-up areas 
(polygon) 

Open water and built-up areas 

Major rivers (polygon) Surface drainage: areas (rivers and canals wide enough to be 
represented as area features) 

Rivers and streams (line) Surface drainage: lines (rivers and canals wide enough to be
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represented as line features) 

Dams and canals (line) Surface drainage: lines (dams and canals wide enough to be 
represented as line features) 

Roads (line) Roads and cart tracks 

Railroads (line) Railroad tracks 

appropriate for the current application. A formal horizontal accuracy has not been defined 
for the VITD product at this time. However, because the sources of VITD data are 
typically 1:50,000 source scale products, they are likely more accurate than the VMap1 
data described next. 

Vector Map Level 1 (VMap1) is a vector-based electronic data set that provides basic 
cartographic data for larger areas on the ground. The VMap1 data set was derived from 
NIMA air navigation map products at the 1:250,000 source scale. Most of the source 
maps were produced from 1973 to 1989, with a few being as old as 1966. Additional 
electronic data were used to update particular themes in the VMap1 data during the 
digital production cycle (NIMA 1998). 

Comparison of VMap1 with VITD themes indicated that the data sets match closely in 
and around Seoul, but there was a discrepancy between the two in outlying regions. That 
discrepancy increased with the distance from the capital. Data tests and NIMA sources 
indicate that discrepancy appears to be the result of systematic errors in the conversion of 
the original Tokyo datum sources to the more recent WGS84 datum for the VMap1 data 
set. 

The data themes included by NIMA in VMap1 are political boundaries, data quality, 
elevation, hydrography, industry, physiography, population, transportation, utilities, and 
vegetation. For IEDROK, only coastline and boundary data were used to supplement the 
VITD data (Table 11.3). 

The Korea baseline data set was constructed by extracting an overview area of 
boundaries and coastlines from the VMap1 data source (Table 11.3). This provided a 
guideline to fill in areas with the VITD and VMap1 vector data. The VITD data were 
extracted into shapefiles3 to provide the detailed baseline or background data shown in 
Table 11.1. VITD is distributed by NIMA in quarter-degree cells. This arrangement is 
difficult to work with for larger regions. Merging the cells to form larger, contiguous 
areas of GIS data allowed for easier data manipulation in exchange for slightly slower 
performance in some operations. 

The VMap1 data themes were also converted into the shapefile format and merged 
into one shapefile for each layer. Some VITD and VMap1 data sets resulted in extremely 
large files. The final database was divided into five parts, corresponding to USFK 
regions, to fit them onto a set of five CDs. 

This data compilation effort resulted in the set of data themes identified in Tables 11.2 
and 11.3, forming a base upon which the cultural and natural layers of IEDROK have 
been built. All data are registered to the WGS84 datum. 
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TABLE 11.3 VMap1 Themes Included in 
IEDROK 

Theme Description 
Coastline (line) Coastal linework 

Political boundaries (polygon) Political boundaries: area 

Some data are more accurate than others. For example, the VITD information is more 
accurate and detailed than the information from the VMap1 data source because of the 
differing source scales and the placement-error-probability accuracies defined in the 
product specifications. However, coastlines and political boundaries are available only in 
the VMap1 data sets, and were therefore included by default. The imperfect synthesis of 
data from these two sources should have little effect on the practical use of the GIS. 
Depending on the source of the thematic layers, the discrepancies are likely to be trivial. 
The differences will be apparent only at a very large scale, and then mostly in the 
southern end of the Korean Peninsula. In general, when a layer in a GIS is displayed at a 
larger scale than the source data scale, limits to accuracy should be taken into account 
and are sometimes clearly visible. 

11.2.2.1 Cultural Resource Data 

Cultural resource data were extracted from two sources: the Management Atlas of State-
Designated Cultural Properties (KCPA 1997) and The Compendium of Cultural Relics 
(NRICP 1995–1997). 

The Management Atlas of State-Designated Cultural Properties is a 21-volume set 
primarily comprised of 1:5,000, 1:25,000, and 1:50,000 topographic base maps produced 
by the Korean National Geography Institute, with cultural-property locations added by 
the KCPA. Depending on the property size and the scale of the map, the property may be 
shown as either a point or a polygon. Each of the map quadrangles is projected in the 
Korean TMX transverse Mercator system based on a corrected Tokyo datum. It divides 
Korea into five areas with five different Korean points of origin. Latitude and longitude 
are indicated at the corners of each quadrangle sheet. The majority of the maps in the 
atlas are at the 1:5,000 scale. However, for locations that include military installations, 
the atlas includes only smaller scale maps covering a broader area. In keeping with South 
Korean practice and security restrictions, none of these maps indicates the presence of 
any military installations. Almost 1,000 black-and-white photocopies of the atlas maps 
were obtained directly from the KCPA. KCPA personnel from the Monuments Division 
highlighted the location of each cultural property in color on the maps. Limitations of 
time and resources did not allow all sheets to be processed, and priorities were 
established in consultation with USFK. All topographic sheets showing national 
treasures, the most important Korean cultural properties, were identified and processed. 
USFK identified the U.S. Army facilities with the highest priority for identifying natural 
and cultural resources. With the exception of facilities in Seoul, all quadrangles showing 
any cultural properties within a 15-km radius of U.S. Army facilities were processed. 
Quadrangles showing cultural resources within the same radius of the two active U.S. air 
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bases were also processed. Cultural properties of all categories found on these maps have 
been included in the database. Attribute tables were generated for the cultural properties 
that  

 

FIGURE 11.2 Selecting an icon 
displays attribute information. 

include the name of the site, its designation, its address, its date, and a brief description 
(Figure 11.2). 

The KCPA 1:5,000 maps for Seoul have no positional markings, such as 
latitude/longitude or UTM tick marks. Therefore, locations were entered as points 
directly into a shapefile using a backdrop of the most detailed VITD street-grid layer to 
determine point location. As with other areas of the country, no detailed maps were 
available for locations including military installations, thus most of Yongsan-gun did not 
appear on any KCPA quadrangle. Therefore, those quadrangles directly adjacent to 
Yongsan-gun were used. This resulted in data extraction from the area within about 5 km 
of the military base. 

The remaining KCPA maps had geographic coordinates at their corners. For point 
data, the most efficient method of determining the latitude and longitude was by 
measurement and linear interpolation from known coordinates at map corners. The 
coordinates, map number, and site were recorded on a spreadsheet; then the data were 
transferred to Arc View and a point layer was produced from the coordinates. After the 
point layer was made, the coordinates were converted from the map coordinate system, 
which used the Korean datum, to the final coordinate system having a WGS84 datum. 
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Comparing the projection against the printed maps indicated that points were projected 
with horizontal accuracy within 20 to 25 m. 

The longitude/latitude pairs for the tabular data were obtained via hand measurements 
from the base maps. Four measurements were taken: width of the map through the data 
point, height of the map through the data point, width from the western map edge to the 
data point, and height from the southern map edge to the data point. The estimation of the 
geographic coordinates of the data point was accomplished using the following 
equations: 

 

  

where λest and are the latitude and longitude of the data point, respectively; ∆λmap and 
are the latitude and longitude ranges of the map, respectively; hi and hmap are the 

heights from the southern edge of the map to the data point and the northern map edge, 
respectively; wi and wmap are the widths from the southern edge of the map to the data 
point and the northern map edge, respectively; and λref and are the reference latitude 
and longitude values obtained from the southwestern corner of the map, respectively. The 
data set was converted to shapefiles by loading the ASCII data into the program and 
creating an event theme. 

Whenever a natural monument was large enough to appear as a polygon rather than a 
point on the topographic sheets, the shape of the polygon was captured by using one of 
two methods. Some maps were scanned as TIFF files using a 36-in.-wide drum scanner. 
These files were then brought into Arc View and viewed on a monitor. The position and 
orientation of each map were established from the coordinates of the southwestern 
corner, the scale of the map, and by digitizing the map’s extent. Arc View tools were then 
used to create digitized polygons matching those shown on the maps, yielding a shapefile 
output. Each feature was coded with map and site numbers. The shapefile was then 
converted into an Arc/Info® coverage4 for georeferencing. The georeferencing process 
used the latitude and longitude of the southwest corner and the map scale. Using a batch 
process, the three remaining corners of the quadrangle were calculated, and the resulting 
rectangle was projected into the proper Korean projection. A least-squares fit was then 
used to fit the quadrangle to a known coordinate system and transform the digitized 
information to the Korean projection used on the map. Then the data were projected from 
the Korean projection to the final coordinate system. This process places the polygon 
accurately relative to the underlying baseline data set. 

Other maps were digitized directly using a digitizing tablet. In this method, the map 
was attached to a digitizing tablet; then a digitizing tool was used to mark the known 
position of the four corners of the quadrangle, and the boundaries of each polygon were 
traced. Again, each feature was coded with the source map number and the number of the 
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site being plotted. This process resulted in digitized shapefiles. Then, the same process 
was used to georeference these files as was used for the digitized scanned images. All 
maps were merged after georeferencing. A single natural monument was often split 
across more than one map sheet. In such cases, the polygon segments from each sheet 
were combined into one feature. Completed polygon features were compared against the 
paper originals to verify the accuracy and completeness of the position and form and 
were corrected as needed. 

The locations of locally designated cultural properties came from the NRICP database. 
The scale of these maps is usually not indicated, but it is estimated to range from about 
1:30,000 to 1:100,000. Site locations are shown as points. There are no polygon or line 
data from these sources. This database, received on four CD-ROMs, was produced in 
Korean (Hangul). Extracting these data therefore required the extra step of translating 
attribute information into English. Because local cultural resources are numerous, 
coverage was once again restricted to the priority areas discussed above. The NRCIP data 
set was divided according to local political boundaries. Data sets from governmental 
units, including priority military bases and the jurisdictions immediately adjoining them, 
were included because these are the areas where cultural resources are most likely to be 
affected by USFK activities. The maps included with the NRCIP data show cultural-
property locations as points on a background consisting of a simplified street grid, 
coastlines, and political boundaries. NRCIP maps were compared with the VITD road 
grid and 1:100,000 road maps of the local area to determine their position. A GIS layer 
was created directly from these sources. The attributes attached to the points are the same 
as those used for nationally designated properties, except that the local cultural-property 
categories of “monument,” “tangible cultural property,” “cultural properties material,” 
and “folk material” replace the national categories. The majority of the recorded sites are 
undesignated properties and are categorized in the attribute table as “miscellaneous.” 

11.2.2.2 Natural Resource Data 

Constructing the natural resource layers involved obtaining data from additional source 
types. Natural-monument data were derived from the Management Atlas of State-
Designated Cultural Properties as described above. Natural resource data were also 
derived from hardbound texts and electronic data in a different format. 

Three bound volumes provided the maps that were used to construct the initial natural 
resources data set. Each volume describes Korean species of concern, accompanied by a 
small-scale, point distribution map. Points were screen-digitized over a base map similar 
to the published maps, resulting in separate shapefiles for each volume. A set of attributes 
was assigned to each point, including the genus and species, common name, protected 
status, and taxon. Reference information, including page number, was also included. Data 
were extracted from the following three sources: Choi et al. (1990) and KACN (1980, 
1990). 

These layers were later combined with other point data to form a single natural 
resources point layer. The attribute fields were first standardized according to their names 
and features, and then joined. To enhance the ease of use, display points are represented 
with icons depicting the different taxa: mammals, birds, reptiles, amphibians, insects, or 
plants. 
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The horizontal accuracy of point placement is constrained by the accuracy of the 
source data. The scale of the published sources is approximately 1:8,000,000. The scale 
of the VMap1 data is 1:250,000. Even though ArcView software allows the user to zoom 
in to large-scale views of the data, such actions will provide a false impression of local 
precision. Because the location can be no more precise than the original source map, the 
best use of this GIS is to screen for possible presence. IEDROK alerts the user to the 
likelihood of a particular species in the area. The utility of IEDROK is as an initial 
screening tool that provides a level of information not previously available. 

The Korean Association for the Conservation of Nature (KACN) provided species 
point distributions for inclusion in IEDROK (KACN 2000a, 2000b). Additional species 
point plots were created by KACN specifically for this database. These plots updated and 
expanded the distribution plots available from published sources. KACN provided the 
point distributions for protected species as GIS layers. Important identifying species 
attributes, such as species and common name, were extracted from the KACN reports 
(KACN 2000a, 2000b). 

While there seems to be a relatively good fit between the KACN projections and the 
VMap1 baseline data, KACN did not document their projection, so the projection had to 
be deduced from the delivered product. There may be some displacement of points as a 
result. However, the degree of displacement is insignificant compared with the existing 
accuracy limitations of the source data. The most valuable contribution of material 
supplied by KACN was the textual descriptions. Brief narratives for each species include 
distributional information. These narrative distributions can be transformed into polygons 
and entered into IEDROK. 

11.3 Using IEDROK: System Requirements 

IEDROK was developed for use with the Environmental Systems Research Institute’s 
(ESRI) ArcView software, and is provided on five CD-ROMs. IEDROK can be used on 
any personal computer with ArcView 3.1 to 3.3 installed.5 The Republic of Korea is 
divided into four geographic areas by USFK. Because of the large volume of data, 
IEDROK files based on those areas are contained on five separate CD-ROMs. (Areas I 
and II were combined on a single CD, while the larger Areas III and IV each had to be 
divided in two.) Provided on each CD is a simple set of base map layers for the entire 
Republic of Korea and a list of all of the reference documents. 

Microsoft’s Internet Explorer and a means of accessing the Internet are necessary to 
use the Korean Cultural Properties Administration’s Web site. Documents provided on 
the CDs require Adobe Reader® for viewing and printing. The minimum system 
requirements are listed below: 

Software: 
     ESRI ArcView 3.1 

     Microsoft Internet Explorer 5 
     Adobe Reader 6.0 
Computer: 
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     Personal computer with at least a Pentium or higher Intel-based or 
compatible microprocessor, a hard disk, and a CD-ROM drive 

Operating System: 
     Microsoft Windows 95, 98, NT 4.0, 2000, or XP 
Memory: 
     32 MB RAM (64 MB or more is recommended) 
Display: 
     256 colors at 800×600 resolution (higher resolution and color depth, 

and at least 32 MB of display RAM are strongly recommended) 

11.4 Finding a Location of Interest 

IEDROK provides a wealth of base map, natural, and cultural information that can be 
examined relative to the location of an existing installation or planned activity. There are 
several ways to identify that location in IEDROK. The simplest is to use the zoom and 
pan controls to locate a site of interest based on recognizable features on the maps. 

A second method is available if the latitude and longitude coordinate of a location is 
known. The coordinate should be in the World Geodetic System, 1984 (WGS84), datum 
to match the projection used in IEDROK. The location-finder window was added to the 
interface for this purpose. Figure 11.3 shows the location-finder window with coordinate 
entered. After the user enters the coordinate, the map is then panned to the entered 
position and a red dot is placed at the entered location. If the coordinate entered falls in 
an area beyond the extent of the current map, the system will indicate which CD to use 
for that location, or whether the point falls beyond the limits of IEDROK data layers. 

 

FIGURE 11.3 Location-finder 
window with coordinates entered. 
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FIGURE 11.4 Information retrieved 
by the custom-identify tool for a 
selected cultural resource. 

A third method depends upon the availability of a GIS layer for the location of interest. If 
the available layer is in a data format supported by Arc View and in a geographic 
coordinate system using the WGS84 datum, it can be easily used by adding it to the map 
and zooming to the extent of the layer. 

11.4.1 Looking Up Information around a Location 

Another key activity is to examine and query the IEDROK to answer questions about the 
resources depicted on the map. The first and sometimes most effective means is to use 
either Arc View’s standard “identify” tool or the IEDROK “custom identify” tool. Figure 
11.4 shows the window displayed by the custom-identify tool for a selected cultural 
resource. 

A second method is to select a group of features around a location and then examine 
the selected records in the associated GIS database table. The interface contains a variety 
of tools for selecting groups of features. For example, a circle-selection tool allows 
features to be selected within a particular distance from a location of interest. This 
approach is useful for identifying resources that may be affected by actions at a particular 
location (Figure 11.5). 
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FIGURE 11.5 Map showing selection 
of cultural properties within a 10-km 
circle north of the Seoul area, with 
table showing selected records. 

11.4.2 Examining the Distribution of a Set of Similar Features 

In evaluating the consequences of a planned action on an identified cultural resource, it is 
often necessary to understand how common the resource is and the extent of its 
distribution. For example, suppose an action were planned near a Bronze Age tumulus. 
The resource manager might want to know if tombs of a similar type are common in the 
area and might be affected if the venue of the action were changed. An approach opposite 
to that described in the previous section can be used to focus on these questions. This 
involves selecting resources with characteristics of interest from a database table, and 
then examining the spatial distribution of the selected features on the map. Figure 11.6 
shows a query operation searching the cultural-properties point layer for Bronze Age 
tombs, which would yield 30 matches in the USFK Areas I and II. 

11.5 Further GIS Analysis 

The previous examples describe simple yet powerful operations that the IEDROK GIS 
can perform. For an experienced Arc View user, many other  
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FIGURE 11.6 Query-builder window 
to search for Bronze Age tombs in the 
cultural-properties point layer. 

analysis and modeling activities can be implemented. For example, relationships between 
layers can be examined, such as which physical features are associated with a particular 
resource and how common or rare those features are. A predictive model might be 
formulated if strong associations between GIS layers are seen, such as cultural resources 
of a particular type or period in association with such factors as hydrology, soil type, and 
slope. These are the very factors traditionally employed by Korean shamans, or 
geomancers, in recommending burial and construction sites. Resources can be visualized 
on the map according to their database characteristics, such as grouping cultural 
resources by their age or grouping natural resources according to their protection status. 
Distributions of cultural resources and examination of their characteristics could lead to a 
better understanding of the spatial and temporal ranges of the cultures that produced 
them. 

11.6 Conclusions and Future Directions 

IEDROK was constructed to provide USFK managers tasked with stewardship 
responsibility over Korea’s cultural and natural resources with an initial screening tool. 
This tool allows them to determine the reported presence of protected resources in the 
vicinity of a proposed action and to predict the likelihood of such resources in areas 
where none has been previously reported. Disparate data sets from a variety of sources 
were brought together and combined. The process highlighted the wealth of data that 
exist concerning these resources, but it also revealed the challenges in making the data 
available in a format that resource managers could readily use. The effort exposed the 
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difficulties of using data from different sources and at different scales. Even the two 
NIMA data sets did not prove to be perfectly congruent. 

IEDROK includes field observations only for those USFK facilities visited by 
Argonne scientists. As additional field data become available for other USFK facilities, 
IEDROK provides a framework into which these data can easily be added. The exact 
locations of military facilities must be added to IEDROK by each user, or IEDROK 
layers can be incorporated into an installation’s existing GIS. 

In conclusion, IEDROK has brought together for the first time Korean natural- and 
cultural resource data from a wide variety of sources. The quality of the data sets 
themselves, while not compromising the utility of the IEDROK as an initial screening 
tool, dictate its limitations. IEDROK should not be seen as a final product, but as an 
initial baseline data set upon which newer and more complete data layers can be added as 
they become available. 

Notes 
1. Since this paper was presented, NIMA has been renamed and is now the National Geospatial-

Intelligence Agency (NGA). 
2. Arc View is a commercial GIS software application, produced by the Environmental Systems 

Research Institute (ESRI), that was used in the development of IEDROK and as the 
framework for the IEDROK system interface. IEDROK is compatible with Arc View 
versions 3.1 to 3.3. 

3. Shapefiles are a nonproprietary GIS data format introduced by ESRI that is widely used for 
GIS data storage and exchange. 

4. Arc/Info is a commercial GIS software application produced by ESRI that was used in the 
development of IEDROK. A coverage is a GIS layer in a proprietary Arc/Info data format. 
This format was used only for data development, and completed data are included in 
IEDROK as shapefiles. 

5. ESRI now produces another product, Arc View 8.x, that has the same name and general 
capabilities as Arc View 3.x, but has different software architecture. The IEDROK GIS 
database is fully compatible with this software, but the IEDROK interface tools are not. Arc 
View 3.x continues to be sold and supported by ESRI and has a large user base. 
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12 
Appropriateness and Applicability of GIS and 
Predictive Models with Regard to Regulatory 

and Nonregulatory Archaeology 
Kira E.Kaufmann 

12.1 Introduction 

Regulatory and nonregulatory archaeological venues approach the use of new technology 
such as geographic information systems (GIS) and predictive modeling in different ways. 
There are important concerns for cultural resource managers and land planners because 
archaeological projects that are monitored by federal or state laws involve different 
factors that need to be taken into consideration to comply with the legislation. The 
Advisory Council on Historic Preservation has minimal guidelines for the 
implementation and application of GIS and predictive modeling for archaeological 
research that is accomplished to comply with Section 106 of the National Historic 
Preservation Act. This chapter presents current guidelines for the implementation of 
predictive models and describes how several states, U.S. territories, and tribes are 
interpreting them. Recommendations are also provided, from a regulatory archaeology 
perspective, for cultural resource managers and land managers who desire to use this type 
of analysis in archaeological research. 

12.1.1 Nonregulatory Archaeological Venues 

Nonregulatory archaeology involves individuals, organizations, or institutions that initiate 
archaeological investigations that are not a result of a need to fulfill federal, state, or local 
laws, regulations, permits, licenses, or ordinances. This type of archaeology is usually 
conducted under the auspices of independent or academic research. 

12.1.2 Regulatory Archaeology Venues 

Regulatory archaeology involves fulfilling requirements according to federal, state, or 
local preservation laws. This type of archaeology often entails various aspects of 
identification, evaluation, and treatment of historic properties as a result of fulfilling one 



or more federal, state, or local laws, regulations, permits, licenses, or ordinances. In 
regulatory archaeology, the authoritative agency or group sponsoring a project requires 
that certain aspects of cultural resource investigations be accounted for. 

It is important to stress that different federal and state agencies will have different 
needs related to archaeology and compliance issues. Specific types of information are 
required by different agencies responsible for identifying or treating historic properties. It 
is recommended that an agency sponsoring a project consult with the State Historic 
Preservation Office (SHPO) concerning the appropriateness of the proposed methodology 
for a project prior to initiating an alternative method of investigation. 

Each federal agency is responsible for ensuring that its programs comply with 
mandates set forth in the American Antiquities Act of 1906, the Archaeological 
Resources Protection Act of the 1979, and in Section 106 of the National Historic 
Preservation Act. Some suggestions are given in this chapter to provide guidance to 
project sponsors in fulfilling their legal responsibilities. Note that different state or 
municipal agencies may be affected by supplementary regulations in addition to federal 
regulations. 

12.2 Theoretical Issues 

GIS is more than geographic information systems; frequently it is referred to now as 
geographic information science. It is moving from a technological tool to form its own 
discipline. There are several culturally and socially embedded aspects of GIS. For 
example, concepts of space with regard to GIS not only vary between cultures, but 
sometimes between different users as well. Different users employ different terms to talk 
about space, and this discrepancy can affect our interpretation of the data. We also 
maintain different concepts of time. Some users think of GIS data as providing the most 
up-to-date information. However, GIS and predictive modeling provide the user a picture 
of just one moment in time. As we know, GIS is also evolving technology. It is moving 
from the realm of the specialist to many other applications. What the specialist sees as 
important, the general user may not, and vice versa. 

12.3 Technical Issues 

12.3.1 GIS 

There are several technical issues pertaining to using electronic data and tools that affect 
the accuracy and reliability of the data for archaeological investigations and 
interpretation. First, the most visible technical issue is a matter of access compared with 
no access: Which people have access compared with those who do not have access, and 
how does this affect the data, results, and interpretation? Although many individuals in 
the business world, cultural resource management (CRM) firms, urban-planning 
facilities, and so forth have access to cutting-edge technology, many SHPOs do not. 

Second, the type of software that a researcher uses affects many aspects of the data 
output. Is a raster-based or vector-based software being employed? For example, there 
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are differences between the Environmental Systems Research Institute’s (ESRI) ArcInfo, 
Arc View, and ARCGIS software. 

Third, the sample size used for the data in the GIS system affects data output and 
interpretation. Previously, a larger sample size was considered more important. However, 
as many GIS users know, sometimes too large of a sample size becomes 
counterproductive when it locks up the system. 

Fourth, the type of datum used affects the GIS information. For example, which maps 
were used? Which North American datum (NAD) was the map based on? Counties 
frequently use Department of Transportation (DOT) maps with the NAD 1927, whereas 
the USGS topographic maps and U.S. Census data use the NAD 1983. The different 
location of these two datums can skew GIS data exponentially. 

Fifth, the data set used can affect the accuracy of the results. For example, primary 
data are much more reliable then secondary or third-generation data. However, primary 
data may not be available. Was the data entered by an automated or manual method? 
Each method contains inherent errors (for example, digitizing errors from manual entry). 

Sixth, regarding data entry, what criteria were used for the mode of the data input 
(e.g., raster or vector—raster should be left as raster)? What is the lineage of the 
metadata? How many conversions were there from or since the primary data form? What 
stage or level of transformation is the data used are using: second, third, fourth, etc.? The 
higher the level of transformation, the greater will be the percentage of error. 

Seventh, often overlooked is the issue of who owns the copyright of the data. Will 
royalties be expected for the use of the data? Which type of data set database was used? 
Census Tiger files, for example, have their own set of data-entry problems, misspelled 
streets, incorrect address locations, etc. Was the data set proofread and corrected for these 
types of errors? 

Eighth, geographic concerns such as how we measure space (topographic, ellipsoid, 
geoid) also affect the way we enter data and interpret the results. How we use scale 
affects our data. The data were obtained from which scale-sized map? The effects of 
scale on data are threefold: we cannot use what is not on the data set; we can only query 
at the level applicable to the map generalizations; and the features on a specified map will 
change with the scale of the map. Map projections affect the accuracy of the data 
(cylindrical, secant, or any other). All of these issues affect levels of resolution, the 
accuracy of the results produced, and the compatibility of the data produced. 

12.3.2 Predictive Modeling 

Many of the above issues—sample size, type of datum, lineage of the metadata, and 
geographic concerns—also affect the reliability or strength of a predictive model. The 
sample size used for the GIS system affects data output and interpretation. The manner in 
which the model is established (e.g., nearest neighbor, standard values, etc.) will affect 
data results. The underlying assumptions and the data the model is based on will 
determine results. Also, specific models used will result in different output. For example, 
using different models results in different three-dimensional surfaces. 

 

Appropriateness and applicability of GIS and predictive      245



12.4 Linguistic Issues 

Many GIS users have realized that the “techies” speak a very different language than 
they. Developer-oriented discussions concerning GIS and predictive modeling are very 
different from user-oriented discussions. This not only creates a gap in the effective 
transmission of information from the developer to the user, but also creates anxiety on the 
part of the user, to the point that many users may even abandon implementing GIS or 
predictive modeling. 

Translation problems occur when the end-user language is different from that of the 
technical user or developer. Therefore, there may be an increase in interpretation 
problems when the developer and user are operating from different schemata. Translation 
problems also occur across cultures using this technology. 

12.5 Policy Issues 

The most important consideration for the project planner or sponsor is to determine 
whether or not GIS and predictive modeling are appropriate for the project. Although 
most agencies do not have a written policy concerning GIS or predictive modeling, they 
do have issues with these methods used for projects that are completed to comply with 
state or federal laws. 

Regulatory archaeology has approached this technology of GIS and predictive 
modeling in two different ways. State Historic Preservation Offices (SHPOs), the 
regulatory review arm of the federal and state government, are truly interested in 
developing GIS as a tool for their states. However, they are more interested in GIS as a 
management tool that will increase their efficiency as an office, rather than using the 
relational database aspects of GIS to conduct research. Limited funding support has 
severely hampered their efforts to create, employ, and continue to support GIS 
applications for archaeology and other cultural resources. 

Many states, U.S. territories, and tribes are in the process of developing and using 
GIS, but few have specific guidelines on the application of this technology to 
archaeological investigations. The Advisory Council on Historic Preservation has no 
specific standards or guidelines regarding the use of GIS. The National Park Service 
(1983) has some general recommendations regarding GIS included with the “Secretary of 
the Interior’s Guidelines” for conducting archaeological investigations. 

12.6 A Specific Example: Recommendations from the State of Iowa 

The State Historic Preservation Office of Iowa developed recommendations for using 
GIS after many months of research, review, and consultation in the process of updating 
their guidelines for conducting archaeological investigations in Iowa. The Iowa 
guidelines (1999) recommend that when conducting archival or field research, the 
researcher should attempt to access all available sources via any new technology or 
methodology that may be appropriate. New technology sources such as e-mail, GIS, or 
the Internet should be credited and cited accordingly. When conducting field research or 
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analysis, the use of new technology or methodology should be verified as consistent, 
reliable, and accurate. Some examples of new technology that may be applicable to field 
research are GPS units, remote-sensing equipment, or new survey technology. When 
conducting analysis, an attempt should be made to create data sets that are compatible 
between the sponsor of the project and the consultant. It may be necessary to use 
compatible computer programs to accomplish this. New technology or methodology 
should also be consistent and accurate when applied to analysis and curator ship. 

Some considerations regarding GIS again concern the accuracy of the results 
produced. Individuals submitting maps or other data produced by using GIS should be 
aware that the information produced is only as accurate as the information that had been 
entered into the program. This is particularly important for maps that have been digitized 
or electronically scanned in. The Iowa State GIS laboratory addressed some specific 
points pertaining to GIS data entry. When digitizing data, control points should be 
carefully recorded and monitored. When submitting hand-drawn maps that will be 
digitized, rulers and thin lines should be used, as it is difficult to digitize thick and 
crooked lines. 

Care should also be taken when choosing a GIS program or software. There are 
specific differences among the variety of GIS programs. There can be incompatibility 
problems between results from two different programs if the data are entered differently. 
For example, if certain data are entered as line segments in one program and a polygon in 
the other program, there may be discrepancies in the results. Further training in GIS 
technology is recommended prior to using GIS technology. 

12.7 Predictive Modeling 

A predictive model is a set of cumulative data that have been obtained from a thorough 
overview of background information and previous research pertinent to a specific area, 
landform, watershed, etc. The end product of a predictive model is a series of explicit and 
testable statements concerning the location and general characteristics (size, depth, age, 
cultural affiliation, integrity, etc.) of specific historic properties. The Advisory Council 
on Historic Preservation (1983) defines predictive modeling as “the generation of models 
of the likely nature and distribution of historic properties in an area  

that has not been subjected to intensive, complete survey” The Advisory Council on 
Historic Preservation (1983) recommends ten important overview data components to 
consider when developing predictive models: 

1. Propositions derived from history, ethnography, ethnohistory, anthropological, 
sociological, and geographical theory, and other disciplines about the kinds of 
settlement patterns, subsistence practices, and social organizations that might have 
characterized the area under investigation, or the kinds of social groups that occupied 
it in prehistoric or more recent times 

2. Background historical and ethnographic data on the actual locations of places, 
structures, and areas for different purposes (e.g., residence, industry, religion, and 
transportation) in the past 

3. The known or postulated distribution of historic properties of different kinds in the 
region within which the study area lies, or within similar areas 
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4. Data on changes in landform, vegetation, and other environmental characteristics that 
may serve to obscure or reveal historic properties 

5. Research questions of concern in the area, and/or in the general disciplines involved, 
which may serve as bases for evaluating archaeological significance 

6. The cultural concerns and practices of local communities, American Indian groups, 
and others who may ascribe significance to historic properties, as a basis for 
evaluating associative significance 

7. The architectural or artistic traditions of the region, as a basis for evaluating 
architectural and art-historical significance 

8. Historical events and people of the region, as a basis for evaluating historical 
significance 

9. The physical characteristics of different kinds of historic properties in the area, to serve 
as a basis for generating expectations about what to look for in the field 

10. Where available, data on historic property types and distribution in the area based on 
sample survey 

The resulting predictive models should be capable of projecting the distribution of 
different types of historic properties. The predictive model should contain a high level of 
resolution that infers that substantial data contributed to the formation and applicability of 
the model. The more information incorporated into a predictive model, the higher the 
predictive model resolution will be and the more useful the model may be. If very little 
data are available or incorporated into the predictive model, the resolution or reliability of 
the model will be low. If the model resolution is low, a few areas of historic properties 
may still be identified, but most areas will be identified as having unknown potential, and 
the use of the model may be very restricted. 

It is important that testing substantiate predictive models. Predictive models should be 
tested in the real world by techniques and methods that can be duplicated by others. 
Testing creates confidence in the applicability and accuracy of the predictive model. A 
testing program should be designed that obtains a representative sample of the predictive 
model area and involves onsite inspection. Appropriate statistical techniques should be 
applied to the predictive model and authenticated in a manner that does not bias the 
model. It is recommended that those predictive models with a faulty information base or 
sample biases should not be used for projects. The resulting predictive model should be 
accompanied with detailed text explaining why predicted areas contain or do not contain 
historic properties of a certain type. 

Sampling strategies were specifically addressed in the Guidelines for Archaeological 
Investigations in Iowa (1999) because certain consultants were attempting to use 
inappropriate sampling strategies to develop predictive models (e.g., windshield surveys 
to identify prehistoric Native American sites, some of which may have had the potential 
to be buried). Sampling strategies can be defined as different methodologies employed to 
obtain a representation of historic properties. Sampling strategies typically investigate a 
portion of the area that is the subject of investigation. Sampling strategies may constitute 
a separate investigation or may be supportive of a predictive model. Sampling strategies 
attempt to extrapolate or generalize about the distribution and nature of historic properties 
in an area. These strategies are often employed to acquire information about cultural 
resources within a broad area with minimal effort. 
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Generating a predictive model is an attempt to predict what kinds of historic properties 
will be found in a previously unsurveyed area. The resulting model may predict the likely 
locations where historic properties may be found and may permit an attempt to predict 
what kinds of significance such properties may have. A predictive model that conforms to 
one part of the state for certain resources may not be applicable to other dissimilar areas 
or cultural resources. It is important to make sure that the predictive model has been 
tested in the real world to ensure that it accurately predicts the locations and general 
characteristics of the cultural resources being modeled. This testing should encompass a 
process of continual adjustment to verify the continued validity of the predictive model. 
After a predictive model has been developed, the model should be revisited and 
reassessed for accuracy and appropriateness. 

Predictive models and sampling strategies should be developed and employed after 
consultation with the SHPO for their appropriateness and applicability for a particular 
project. Most SHPOs work with predictive models on a case-by-case basis or are 
beginning to “use modeling as a tool to specify survey areas for 106 compliance” 
(respondent from 2003 survey). 

Predictive models are most applicable to surveys for planning purposes or general 
land-management considerations. Sampling strategies are helpful when investigating 
extremely large areas of land. Sampling strategies are also very useful for testing 
predictive models. The greatest concern among SHPOs is that predictive models will be 
inappropriately applied to avoid proper investigation and evaluation of cultural resources. 

The Advisory Council’s position with regard to predictive modeling states that “the 
use of predictive modeling in projects carried out pursuant to Section 106 of the National 
Historic Preservation Act was addressed by the Council in 1983.” This position is 
detailed as follows: “The usefulness of a model in Section 106 review is directly linked to 
its quality, its comprehensiveness, and its reliability.” The Advisory Council cautions 
against the use of coarse-grained models, models that have not been tested, or models that 
fail to take into account certain classes of historic properties. The Advisory Council has 
stated in recent seminars that a predictive model should not be used by an agency to make 
a determination of “no historic properties affected” (Advisory Council on Historic 
Preservation 1999). It is strongly recommended to consult with the SHPO and receive 
written SHPO concurrence about predictive modeling strategies prior to the 
implementation of any predictive modeling strategy for any regulatory project. 

12.8 Results of Survey 

In 2001, the author sent a brief letter to the states, U.S. territories, and tribes within the 
U.S. asking what, if any, guidelines and recommendations they were using for GIS, 
predictive modeling, and electrical remote sensing as investigative tools when conducting 
archaeological research. In August 2003, a follow-up e-mail letter was successfully sent 
to 55 states, U.S. territories, and tribes requesting additional information regarding their 
archaeological guidelines that addressed GIS and predictive modeling use with 
archaeological projects. E-mail addresses were obtained from the National Council of 
Historic Preservation Officer’s list of SHPOs. Four territories or tribes did not have e-
mail addresses, and five e-mails were returned unopened. In addition, a Web-site search 

Appropriateness and applicability of GIS and predictive      249



was attempted for those states that did not respond to determine if they offered Web-site 
access for their archaeological GIS database if they maintained one. 

Nineteen states, U.S. territories, and tribes (hereinafter referred to as “states”) 
responded to the first survey in 2001, and 14 states responded to the follow-up survey in 
2003. In 2001, two states had guidelines for using GIS, and one state had draft guidelines 
for using GIS as an investigative tool when conducting archaeological research. Sixteen 
states did not have any guidelines or recommendations for this type of methodology. In 
2001, eight states had GIS coordinators or were using GIS to manage their cultural 
resources. Eleven states did not have GIS coordinators or use GIS to account and manage 
the cultural resources within their states. 

In 2003, three states had guidelines that address GIS use with archaeological 
investigations, and no states had draft guidelines. As of 2003, ten states did not have 
standard guidelines but made recommendations on using GIS, usually on a case-by-case 
basis. Twelve states had no guidelines regarding GIS use in archaeological investigations. 

In 2003, eight states had full-time GIS coordinators, three states had parttime GIS 
coordinators, and five states were using GIS but hired outside contractors to develop or 
manage the GIS data (Figure 12.1). Currently, nine states do not have GIS coordinators 
or use GIS to account for cultural resources at the state level. Several states do use GIS at 
universities and research institutions to assist with cataloging and documenting cultural 
resources within the state. Eight states have Web-site access to their GIS database for 
archaeological resources and 18 do not (Figure 12.2). 

 

FIGURE 12.1 States and tribes with 
GIS coordinates. 
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FIGURE 12.2 States and tribes with 
website access to GIS data for 
archaeology. 

Most states are still working to develop GIS as a managerial tool but have not addressed 
standards with regard to the use of GIS or predictive modeling. However, many states 
polled shared the sentiments expressed by one respondent: “As far as the importance of 
GIS, I can’t stress enough the advantages that it will have once completed, especially for 
predictive modeling. Our agency implements the Section 106 process for archaeological 
and architectural historic sites. Once the system is operational, not only will it assist our 
staff in determining the effects of requested projects to our cultural resources, but it will 
also give consultants the ability to avoid areas of potential impact in the planning stages 
of their projects. If cultural resources can be avoided in the planning phase of projects 
such as highways, sewer and water projects, cell towers, etc., then that would save the 
company time and money. It also saves our state’s cultural resources.” 

Another respondent commented that “there is very little use of the GIS by…state or 
federal agency staff to conduct research…but at this time the ‘agency’ GIS and mapping 
capabilities are basically a very expensive toy used to make checks during reviews a little 
more efficient and to add pizzazz to written recommendations. It is not surprising that 
there is limited use for research given that research takes a long time to develop and our 
GIS is very new.” 

Predictive modeling is much less represented than GIS as a method for investigating 
archaeological resources. In 2001, two states, Iowa and Minnesota, had specific 
guidelines or recommendations for using and applying predictive modeling to 
archaeological resources. In 2003, three states (Iowa, Minnesota, and Mississippi) have 
specific guidelines for the use and application of GIS and predictive modeling. Five states 
do not have specific guidelines but make recommendations on a case-by-case basis. 
Sixteen states that responded do not have any specific recommendations pertaining to 
predictive modeling and cultural resources. 

Although the Advisory Council on Historic Preservation has some recommendations 
pertaining to predictive modeling, these are 19 years old now and need to be readdressed 
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as well as formalized. The National Park Service (1983) has no specific detailed 
guidelines for these methods as of yet. Although most states do not have guidelines 
concerning predictive modeling, respondents either did not comment on the use of 
predictive models or remarked that predictive modeling has not been encountered 
frequently as an approach to investigating or managing archaeological resources. As one 
respondent reported, “Predictive modeling’s head has not yet been raised and will again 
be looked at on an individual basis, if the time comes.” One state interjected that they do 
not have guidelines for predictive models but they “only ask that users not disclose site 
locations.” 

Another perspective on predictive modeling was aptly expressed by a respondent who 
observed “that most agency folks and a lot of archaeologists tend to see predictive 
modeling as a map for treasure hunting, ‘Where can I go to dig a hole that is guaranteed 
to get me lots of neat artifacts’ kind of thinking. I view predictive modeling as providing 
interpretations of spatial distributions that inform decision making on what level of 
survey intensity is needed. I have pretty much given up on trying to get agency 
archaeologists to develop informed uses of predictive modeling.” 

12.9 Conclusion 

There is obviously a lack of standards or guidelines with regard to the use of GIS and 
predictive modeling in archaeological research from the federal and state level. Is there a 
need? I would argue that there is a need for some standards not only to maintain 
consistency, but also to continue the “uselife,” so to speak, of the data produced. Also, 
there is a need for some standardization to maintain a professional approach to the 
methodology of GIS and predictive modeling. 

I would encourage organizations or groups that conduct GIS and predictive modeling 
research to develop guidelines or standards with regard to using these approaches in 
archaeological research to create consistency in investigating, recording, and 
documenting historic properties. However, standards should not be developed to regiment 
or oversee the research conducted by academic archaeologists or other professional 
scholars. 

These standards should specify the recommended amount of technical information 
necessary to carry out historic-properties investigations that will contribute to survey and 
inventory data and will lead to more informed decision making. The Society for 
American Archaeology (SAA) provides seminars on the use of GIS. However, I am 
unaware of a task force, such as there is for public archaeology, for GIS or predictive 
modeling. I would suggest that this is the next step in developing these methods as viable 
alternatives in conducting archaeological research. 
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12.10 Addendum 

In conjunction with this research, an additional survey of how states, U.S. territories, and 
tribes are using geophysical remote sensing (GRS) for archaeological research was 
conducted. States were queried as to what guidelines exist or what recommendations they 
provide for these types of archaeological applications. In 2003, three states had guidelines 
that address the archaeological use of geophysical remote sensing, and one state had draft 
guidelines (Figure 12.3). Ten states did not have guidelines but made recommendations 
on using geophysical remote sensing, and 14 states had no guidelines regarding 
archaeological applications of geophysical remote sensing. 

 

FIGURE 12.3 States and tribes with 
guidelines for using geophysical 
remote sensing with archaeology. 

One respondent aptly stated, “We try to encourage the use of these tools, but for Section 
106 reviews this is very difficult. These strategies are often very expensive. Often the 
applicant or the agency will go with the low bid and we will get crummy archaeology. 
But for Section 106 reviews, even if it is crummy, it might be enough. We cannot 
demand the most expensive archaeology. We risk losing our credibility and integrity if 
we ask for too much. Mostly in Section 106 projects the archaeological site will be 
destroyed, so you are going to get to excavations for important sites regardless of whether 
you get there by adding a geophysical testing step or not. Geophysical testing is 
increasingly being recommended by our office and increasingly being used in situations 
where the efforts are directed towards preservation in place. For these situations, we 
generally try to find the right tool for the situation.” 

Again, this survey demonstrates the dilemma that archaeological applications of 
technology present for cultural resource managers that might aspire to use technology, 
such as GIS, GRS, and predictive modeling, in archaeological investigations. The 
dilemma is that, too frequently, these types of technological applications are avoided or 
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not employed to assist with state or federally monitored archaeological projects. Partially, 
this is a result of a lack of funds available to cultural resource managers. Also, this 
dilemma is a result of preconceived notions about the validity and appropriateness of 
using these technologies to identify, document, and assess archaeological resources. 
However, the frustration and avoidance of using GIS, GRS, or predictive modeling for 
nonacademic-oriented archaeological investigations also results from minimal to no 
standardized guidance in applying these strategies successfully in archaeological 
applications. Most importantly, developing standardized guidelines for the archaeological 
utilization of these technologies will greatly increase their acceptability, application, and 
productivity in the future. 
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13  
Archaeological GIS in Environmental Impact 

Assessment and Planning  
Linda S.Naunapper 

ABSTRACT Preliminary assessment of the impacts of development on 
natural and cultural resources in federal projects is often relegated to the 
domain of engineering and environmental contractors in what is known as 
an environmental impact assessment (EIA). As such, budget and time 
constraints often undermine the depth to which background investigations 
can occur. In the case of cultural resources, environmental scientists are 
generally not aware of issues specific to historic and prehistoric resources. 
In this case study, an examination of the impact that a state-developed, 
archaeological geographic information system (GIS) (predictive model) 
had upon the accuracy of assessment in a federal project is explored. In 
sum, through consultation with the site file administrator during the 
assessment phase, the GIS served as a valuable tool in increasing the 
efficiency of the EIA process and made archaeological field survey 
possible at a number of project areas. Further, access to site file 
information in the earliest phase of the process substantially reduced the 
number of areas considered for development by the client, thereby 
reducing the amount of candidates submitted to the State Historic 
Preservation Office (SHPO) for review as part of the National Historic 
Preservation Act (NHPA) Section 106 process. 

13.1 Introduction 

This chapter is the written and expanded version of a poster session presented at the “GIS 
in Archaeology Conference” held at Argonne National Laboratory in 2001 and the 
“Society for American Archaeology Conference” at Denver, CO, in 2002. The original 
intention of developing the poster session was to present information gathered from the 
author’s personal experience as an environmental scientist/assessor involved in a 
federally regulated project that was concerned with protection of natural and cultural 
resources. Given my professional experience in archaeology and cultural resource 
management (CRM) as well, the environmental firm looked to me as a specialist who 



they believed could provide additional skills and knowledge in this area to benefit the 
overall project. It was within the experiences of this project that the extent of the gap 
between management of natural versus cultural resources in the environmental industry 
became clear. 

While my experiences were limited to a number of states located in the midwestern 
U.S., my discussions with colleagues during the course of these poster sessions suggested 
that similar circumstances have occurred throughout the country. A number of concerned 
archaeologists working within the compliance industry agreed with the observations 
made in my poster and questioned why such a difference exists between the use of GIS in 
management of cultural versus natural resources. These poster sessions afforded a unique 
opportunity to discuss these issues with colleagues in an informal manner, and the 
experience demonstrated that, as archaeologists, we need to discuss these issues more 
openly in the future. 

As discussed with colleagues, what was most striking to me as an environmental 
assessor was the differential in availability of, and access to, data regarding natural versus 
cultural resources. Natural resources data are managed and maintained by numerous 
agencies (such as U.S. Fish and Wildlife Service, Department of Natural Resources, 
Federal Emergency Management Agency) and were readily accessible through 
consultation, most often received well within the strict time constraints of the project. 
Cultural resources data, on the other hand, as managed by State Historic Preservation 
Offices, were not as readily available, making our ability as assessors to meet project and 
budget deadlines difficult at best. Further, this threatened to compromise our ability to 
make complete and accurate assessments of potential impacts of development upon 
cultural resources. 

What is the reason for this differential in access to cultural resources data? In all 
fairness, it is due to a variety of factors, including lack of funding and staff at the agency 
level, but also it is due to the hesitancy on the part of cultural resource managers to use 
GIS and predictive modeling as management tools. The negative effect of this has been 
the relative difference in the resulting data management strategies. 

As will be discussed in the following case study, agencies managing natural resources 
were making use of GIS technology to maintain and update their data, thereby making it 
readily accessible and aiding in the assessment process. At the time of the case study, 
only one agency managing cultural resources data was making use of GIS technology and 
predictive modeling to manage their data. The result of that sole implementation was far 
more effective assessment of resources on the part of assessors and performance of field 
survey in that state. While much progress has been made by SHPOs managing cultural 
resources data since my project work in 1996–1997, much still needs to be accomplished 
in regard to providing access to data by professionals outside of CRM. This is where GIS 
and predictive modeling provide the greatest amount of potential. 
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13.2 The Environmental Impact Assessment (EIA) Process and Role 
of the Screening Phase 

13.2.1 The National Environmental Policy Act (NEPA) vs. the 
National Historic Preservation Act (NHPA) 

As described by Neumann and Sanford (2001:44), the NEPA and NHPA are two separate 
and distinct pieces of federal legislation, although there is some confusion that the NHPA 
and Section 106 process are triggered into effect by NEPA. Under NEPA, all actions of a 
federal agency considered as an “undertaking” must assess the potential effects of that 
undertaking on all natural and cultural resources. This process of consideration involves 
research and consultation in what is called the “environmental impact assessment” 
process or the “NEPA” process (Canter 1996:2) (Figure 13.1). 

While the NEPA or EIA process involves consideration of impacts upon cultural 
resources, the scope of investigation is limited in comparison with review in the NHPA 
and Section 106 process. NEPA requires identification of known cultural resources, while 
Section 106 requires identification of potential cultural resources and eligibility for 
nomination to the National Register of Historic Places, a domain of research restricted to 
professional archaeologists, architectural historians, and historians. Although recent 
Section 106 revisions allow SHPOs to give some environmental scientists a greater 
amount of involvement in cultural resources assessment during the EIA process, this is 
not meant to undermine the necessity for the more rigorous review provided under 
Section 106 (Neumann and Sanford 2001:46). 

As mentioned previously, under NEPA, the EIA process is a very comprehensive, 
broad method of investigation and assessment involving evaluation of a wide variety of 
environmental parameters. The EIA process can be considered as a management strategy 
with the intent to identify, predict, interpret, and communicate impacts upon all aspects of 
the human environment, including air quality, surface water, soil and groundwater, noise, 
biological environment/habitat, cultural environment (including archaeological, 
architectural, and historical), visual impacts, and socioeconomic environment (Hussain 
1996; Canter 1996:x–xiv). All aspects of the human environment must be given equal 
weight and consideration in the process; therefore, consultation and data availability are 
important factors involved in the proper assessment of resources and concerns. 

To help in managing the bulk of information and data gathered through the process 
most effectively, the EIA consists of phases of investigation: screening, scoping, report 
preparation, review, decision making, and monitoring (Wood 1995:22) (see Figure 13.1). 
These phases proceed in succession from most general to most case-specific, the 
screening phase being a goodfaith effort on the part of assessors to compile the most 
accurate and complete picture of the potential effects of development upon all affected 
natural and cultural resources. As such, the ability of assessors to accomplish this goal is 
a function of their access to, and availability of, data regarding these resources. 
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FIGURE 13.1 (From Wood, C., 
Environmental Impact Assessment: A 
Comparative Review, John Wiley and 
Sons, New York, 1995. With 
permission.) 
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Various resource managers maintain their data better than others. Management of data 
ranges from hard-copy versions of maps and resource lists to highly developed database 
systems and GIS. Some of the more common tools used by assessors during the screening 
phase include checklists and databases, matrices, network analyses, maps and map 
overlays, GIS, and computer modeling/photomontage (Figure 13.2). 

While GIS and predictive models are used by many natural resource managers and 
planners as data-management tools, their use by archaeologists in the compliance 
industry is only recently becoming widespread. Funding and staffing issues at SHPOs 
have been suggested in the past as contributing to this situation. However, other factors 
have also contributed to the reluctance of archaeologists to develop and use GIS and 
predictive models. Most arguments against the use of GIS and predictive models revolve 
around factors that make cultural resources and the archaeological record unique. The 
idea is that cultural resources cannot be modeled based on static, two-dimensional data 
alone because factors such as vertical depth and time are not accounted for. Another 
argument is that the data universe used for developing a GIS is a biased sample, 
constrained by surveys generating data within a compliance environment. 

Although these arguments are valid, they are not unique to the development of GIS and 
predictive models in other disciplines. A GIS as a “system” is, by definition, an 
interconnected series of variables and their relationships; therefore, initial assumptions 
must be made regarding the choice of variables. Further, a GIS is a “model” or a 
representation of some aspect of reality and is not a direct reflection of reality. No GIS is 
a direct reflection of reality because it is limited by the variables chosen for the model. 
However, a unique aspect of a GIS is that it is flexible enough that variables can be added 
or deleted from the system as necessary. A GIS is a “tool” that helps us to better 
understand and manage the part of reality that we intend to model. This is the reason that 
GIS and predictive models are of the greatest importance to the effectiveness of 
assessment in the EI A process.  

13.2.2 The Role of Archaeological GIS (Predictive Models) in the 
Screening Phase of EIA: A Case Study 

In 1996, ATC/ATEC Environmental Consultants (1997) entered into a contract to 
provide environmental services for a commercial personal-communications provider 
under guidelines of the Federal Communications Commission (FCC). Environmental 
scientists conducted all phases of environmental impact assessment (EIA), and the 
screening phase was performed according to the special-interest items outlined in 47 
CFR, Section 1.1307, of the FCC regulations for risk-assessment of impacts upon natural 
and cultural resources (Table 13.1). 

As mentioned previously, NEPA assessment differs from NHPA and Section 106 
review in that it only requires assessment of impacts upon previously known and 
recorded resources (Neumann and Sanford 2001:45; Scovill et al. 1977). Thus, as noted 
in Table 13.1, the various resources were investigated within a proposed project area 
using databases, checklists, and maps made available by resource managers. In the case 
of most State Department of Natural Resources and U.S. Fish and Wildlife Service 
offices managing natural resources, this involved consultation with a GIS or database 
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manager. In terms of known historic sites, a state listing of National and State Register 
Sites was made available for review from SHPOs. 

 

FIGURE 13.2 (From Berg, R.C. et al., 
Potential for Contamination of Shallow 
Aquifers in Illinois, Circular 532, 
ISGS, Urbana, IL, 1984 and Singleton, 
R. et al., Environmental Assessment, 
Thomas Telford Publishing, London, 
1997. With permission.) 

Most interesting to this case study, however, is the assessment process and capability 
regarding potential impact upon archaeological resources. Keeping in mind that NEPA 
compliance is concerned with assessment of known resources, only one state with which 
our project was concerned managed its archaeological data in a GIS and predictive 
model. In effect, this resulted in the difference between the process of consultation lasting 
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a few days (correspondence with a database manager) to consultation lasting for months 
at a time (staff manually reviewing hard-copy files). Because of this, assessors  

TABLE 13.1 
Data Sources for Screening Phase of EIA 

Resource Data Source 
Wilderness areas USFWS and State DNR Database 

Wildlife preserve USFWS and State DNR Database 

Threatened/endangered species USFWS and State DNR Database 

Designated critical habitats USFWS and State DNR Database 

Historic places National Register listing by state 

Archaeological Consultation with SHPO (Sect. 106) 

in Illinois Consultation with GIS site file manager 

Flood plain (50–100 years) FEMA FIRM Maps 

Wetlands USDI Wetland Inventory Maps 

Indian religious sites Tribal consultation (case by case) 

High-intensity lighting Not applicable 

Radio-frequency radiation Not applicable 

were more capable of providing timely assessments for effects upon archaeological 
resources in the one state, versus those that did not maintain their data in a GIS. 

The fact that assessors had access to archaeological data early in the screening phase 
allowed the EIA process to continue to the next phase, environmental assessment (EA), 
as was the case with assessment of other resources (such as wetland areas). USDI (1984) 
wetland inventory maps delineate locations of known, protected wetland areas: the 
archaeological predictive model maps delineate areas of high, medium, and low 
probability for location of archaeological sites. These maps provide assessors with the 
data necessary to argue for the need for field survey and the performance of an EA. In 
this case study, the predictive model map provided the necessary information to 
subcontract with professional consulting archaeologists to conduct a field survey. The 
consultant’s report was then sent to the SHPO office for review and was eventually 
included within the EA report submitted to the FCC. 

The steps involved in the screening and EA phases of an archaeological resources 
review include: 

Step 1: Determine project site location(s) 
Step 2: Consult with archaeological GIS database manager regarding 

project site locations 
Step 3: Determination if project site is 
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Near a known site 
In or near a probability area (high, medium, low) 
Step 4: Determination to proceed with development 
Proceed—EA required 
Not proceed—no further action required 
Step 5: Subcontract with professional contractor 

(archaeologist/architectural historian) for Phase 1 field survey as part of 
the EA investigation 

Step 6: Submit contractor’s report of findings to SHPO for Section 106 
review 

Step 7: Incorporate contractor’s report and SHPO review into final EA 
report to be submitted to FCC 

In sum, access to predictive model maps at an early stage in the EIA process places 
assessors involved in NEPA review in an important position. Data regarding cultural 
resources at this stage of review can substantially reduce the number of project areas 
considered for development by a client, thereby reducing the bulk of proposed candidates 
sent to the SHPO office for NHPA Section 106 review. In other words, if a project area is 
located in proximity to a known site or within a high-, medium-, or low-probability area 
of a GIS predictive model, it is more likely that the project area will not be considered for 
development by the client. 

13.3 Conclusions 

Following are some important conclusions to consider regarding the previous case study 
and the use of GIS and predictive models in the EIA process: 

1. This case study was performed in 1996–1997, and Federal Communications 
Commission (FCC) regulations regarding NEPA and NHPA Section 106 review have 
been revised since that time. Nevertheless, the access to archaeological resources data 
during the screening phase (through consultation with the archaeological GIS 
predictive model site file manager) proved to be the determining factor in regard to 
enabling the EIA process. The predictive model data were the only information 
available to assessors that could be used to argue in favor of conducting archaeological 
field survey and performing an EA. 

2. Archaeological GIS predictive models are an important and effective tool in the 
management of cultural resources data (as is true with most natural resources), 
providing the potential to make data more readily available for use by assessors in the 
EIA process. 

3. A certain amount of hesitancy continues to exist regarding the use of state-based 
archaeological GIS and predictive models in compliance. Reasons for this vary, but 
include claims that models are biased in sampling strategy, modeling parameters are 
inadequate, etc. These reasons are not unique to archaeological predictive models, 
however, and the most important aspects of a GIS are its flexibility and its potential 
for revision. This is why research regarding system design, revision, and maintenance 
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of archaeological predictive models is so important in ensuring their future use and 
stability. 

4. Concerns have also been raised regarding the confidentiality of data contained within 
predictive models. Should data only be accessible by those persons who meet the 
Secretary of the Interior’s standards as a professional archaeologist? Should the data 
only be available to those professionals working for SHPOs? In the author’s case as an 
environmental scientist/assessor, the confidentiality of data was assured by the 
professional agreement created between the assessor and the GIS site file 
administrator. 

This case study has been presented with the hope of shedding light on a discrepancy that 
was encountered during the course of a federal project regarding resource data 
management and the environmental review process. Most natural resource data are 
currently readily available for review by environmental scientists/assessors, making the 
assessment of impacts on these resources a relatively smooth process. The availability of 
cultural resource information is a different matter entirely, especially when it comes to 
the screening phase of the environmental review process, the most crucial of all phases. 
Perhaps the development of better data-management techniques for cultural resources 
would make this data more readily accessible to environmental assessors as well, and I 
hope to have demonstrated that this can best be accomplished through the use of 
archaeological GIS and predictive models. 
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14  
Understanding Lines in the Roman 

Landscape: A Study of Ancient Roads and 
Field Systems Based on GIS Technology  

Frank Vermeulen 

ABSTRACT This chapter presents a summary of the basic methodology 
and some results of a recent (1997–1999) geoarchaeological project 
concerning the ancient landscapes of parts of northwestern France and 
Belgium. The primary goal of this project was to detect, reconstruct, and 
interpret the Roman road system and land organization in a well-
delineated area of northern Roman Gaul, as well as to study other 
suspected pre-Medieval linear features in this region. To gain a better 
understanding of the structural organization in this poorly preserved 
ancient landscape, a full battery of techniques has been deployed: active 
aerial photography, systematic field survey, selective excavation, soil 
analysis, palynological research, regressive examination of cartographic 
material, etc. All spatially linked data obtained in this way were vectored 
and integrated in a unique GIS especially developed for the project. This 
work allowed the spatial analysis of all cartographic and archaeological 
information and was very helpful in tracing, mapping, and explaining pre-
historic and Roman roads and field patterns. Important methodological 
problems that needed to be solved included (a) the use of oblique aerial 
photographs and cadastral map data when studying ancient patterns in a 
geographic information system (GIS) environment and (b) the separation 
of relevant ancient lines in the landscape from more recent linear features. 

14.1 Aims, Area, and Field Methodology 

Between 1997 and 1999, a small-scale geoarchaeological project was undertaken at 
Ghent University (Belgium).1 This study was mainly concerned with the reconstruction 
of the landscapes in western Belgium and during the Roman occupation, essentially the 
first four centuries of our era. But as the Roman landscape cannot be isolated from earlier 
evolutions, it is the pre-Medieval landscape as a whole that was looked at. 

The primary aim of this project, which combined a whole set of geographical and 
archaeological methods, was to reconstruct and interpret the Roman road system and land 
organization as well as other pre-Medieval linear features in this area. Results should 
ultimately lead us to an improved understanding of human behavior behind this aspect of 



material structure, especially in the light of the acculturation processes at work in Gaul 
during the Roman period. Local answers to political, economic, technological, and 
ideological stimuli should then be measured and the Roman influence on autochthonous 
land organization evaluated.2 

Another main priority was to explore the potential of new methods of paleolandscape 
analysis in a geographical area of northern Gaul where, up until recently, very little was 
known about the late prehistoric (“protohistoric”) and Roman landscape.3 

The precise area chosen for this research is the Civitas Menapiorum. This former 
administrative unit of the Roman Empire covers the coastal plain, the flat sandy area, and 
the loamy and hilly lowlands of interior Flanders up to the River Scheldt (Figure 14.1). It 
stretches from northwestern France to the southeastern Netherlands. Even more 
interesting than its variety of natural landscape types is an unusually clear division during 
Roman times into a more romanized villa landscape with a more Roman-looking urban 
center, Cassel, in the south and a more indigenous, less-exploited rural area in the north 
(Vermeulen 1992). 

The chosen region appeared at first sight not to have known any pre-Medieval 
landscape structures. On the one hand, it is situated just south of the regions where large 
protohistoric field systems of the Celtic field type have been discovered. On the other 
hand, our area is a bit too far to the north to expect any profound Roman influence on the 
landscape. The well-structured and essentially military Roman road network only 
stretched as far as the southern fringes of this region, and only vague traces indicate that 
the possible existence of an orthogonal Roman land division (“centuriation”) should not 
be ruled out a priori. 

 

FIGURE 14.1 
Localization of the case studies and the 
main natural landscape types in the 
Civitas Menapiorum during Roman 
times. 
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With the exception of the area around the region’s Roman capital, most investigations 
were concentrated in the northern part of the Civitas Menapiorum, in so-called Sandy 
Flanders. This is the generally flat, sandy, and lightly sandy-loamy region situated 
between the River Scheldt and the coastal plain. The main reason for choosing this region 
is the high level of objectivity and quality of the available archaeological information 
obtained through systematic aerial photography and numerous field observations carried 
out in the past 15 years. 

Although the rural landscape is much cut up in Sandy Flanders and the agrarian land 
use extremely varied, the results of this systematic oblique photography are impressive 
(Bourgeois et al. 1992). The now more than 50,000 aerial photographs, containing several 
thousands of settlement sites and burial places, have extended the archaeological database 
of the region in an almost “alarming” way Moreover, an intensification of flights since 
the late 1980s, combined with growing experience with the geographical unit, has 
stimulated the discovery of many off-site features. Ancient roads, field systems, wells, 
pools, cult places, and other isolated traces in the landscape—most of them obviously of 
pre-Medieval date—are some of the main features that are being registered now on a 
regular basis (Figure 14.2). Precisely the discovery and interpretation of such phenomena 
offer an important surplus value to systematic research into the whole human landscape 
organization of the periods concerned here. 

Initially, therefore, the archaeological study consisted mainly in drawing up a 
computer inventory of the “fossil” roads and fields based on the aerial photographs stored 
in the computer files of the Department of Archaeology of Ghent University (Vermeulen 
et al. 2002). After charting all the relevant 

 

FIGURE 14.2 
Ancient land divisions and Bronze Age 
burial monuments at the archaeological 
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site of Aartrijke-Gemene Veld (prov. 
of West-Flanders). (Aerial 
photography: J.Semey, Ghent 
University. With permission.) 

 

FIGURE 14.3 
Ancient field system at Koekelare 
“Bergbeek.” (Aerial photography: 
J.Semey, Ghent University. With 
permission.) 

data, we had to study the central issue of the relationship of the detected linear patterns 
with archaeologically datable elements (Figure 14.3). This meant that these fossil 
structures, more than 2000 probable ancient roads and field boundaries, had to be 
separated from the more recent and modern elements in the landscape and that a number 
of the presumed protohistoric and Roman fields and roads had to be interpreted and dated 
correctly. This, in turn, required the introduction of historical-geographical and primary 
archaeological research on a detailed scale. While the former involved classic regressive 
examination of cartographic and vertical photographic material, the latter comprised a 
certain amount of fieldwork (Vermeulen and Antrop 2001). 

This fieldwork included first a campaign of field walking and augering on and near 
several hundred selected ancient road traces and field systems. Borings with a simple 
Edelman auger enabled us to make a detailed study of a selection of roadlike features and 
a few supposed field ditches. Some 30 double-line traces that were clearly visible on 
aerial photographs were verified systematically and on different locations by means of 
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augering. This technique allowed us to draw some general conclusions regarding the 
nature of the traces, and more than once they confirmed our assumptions that these traces 
were indeed fossil roads. In general, it was fairly easy to retrace these ditches, to 
determine their location, and to specify their dimensions (width, depth) and backfill. 
Sometimes a thin hardened stratum of soil constituting the original earthen road surface 
between the draining ditches was found. These borings could provide only sporadic 
dating evidence. 

However, only by excavating the traces is it possible to determine their precise nature 
and date. Within the framework of this research, two working methods were used: (1) a 
systematic and focused study of some carefully selected traces by means of narrow trial 
trenches, and (2) the large-scale excavation of entire systems in an open area, often as 
part of current rescue archaeology in the region. 

The first method involved the digging of a series of limited trial trenches cutting 
across a number of fossil roads and field boundaries selected from the database of aerial 
photographs. This type of fieldwork confirmed the existence of pre-Medieval, mostly 
Roman, tracks and of some fields that were more or less simultaneously parceled out. 
They are reassuring evidence of the fact that a considerable but as yet indeterminable part 
of the archaeological database consists of road and land-division structures that were used 
in the Roman period and sometimes even before. 

The second method, the one of open-area excavations, was only applied within the 
scope of a number of large-scale rescue digs within the study area. These four 
excavations were the direct result of indications on aerial photographs, which were used 
to guide archaeological excavations to these areas threatened with destruction. Such case 
studies made a very important contribution to our research. They made it possible to 
excavate several hundred meters of Roman roads, and in one particular case (at Sint-
Gillis-Waas), research could be done on the excavated parcel boundaries (Figure 14.4). 

Integrated in this fieldwork, colleagues from Ghent University were able to do quite a 
number of paleobiological and pedological analyses. These pollen analyses, studies of 
macroplant remains, and detailed pedological observations allowed us to reveal the 
environmental context of the line patterns detected by means of aerial photography as 
well as the function and evolution of the various field structures. 

14.2 Spatial Analysis Based on GIS 

To be able to develop efficient methods of spatial analysis of all gathered data, an 
original geographic information system (GIS), based on ArcInfo and Arc View software, 
was built (Vermeulen 2000; Johnson and MacLaren 1997; Jones 1997). In this study, 
ArcView GIS 3.1 from Environmental Systems Research Institute (ESRI) formed the 
core for the integration of data from different sources, and the spatial analysis was mainly 
performed with ArcView’s extensions Spatial Analyst 1.1 and 3D Analyst 1.0. For 
extraction and exploring geometrical data procedures, Arclnf o 3.5.1 and AutoCad LT 
were used as well, although Microsoft Excel 97 offered interesting possibilities. Data 
management was achieved with Microsoft Access 97 and statistical analysis with 
Microsoft Excel 97 and Statistica. 
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FIGURE 14.4 
General plan of the Roman traces (red) 
of roads, field ditches, and farms found 
during the 1996–1997 excavation 
campaign at Sint-Gillis-Waas. 

First of all, as many as possible relevant primary sources, such as maps and vertical aerial 
photographs, were stored in this GIS in digital or scanned versions. For the region 
considered, this means that geographical information had to be derived from very 
different data sources provided by three countries: France, Belgium, and the Netherlands. 
The integration of these data was not a simple task, as we had to deal with a multitude of 
sources, scales, and especially projections. The following map layers were integrated in 
the GIS: scanned topographic maps, digital orthophotographs, maps of waterways, maps 
of the municipality borders, a geological map, soil maps, a rastered version of an 18th-
century military map of the Low Countries, and various vectored maps from 
archaeological literature. For specific study areas, we also vectored and georeferenced 
some 19th-century cadastral plans. As the three-dimensional landform information is 
fundamental in all spatial analysis, we also extracted and transformed contour and height 
information from the scanned topographical map into a digital elevation model (DEM) of 
the same study microareas. 
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Secondly, the GIS comprised a database of all relevant archaeological information on 
the protohistoric and Roman periods in the Civitas Menapiorum. This not only includes 
the Roman settlement sites and other ancient finds known from earlier publications or 
recent fieldwork, but also all vectored excavation plans of relevant archaeological 
fieldwork in the area. Furthermore, the archaeological database includes all processed 
oblique aerial photographs, of which a majority is now scanned and digitally available on 
CD-ROM. The main purpose is to store this archaeological information in a suitable way 
so as to examine vertical and horizontal relations between different archaeological sites 
and other elements of the landscape, like soil type, terrain, rivers, etc. in time and space. 

For the selected linear traces observed on aerial photographs, this means that we had 
to use and further develop methods for georeferencing oblique aerial photographs. The 
retrieval system that our team has developed works as follows. Each photograph is 
described in a relational database. The description contains, among others, the shape of 
the marks and the coordinates of one point, which is visible on the slide and can easily be 
located on the topographic base map. For each point on this map, a “hot link” can be 
defined to the corresponding images, which makes it possible to bring the photograph on 
the screen simply by clicking on the map. By comparing the situation of the photograph 
with other themes, such as known Roman settlements, roads, and excavation plans, 
photographs can be selected by map queries. Using imaging software such as Corel 
PhotoPaint, the most promising images are treated by methods such as edge enhancement 
to raise the visibility of the marks on the picture. By so-called warping, the image can be 
fitted on topographic maps or orthophotoplans. Locations that can be easily found and 
precisely located are usually chosen as control points. By using the corner-points of the 
field (which contains linear marks) as tie points, the corresponding real-world coordinates 
can be identified on the actual orthographic photoplans. 

14.3 Tracing Ancient Roads4 

An attempt has been made to examine the common characteristics of the limited number 
of well-attested and archaeologically known major Roman roads within the Civitas 
Menapiorum. The purpose is to derive a model to reconstruct possible connections 
between large Roman settlements where no exact road is known so far. The 
characteristics of archaeologically known Roman roads can be evaluated by map-overlay 
analysis and statistical tests. 

After the detection of correlations between Roman roads and thematic maps, we tried 
to develop a so-called cost surface, which represents areas suitable for Roman roads by 
low costs and areas less suitable by high costs. By applying a cost-path algorithm, we 
then tried theoretically to detect the “cheapest” connection between known Roman 
settlements of central importance whose interconnection in Roman times is at least very 
plausible. The results of this type of analysis can stimulate and help further research in 
areas where the major Roman roads are still hard to trace in the field. 
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FIGURE 14.5 Three-dimensional 
visualization looking from the SW to 
the NE, with known and supposed 
Roman roads and settlements overlaid 
on the area around Mount Cassel. 

This cost-path analysis was first applied on the Roman capital site of Cassel and its 
connection with the neighboring major town of Thérouanne, south of our region. Roman 
Cassel was situated on a hilltop and became the core of a whole network of well-
identified Roman roads (Figure 14.5). The connection between both cities follows the 
interfluvium between the alluvial lowlands of the River Aa basin in the northwest and the 
River Lys in the southeast. The present road reflects in its major part an almost straight 
connection between these two civitas capitals, and there is a lot of evidence that it 
corresponds partially to the original Roman road trace. 

If we compare the Roman road with the direct connection, we see that there are 
several areas where the difference between the road and the direct connection is more 
than 500 m (Figure 14.6). One of them is situated near Bavinchove, where the reason for 
the choice for this particular trajectory might have been a small isolated hill. Visibility 
analysis shows that visibility is much better from here than from the direct connection.  

The resulting cost-path, calculated from Cassel as source to Thérouanne as target, fits 
quite well with the Roman road. The model seems to indicate that topographic 
depressions and the later developed municipality borders, often remnants of ancient roads 
in this region, are the main factors that have an influence on the differences between 
direct and real connections. 

A comparable model, based on similar parameters, was then applied to the possible 
reconstruction of major Roman roads between the central settlements of the northern part 
of our region, where archaeological proof is still lacking. In some instances there seems 
to be a real connection between the hypothetical road trajectory and the location of 
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recently discovered Roman sites and of fossil roads detected on aerial photographs 
(Figure 14.7).  

 

FIGURE 14.6 
Cost-path analysis of the Roman road 
between Thérouanne and Cassel based 
upon the digital elevation model, the 
geological map, and the viewshed 
analysis. 
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FIGURE 14.7 
Cost-path analysis between the Roman 
camp at Maldegem and the stone 
quarry area of Aalter in the north of 
Sandy Flanders. 

It looks as if this GIS analysis, if further developed, can be extremely helpful in detecting 
corridors of high probability for major Roman road trajectories. It could prove to be a 
valuable tool for defining microregions in the search for possible Roman roads in areas 
where archaeological and historical proof is still lacking. 

Such simple models evidently cannot be applied for the localization of the large 
number of secondary and local roads. The irregularity of these roads, interconnecting 
minor settlements or leading from Roman or protohistoric farms toward their fields, is 
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notorious. It seems, for the time being, that only a combination of systematic aerial 
photography and selected fieldwork can help to locate these. 

Our excavation work in Sandy Flanders has shown that, although only earthen roads 
and tracks seem to occur here before the 18th century, these minor connections can be 
investigated quite well. So far, these fieldwork campaigns indicate that a large part of the 
double-linear features visible on aerial photographs can be dated in the Roman period 
(Figure 14.8). Yet dating  

 

FIGURE 14.8 
Knesselare: plan of the excavated pre-
Medieval road with ditches (22–30) 
and cart tracks (24) and of the cart 
tracks of a medieval road (25). 

them precisely is not an easy task, as the ditch fillings seldom contain numerous artifacts. 
The excavated traces of these Roman roads may vary: 

Sometimes only the drainage ditches are preserved, and the road surface 
has been completely eroded. 

When this road surface survives somehow, then a bundle or a couple of 
cart tracks can be distinguished. Pedological processes such as iron 
precipitation often stress their presence. 

In other cases, the Roman road is succeeded by a medieval one, and a 
slight shift in location or orientation can be distinguished. 

When the Roman road is excavated in an open area, then its connection 
with adjoining and contemporary field ditches can become apparent. 

It is clear, however, that our selection of traces checked in the field by way of 
excavations is somewhat biased. Most of them already displayed surface indications, 
such as scatters of pottery or the nearness of a known Roman settlement, pointing toward 
a possible Roman date. Therefore, it is also much too early to draw statistically 
meaningful conclusions from these field checks. 

There can be no doubt that many of the still-unchecked road traces have a medieval or 
even a post-Medieval date. A part of these can be isolated by using techniques that 
analyze the relation of the old road traces seen from the air with cultural elements in the 
landscape. A buffering of municipality borders, which often coincide with medieval 
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roads, is one of these techniques. In Figure 14.9 we see that the abandoned roads at the 
northern rim of the municipality of Aalter are very much related to the municipality 
border between Aalter and Ursel. A buffering zone of 200 m around this border allows a 
selection of those linear traces that are situated very close by. Several fragments of single 
and double lines with a mainly E-W orientation appear over a distance of some 2 km. The 
ditches are probably the remains of an early medieval connection between Aalter and 
Ghent and are situated mainly on the somewhat higher parts in the landscape. 

But not all traces of abandoned roads seen from the air are Roman or medieval. The 
use of different GIS analyses seems to indicate that some of  

 

FIGURE 14.9 
The municipality borders between 
Aalter and Ursel and associated linear 
traces visible on aerial photographs. 
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FIGURE 14.10 
Fragment of an ancient road 
connecting two parts of the “Roman” 
Steenstraat and other ancient features 
visible on aerial photographs. 

the ancient roads and tracks have a pre- or protohistoric date. A simple example from the 
northern edge of Sandy Flanders demonstrates this well. A clearly visible lining of some 
30 Bronze Age barrows has been discovered near the municipality border of Maldegem 
and Oedelem (Figure 14.10). The barrows are spread over an area of more than 25 Ha, 
and they all are situated on dry to moderately wet sand. In the immediate vicinity of the 
barrows, a large number of field borders and a few fragments of ancient roads appear. 
The field borders do not show one main orientation, which may indicate their different 
chronology, but the orientation of the longest ancient road segment might suggest 
contemporaneity with the Bronze Age cemetery. 

To conclude this section on the ancient roads, it must be clear by now that the 
implementation of the results of aerial photography in the GIS environment opens up a 
whole set of possibilities for studying so-called fossil roads, routes, and tracks. The 
overlay of the archaeological traces with different kinds of maps and geographical 
information and their analysis in relation to physical and cultural aspects of the landscape 
offer great opportunities. Although confirmation in the field remains essential, this 
approach facilitates the construction of firm hypotheses about the date and interrelation of 
a wide range of road traces. 
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14.4 Unraveling Field Systems 

The study of grids and networks of field systems is a more intricate matter that needs a 
different approach on a well-chosen scale. Most of the detailed research concerning field 
systems was carried out in smaller microregions on which we had recent and reliable 
information. Six of these test areas lie within the sandy region, one in the south around 
the Roman urban center of Cassel. Different types of analyses were carried out, of which 
we will summarize only a selection here. 

Around the town of Cassel, we used GIS techniques to check the possible existence of 
a Roman normative land division (Vermeulen and Antrop 2001; Antrop et al. 2002). 
Several authors suggested recently that the rural landscape in a wide area to the 
south/southwest of Cassel and possibly even in other directions shows clear marks of 
Roman centuriation (Jacques 1987; Roumegoux and Termote 1993; Malvache and 
Pouchain 1994). In particular, the hypothesis put forward by the French archaeologist 
François Jacques, concerning “classic” 710×710-m module land divisions with 
orientations ranging from 31° NW (north of Cassel) to 35° NW (south of Cassel), has 
many followers. This work, mainly based on the visual and manual analysis of 19th- and 
20th-century topographic maps, has never been tested in the field. 

As systematic field research within our project is restricted to Sandy Flanders 
(northwest Belgium), we have not yet taken the opportunity to really test this attractive 
hypothesis in the field. We did, however, check the centuriation idea by using digital 
overlays of different maps and then filtering the major orientations in the area. Figure 
14.11 shows the classification of the field-boundary orientation overlaid upon the 
presumed centuriation grid for the area around Cassel. The most significant 
concentrations of line segments are situated here in the intervals −25° to −35° and 55° to 
65°, confirming a dominant NW orientation of 31°±5°, as proposed by Jacques. 
Interesting to note is that some orientations agree rather well with the direction of the 
Roman roads, such as the ones toward the salt-producing sectors on the edge of the 
former coastal area. We must, however, also keep in mind that some orientations are also 
parallel to the drainage flow of the nearby Peene Stream, which could well have 
influenced the direction of field systems in Roman times. 

In certain areas, a more detailed observation of the cadastral field boundaries filtered 
for directions between 26° and 36° shows much more “centuriation-oriented” field edges 
than published by F.Jacques in 1987. This illustrates well the potential of GIS-based 
filtering using digitized ancient cadastral documents. It procures not only more detailed 
and much faster approaches toward the testing of centuriation hypotheses, but it also 
delivers basic maps for precise testing in the field. 
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FIGURE 14.11 
Presumed centuriation grids (Jacques 
1987) overlaid by cadastral field 
boundaries of the zones Ledringhem, 
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Hardifort, and Cassel. Filtering 
according to main orientations. 

After an inventory had been made of all ancient field systems on oblique aerial 
photographs in the region of Sandy Flanders, and after the relevant traces were charted, 
the problem of interpreting and dating the structures became crucial. The surveyed 
microregion, Sandy Flanders, is almost completely covered with sand, a soil type that 
facilitates agriculture, requiring lower manual labor input in easily penetrated topsoil. 
This soil factor increases the effect of multiple viewing, which means that fields from 
totally different periods can be seen as one complex. One of the most problematic aspects 
of interpreting aerial photographs is this cumulative view that results from the 
superposition of marks deriving from different periods. 

Tracing the fields involves an extra problem: as these ditches are often not very deep, 
they can only be revealed in the best climatographic conditions or on the soils that show 
features best. As these soils often provide the best basis for agriculture, there is a good 
chance they have been used for longer periods in history. The perceptible ditches will 
most probably be a combination of multiperiodical land use. As such, it is impossible to 
attach a chronological label to these features without having excavated them. 

It is even very hard to establish a typology of the traces,5 and although an attempt has 
been made (Figure 14.12), it is almost impossible to attach any chronological meaning to 
the individual types of field systems. The typology was based on the purely formal 
aspects of the line structures. 

Beside the purely formal approach of linear ditches and field borders, it is clear that in 
many cases the relationship of fields with the surrounding elements is more significant 
(Chouquer 1997). These elements can consist of environmental features, such as a river 
or a difference in altitude, or cultural features caused by human intervention, such as a 
road or other ancient structures seen on photographs or dated in the field. Both can, in 
some cases, offer good possibilities to collect some information on the chronology of the 
field structures. Two examples might illustrate this. 

In the close vicinity of Ghent, we selected several entities with a surface 
area between 15 and 70 Ha where the correlation of the traces with the 
environmental properties, in this case slightly higher and drier sandy soils, 
cannot be neglected. The close relationship of Bronze Age burial mounds 
and field ditches could form an indication of the nearness of the 
graveyards and the supposed settlement sites and their surrounding fields. 
The environmental entity shown in Figure 14.13 is cut in two by the 
community border and consists of land sections that form a well-
preserved half-circle, truncated by a brook. The total zone has a surface of 
70 Ha, providing more than enough space for living and for burying the 
dead. 

The relation between the attested field borders and parallel traces or 
roads has also been examined. In this example, situated in the 
municipality of Zingem, a regular arrangement of a field system has been 
detected (Figure 14.14). The field borders, spreading over an area of about 
13 Ha, are situated in the immediate vicinity of a recently found Roman 
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settlement, cemetery, and coin hoard. The ensemble consists of a 
framework of regular lines with a parallel or perpendicular orientation 
toward the presumed protohistoric and Roman road between the Rivers 
Lys and Scheldt. The intermediate distance between the ditches is rather 
small; the estimated plot size  

 

FIGURE 14.12 
A selection of types of ancient field 
systems on aerial photographs in 
Sandy Flanders. 
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varies between 6000 m2 and 1 ha. The field system is clearly the result 
of an organized construction, but the supposed Roman character can only 
be proved by means of excavation. 

This technique of excavation has been used in a number of cases such as with the field 
system discovered in Kruishoutem, in the more romanized landscape of the south of 
Sandy Flanders. Low-altitude aerial photographs  

 

FIGURE 14.13 
A possible burial zone in the 
communities of Zomergem and 
Lovendegem. 

Understanding lines in the roman landscape      283



 

FIGURE 14.14 
A possible framework of Roman field 
boundaries near Kruishoutem. 

and our excavations revealed here the existence of several field borders and a possible 
local road lying perpendicular to the Roman road between two regional centers (Figure 
14.15). Like the major road, they were dated to the 1st and 2nd centuries A.D. 
Pedological and paleobotanical evidence suggest that the fields adjacent to the road 
system were mainly in use as meadows. 

The discovery and precise dating of these systems gave us the opportunity to do some 
further GIS analysis on surrounding areas of these ancient features. As we have vectored 
the cadastral situation of the beginning of the 19th century, we can easily compare the 
orientations of the dated Roman fields with the land division of the whole municipality, 
which reflects the land organization of older periods (Figure 14.16). 

On this orientations map we see four different areas, with concentrations of one 
dominant orientation, corresponding to four different land facets with different directions 
of slope, drainage, and different soil types:  
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FIGURE 14.15 
Nokere Kruishoutem: interpretation of 
the traces visible on aerial photographs 
and indication of the trial trenches of 
1994 and 1997. 
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FIGURE 14.16 
Kruishoutem: cadastral plan of 1850 
and excavation plan of a Roman road 
and possible Roman fields. GIS-
filtering of the field boundaries 
according to the major orientations. 

The center is situated on the highest points of this study area; the terrain is 
flat; and sandy soils are dominant. The main orientation is NE, and the 
fields are quite large. In 1770 the landscape was characterized by open 
fields. 
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In the northwest, on the slope to the valley of the Lys, we find the same 
dominant NE orientation, corresponding to the orientation of the 
waterways and the orientation of slope (which reaches values of 5%). In 
the surrounding of the Gaverbeek (where the terrain is flat), the field 
system is oriented at right angles to this river, and the main orientation is 
NNE. This orientation can also be found in small clusters in the direct 
surroundings of the actual center of the settlement of Kruishoutem and in 
the direct surroundings and to the west of the Roman vicus. 

In the east, the dominant soil type is sandy loam, and the aspect of 
slope is NE-oriented. The waterways are ENE-oriented, and the major 
orientation of arcs is at right angles to the waterways. 

In the south, the dispersion of orientations is less concentrated than in 
the other parts of the study area. The dominant orientation is ENE, 
“disturbed” by the second dominant orientation: NE. 

Further analysis shows that the marks of our Roman cluster are correlated with a cluster 
of NNE/WNW-oriented field systems of the 19th-century cadastre. Further research in 
the field must confirm whether these might also be relics of the ancient field systems. 

A comparable test case was developed in Sint-Gillis-Waas. This study-area is situated 
far from important Roman roads and settlements at the northern edge of the Civitas 
Menapiorum in an area where romanization of the settlements is rather low. No Roman 
roads or settlements were known here until very recently, when two Roman field systems 
and some Roman houses and local roads were revealed by excavations. As the Roman 
road is not linear and is situated far from the main network of Roman roads in the civitas, 
only the orientations of the ancient field systems have been examined here. 

As the vectored cadastral map shows (Figure 14.17), the majority of fields are oriented 
in a range between −30° (ENE) and 10° (N). This can be explained by the orientation of 
the drainage, which is W-E-oriented, and most of the fields are at right angles to the 
waterways. In the south of the area, the orientation of the field system seems to be at right 
angles to the direction of the main road (Reepstraat), which turns to the SW in the 
western part of the study area and to the SE in its eastern part, so that we find 
corresponding orientations of the field system ranging from −40° (NE) in the west and 
10° (N) in the east. 

In the part of the study area that is situated in the polders of the River Scheldt, there is 
a concentration of ENE-oriented field systems. In the center and in the north, where 
sandy soils of the Land van Waas dominate, the dominant orientation is NE. Here, where 
the study area was covered by woods in 1770, the fields are much bigger than in the rest 
of the study area. 

The most complex cluster of marks is concordant with the 19th-century cadastral 
divisions and completely parallel to the excavation plan of Roman fields near the 
Reepstraat (Figure 14.18). Because the marks complement the Roman fields very well, 
we may suppose that the excavated Roman field  
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FIGURE 14.17 
Sint-Gillis-Waas: GIS-filtered 
cadastral plan of 1850 and excavation 
plans of Roman field systems. 
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FIGURE 14.18 
Sint-Gillis-Waas: cadastral plan of 
1850 (right), filtered according to the 
orientation of excavated Roman fields 
found near the Reepstraat (left). 

system could once have been part of a much larger system of land division. Of course this 
matching can be coincidental and might be determined by physical factors. The field 
systems are oriented at right angles to the drainage system. But of course this system 
might have had the same orientation in the Roman period. 

14.5 Concluding Remarks 

The greatest challenge in landscape analysis is the investigation of the cultural landscape 
(Vermeulen and De Dapper 2000). Certain aspects of this cultural landscape can be 
introduced very easily: the location of cities, cemeteries, and rural settlements. The 
inclusion into a GIS of more-complex archaeological and historical landscape features, 
such as segments of roads, networks of tracks, and whole field systems, is somewhat 
more difficult and involves sharp mathematical and geographical skills. Typical problems 
in this field concern, among others, the technicality of the development of filtering 
systems and the correct assessment of the historical meaning of ancient and present-day 
patterns as observed on aerial photographs and maps. 

However, now that this project on the Civitas Menapiorum has come to an end, we are 
convinced that some of the GIS technology briefly presented here could prove useful for 
an efficient processing and study of ancient land organization. The advantages are many. 
We will mention only three here: 
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Information about the physical environment (topography, landform, soils) 
can be well integrated in spatial analysis for explaining Roman and other 
ancient roads and field patterns. 

A fuller use of oblique aerial photographs when studying such patterns 
is now within reach. 

The cadastral map data, which are so important because of their 
historical dimension, can be more efficiently used for the spatial analysis 
of ancient field systems. 

The examples shown here demonstrate, however, that fine archaeological surveys and 
especially stratigraphic excavations will still be necessary to support even the best 
hypotheses. This is especially true when confronted with a type of archaeological 
features, in this case just some lines in the landscape, that present a whole range of 
problems concerning their historical interpretation. 

Notes 
1. The research directed by the author was undertaken in close collaboration with M.Antrop, 

B.Hageman, and T.Wiedemann, all at Ghent University. The main archaeological results, as 
well as specific methodological contributions, were published in Vermeulen and Antrop 
(2001). 

2. This lies in the line of former research of the author into romanization processes in northern 
Gaul (e.g., see Vermeulen [1992, 1995]). 

3. This aspect of the work is well integrated in recent developments in Europe concerning the 
geo-archaeological approach of the landscapes of Classical Antiquity (Vermeulen and De 
Dapper 2000). 

4. As space is limited here we will present only a brief overview of some of the most important 
approaches concerning our road analysis. For the full publication of the results, see 
Vermeulen and Antrop (2001). 

5. Compare with the excellent work in Brittany (Boissinot and Brochier 1997). 
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15  
A GIS-Based Archaeological Predictive 

Model and Decision Support System for the 
North Carolina Department of Transportation  
Scott Madry, Matthew Cole, Steve Gould, Ben Resnick, Scott Seibel, 

and Matt Wilkerson 

ABSTRACT The North Carolina Department of Transportation 
(NCDOT) has identified advanced technologies, including Geographic 
Information Systems (GIS) and GIS-based archaeological predictive 
modeling, as having potential for improving the planning of new multi-
lane highways. These models, and the infrastructure of GIS data, easy user 
interfaces, and updated cultural resource databases integrated into a 
Decision Support System (DSS), will create a tool to analyze and rank 
proposed highway corridor alternatives. The long range project tasks 
include: 1) development of digitized environmental and cultural 
information for the State of North Carolina, including computerizing all 
existing archaeological site files and site maps at the North Carolina 
Office of State Archaeology (OSA); 2) development of GIS 
archaeological predictive models using the digitized information for North 
Carolina and verifying their accuracy; 3) creation of an internet-based 
DSS and graphical user interface (GUI) for use by NCDOT and OSA 
staff; 4) application of the GIS archaeological predictive models to 
multiple transportation projects to aid in the selection of a preferred 
corridor/alternative; 5) field testing of the models in actual NCDOT 
projects using intense archaeological survey and GPS mapping to 
quantitatively test and refine the models. 

15.1 Introduction 

From October 2002 through September 2005, Environmental Services, Inc. (ESI) and 
GAI Consultants, Inc. (GAI) conducted a pilot study for a state-wide Geographic 
Information System (GIS)-based Archaeological Predictive Model on behalf of the North 
Carolina Department of Transportation (NCDOT). The team was led by Dr. Scott Madry 
of ESI and the University of North Carolina at Chapel Hill as Principal Investigator. Dr. 



Kenneth Kvamme of the University of Arkansas acted as project consultant for spatial 
statistics and analysis. This work was conducted at the request of NCDOT and funded by 
the Federal Highway Administration (FHwA) with the intention of using the model in the 
planning of multi-lane highways in new locations throughout the state. The final model 
integrates available environmental and archaeological site data in order to rank proposed 
highway corridors and alternatives as reflecting High, Medium, or Low probability for 
containing prehistoric archaeological sites. A Decision Support System approach was 
used to allow managers access to computerized data in a variety of formats using easy-to-
use web-based tools and data-bases. Predictive models were built by comparing the 
distribution of archaeological sites on the landscape with digital environmental data. 
Models were verified by several independent methods, and the final model is being field-
verified. This verification is in the form of an archaeological survey of a new 
transportation corridor around Asheboro, NC as part of NCDOTs Transportation 
Improvement Program (TIP). 

The ultimate goal is to combine all environmental and cultural resources analysis into 
a single, integrated Decision Support System that will permit the interactive analysis of 
all issues relating to the National Environmental Policy Act (NEPA)/ Section 106 of the 
National Historic Preservation Act (NHPA) process. This project is a first step in that 
direction. 

15.2 Project Benefits 

Preparation of GIS-based archaeological predictive models will benefit NCDOT by 
expediting the selection of preferred highway alternatives, thereby decreasing costs of 
archaeological investigations and reducing project schedules, and should serve as a cost 
effective management tool when planning NEPA/ Section 106 projects. The merged 
NEPA and United States Army Corps of Engineers Section 404 permit process allows for 
preliminary design and environmental data to be gathered and analyzed for selection of 
the best alternative for construction of a given project, designated as an Environmental 
Assessment (EA) or Environmental Impact Statement (EIS) level undertaking. This 
increase of environmental consideration at the front end of the NEPA process is designed 
to foster better decision-making regarding selection of a given EA or EIS build 
alternative. Of all of the environmental constraints, only archaeological resources are not 
carried forward to the same level of identification and evaluation as community impacts, 
wetland delineation, air/ noise issues, etc. 

The use of GIS technology for predicting and quantifying potential impacts to 
archaeological sites is a tool that can significantly streamline the identification of 
prehistoric archaeological resources by NCDOT early in the NEPA process. This 
approach will allow mapping of highway corridor constraints and summary tables 
quantifying a project’s probable archaeological impact to be available early in project 
planning. Just as important will be the dynamic nature of the information produced. The 
GIS approach will allow for ready adaptability to changes that occur throughout the life 
of a given project, including modifications to existing study alternatives or the addition of 
new corridor alternatives. By using GIS, a clear understanding of the archaeological 
potential of a new or revised alternative can be generated quickly without the need to 
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conduct additional fieldwork or create/revise addenda to an existing report. Avoiding 
areas of high archaeological potential is expected to preserve many important sites, while 
significantly reducing costs for NCDOT. By incorporating a DSS interface to access all 
relevant data, managers and decision-makers can do a better job of planning and 
responding to changes. 

Another key benefit of this approach involves coordination with state and federal 
agencies responsible for compliance with NEPA and Section 106. In order to make the 
GIS approach work, the massive amount of archaeological site data at OSA must be 
available for review and analysis in digital format. These data were maintained primarily 
on paper and microfiche. This project created framework to maintain a modern digital 
site database to use in probability model development and other uses. By using project 
funding to accomplish this task, the regulatory agency obtains digital archaeological site 
information to use for future planning and research purposes with a minimum of expense. 
Ultimately, OSA will be able to significantly streamline their site review process and 
quickly produce information currently generated by those using the archaeological site 
files. OSA will also be able to integrate new site information in a more timely and 
efficient manner. Other benefits include making the archeological site probability 
information available to other planning organizations via a web-based environment. Once 
the initial information is created in a digital format and refined through field efforts, 
appropriate local and state agencies and regional planning organizations will be able t0 
better plan their undertakings at a reduced cost in both time and money 

15.3 The Example of Mn/Model 

The Minnesota DOT is the first such agency in the nation to use a GIS-based 
archaeological predictive model, known as Mn/Model (Hudak and Hobbs, n.d.), to better 
predict the potential for encountering archeological sites. This model predicts that about 
85.5% of pre-1837 cultural resources in Minnesota are located in 23% of the land, with 
significant areas being ‘unknown’ due to lack of data in those areas. The total cost of the 
project was approximately $5 million, and savings over the last four years have been 
documented at $3 million per year since the model has been used in planning new 
projects. The total cost of the project was recouped in two years. 

In addition to these savings, the Mn/Model project: 

• Allows Mn/DOT’s Cultural Resources staff to clear approximately 35% more projects 
per year. 

• Reduces the number of Memorandum of Agreements (MOA) required by nearly 60%. 
• Reduces project turnaround time by 30%. Some projects have saved one or two 

construction seasons in survey time alone.  
• Rreduces schedule and budget uncertainty by minimizing “surprises.” 
• Reduces disturbance to cultural resources. 
• Supports coordination among governmental organizations. 

Mn/DOT is providing the Mn/Model and training in its use to Minnesota’s State Historic 
Preservation Office (SHPO), the Minnesota OSA, and the Tribal Historic Preservation 
Offices (THPO). 
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15.4 Project Structure 

The overall project was divided into two major tasks. Task 1 involved the collection of 
archaeological and environmental data covering the seven counties of the initial project 
area (Cabarrus, Chatham, Forsyth, Granville, Guilford, Randolph, and Wake) in the 
Piedmont region of North Carolina, and the integration of the data into a project database 
that was used for modeling during Task 2. Specific activities included updating and 
quality review of the existing archaeological database at OSA for use in the modeling 
process, collecting and converting all site data for the study area to digital form 
compatible with GIS analysis, and collecting all relevant environmental GIS data for use 
in the modeling process. 

Task 2 included the statistical manipulation of the digital archaeological site data with 
the environmental data, creation and validation of the predictive models, and creation of 
the easy-to-use, web-based graphical user interface DSS to access and query the digital 
data. Recommendations were made regarding operationalization of the system for 
continuing NCDOT and OSA use. Future tasks will continue the digitizing and modeling 
process across the rest of the state. 

15.4.1 Initial Project Area 

The initial project area was identified by NCDOT based upon the locations of anticipated 
NCDOT highway projects where multiple alternatives are present. This area includes 
seven Piedmont counties (Figure 15.1). The Piedmont makes up 38% of the state, and 
will see a significant number of new NCDOT projects in the near future. The initial 
project area provides a good cross section of the Piedmont, ranging from the coastal plain 
boundary in the East to near mountainous areas in the West, and from the Virginia border 
to near South Carolina. 

 

FIGURE 15.1 
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The Mountain (left), Piedmont, and 
Coastal Plain regions of North 
Carolina, showing the 100 counties 
and 7 county project areas at center. 

15.4.2 Task 1 Work 

Task 1 work was conducted between October, 2002 and September, 2003. The purpose 
was to collect the data that was required for the development of the archaeological 
predictive models for the project area in Task 2. 

15.5 Existing NC Archaeology Data 

The Office of State Archaeology (OSA) is the state agency responsible for maintaining 
all North Carolina archaeological records. There are more than 35,000 archaeological 
sites that have been recorded in the state. Of these, some 21,000 had been entered into a 
UniVerse database designed in the 1980s. This system was not built to current standards, 
was difficult to maintain, and provided only limited search and query of data records. It 
was not a relational database, and stored all information in flat files. All of these factors 
made the UniVerse system problematic for future use. Between 50 and 450 new 
archaeological sites are recorded each month at OSA, and much of the recently recorded 
site information was not available in a timely manner for planning purposes due to delays 
in processing data into the system. 

Surveyed areas, archaeological site locations, and related information such as 
bibliographic numbers and reports are currently recorded onto a master set of USGS 
1:24,000 quadrangle maps that are archived at the OSA office in Raleigh, North Carolina. 
Data access was limited to physical visits to the OSA. The Survey and Planning Branch 
(S&P) of the Division of Historical Records (DHR) separately maintains additional 
information on historic architectural properties and historic districts. More than 50,000 
historic properties in North Carolina are currently recorded. None of these records are 
computerized at this time, with the exception of historic districts, which are available in 
digital format. Architectural data are not included in the current phase of the project, but 
there is significant interest in including this information in the future. Addition of these 
data should lead to a better understanding of the location of potential Section 4(f) 
resources. 

In order to accomplish the goal of providing NCDOT with a comprehensive set of GIS 
and database tools that utilize a DSS approach to improve the integration of 
archaeological data into the process of road planning, the current North Carolina 
archaeological site file database had to be updated. This included scanning and digitizing 
archaeological site maps from OSA and historic maps from the N.C. Office of Archives 
and History Since many of the archaeological site forms for the project area were only 
available on paper or microfiche, 1,122 site forms were manually entered into the 
UniVerse database. In order to make the digital archaeological site data GIS compatible, 
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a new Microsoft Access database was designed and populated with site data from 
UniVerse (Figure 15.2). 

In order to make the digital site data GIS compatible, a new MS Access archaeological 
site database was designed, replacing the existing OSA UniVerse system. This provides 
OSA with a true relational database system with a variety of standardized forms, queries, 
and report capabilities. Over 26,000 records are now in the database, with a total of 30 
parent tables and 52 lookup tables. A complex data migration plan had to be created and 
followed, to allow OSA to continue to function in all aspects while the conversion project 
was underway. In addition, 1,122 archaeological site forms not yet in the UniVerse 
database were manually entered into the system, thus computerizing virtually all 
archaeological site data for the state, including the initial project area. This MS Access 
database has become the foundation for all future OSA activities, permitting the 
retirement of the UniVerse system. A through quality control review process was 
conducted by OSA staff to ensure that the database and master quad maps contained 
correct information within the seven county study area. A new version of the OSA 
archaeological site form was also created in consultation with OSA that will be more 
compatible with the new MS Access database, and that is more compatible with GIS and 
future capabilities, such as recording GPS coordinates of sites. 

The second major activity in Task 1 was converting the existing archaeological site 
data and surveyed areas currently stored on USGS quad maps into GIS 

 

FIGURE 15.2 
North Carolina Office of State 
Archaeology Microsoft Access site 
database interface that was developed 
for this project. 
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data format. A total of 142 master archaeological site maps from OSA covering the seven 
county project area were scanned using a high resolution color scanner. These maps were 
scanned, quality inspected, georeferenced, and had archaeological features and surveyed 
areas extracted into the GIS (Figure 15.3). All quads containing any portion of the seven 
counties were scanned, so the actual study area included a significant buffer zone around 
the county boundaries. A total of 14,446 features were extracted using ArcGIS. These 
include 7,103 polygons, 5,179 points, and 2,184 lines representing the archaeological 
sites, surveyed areas, and other relevant features. (Figure 15.3). The data from these maps 
were manually verified, and issues such as duplicate site numbers were resolved with the 
help of OSA staff. This process required a significant investment of time and effort. In 
addition to the master OSA quad maps, more than 440 original historic maps of different 
dates, scales, and extents were also scanned for future project use. Most of these original 
maps came from the North Carolina Division of Archives and History, and they represent 
the history of cartography in the state dating back to the early 1700s. Of these, a total of 
44 maps, some covering the entire state, others historical county maps, were 
georeferenced with important cultural features extracted into the GIS. 

15.5.1 GIS Data 

Existing GIS environmental data to be used in the predictive model development were 
collected during Task 1. This includes all available data on county  

 

FIGURE 15.3 
The seven county study area, showing 
the georeferenced master OSA quad 
maps and extracted GIS data 
representing archaeological sites and 
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surveyed areas. Note that the data 
includes significant ‘edge’ data outside 
the seven county boundaries. 

soils, relevant drainage system information, geological base mapping, USGS 1:24,000 
and 1:62,500 quadrangles, Digital Elevation Models (DEMs), geomorphological data, 
digital ortho-quarter quads, additional aerial photography and remote sensing data, and 
other available relevant information. North Carolina has an excellent state GIS database 
at the North Carolina Center for Geographic Information and Analysis (NCGIA). The 
NCDOT GIS Unit was able to provide all of this data, as well as other data useful for this 
project. 

A total of 372 point, vector, and raster GIS data layers covering the project area and 
the immediate surroundings were acquired, reviewed, and integrated with the new 
archaeological GIS data created for this project. All major sources of GIS data were 
searched, and data were reformatted and reprojected as needed to create a database 
covering the seven county study area. While creating the GIS database, a minimum 2 Km 
buffer extended beyond the county boundaries to ensure that statistical analysis of data 
(such as distance to hydrology) was not misrepresented at the edges of the database. 

The data collected during Task 1 represent a 20% sample of the Piedmont 
physiographic province. This area contains 16% of the recorded archaeological sites in 
the state. This provided a sufficient data sample covering a wide range of environmental 
variability within the Piedmont region for Task 2, where the Team created the 
archaeological predictive models for the project area. 

15.5.2 TASK 2 Work 

Task 2 work was conducted between July 2004 and September 2005. The three main 
objectives were to create, test, and validate a workable archaeological site predictive 
model for the test area, to develop a web-based DSS, and to conduct further additions and 
alterations to the new OSA site form database developed in Task 1. 

The DSS development was conducted using the ESRI ArcIMS Internet Mapping System 
(Figure 15.4). A DSS can be defined as an interactive computer-based system that is used 
to help managers make decisions. The goal is to improve the ability to access, 
summarize, and analyze relevant data from multiple sources. In this context, the goal was 
to provide NCDOT and OSA with a systematized and improved ability to process, 
access, and integrate archaeological site information and GIS data using a combination of 
tools that would be delivered through a web-based graphical user interface for a variety 
of uses. The GIS predictive models and GIS data including the scanned OSA master 
maps, vector site and surveyed area locations, orthophotos, and georeferenced historic 
maps are available for viewing using appropriate password protection. Analysis can be 
conducted, including the generation of buffers, and queries can be conducted on site 
information. Various reports and maps can be printed. This is done over the internet using 
a Java web browser and high speed internet connection, removing the need for expensive 
and difficult to use software, broadening the general utility of the system. Security of 
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archaeological data is an important consideration. As part of Task 2 work, a data sharing 
mechanism was created (Figure 15.4). This mechanism of data flow was designed to 
facilitate the combination of archaeological data captured and stored at OSA with the 
predictive models, GIS data, and highway alignment information housed at NCDOT. 
Under this design the site data are captured at OSA, shared with NCDOT, and NCDOT 
serves the data and analyzes it with their road corridors. 

15.6 Project Predictive Modeling 

The expanding use of GIS in archaeological research in general and site location 
modeling in particular lies in its ability to capture and manipulate large data sets for 
analysis and display (Kvamme and Kohler 1988) The generally accepted method of 
archaeological site predictive modeling in use today is an inductive modeling procedure 
using a logistic regression analysis technique (Kvamme 1999). In this, the location of a 
sufficiently large sample of known archaeological sites is statistically analyzed with 
various other data in the environmental data at the same location (usually, but not always, 
environmental variables such as elevation, soils, and distance to water). Relationships 
between archaeological and environmental data are statistically determined, and areas 
with similar patterns of occurrence are then “predicted” to be of higher likelihood to 
contain similar archaeological remains. Dr. Ken Kvamme, who was involved in the 
Mn/Model project and is a recognized leader in the field of archaeological predictive 
modeling and spatial statistics served as the primary statistical and spatial analysis 
consultant for this work. All aspects of the spatial analysis and modeling process were 
reviewed by him over the course of the project. 

(DSS) Architecture Flow Diagram. 
ArcGIS 9.0 (ESRI) and StatView 5.0.1 (SAS) software was used for the modeling and 

analysis. The modeling process and results utilized a 30-meter grid cell resolution in 
order to coincide with the existing 30-meter grid of the National Elevation Dataset 
(NED). This has sufficient spatial resolution to allow for quantitative field testing of user-
defined areas, while being manageable computationally and over the internet. 

An initial literature review was conducted of GIS-based archaeological site predictive 
models to define which environmental variables to use for the modeling. This review 
included all known modeling projects in the south-eastern U.S., as well as major projects 
such as Mn/Model. The following environmental variables were identified: 
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FIGURE 15.4 
Project Decision Support System  

• Elevation 
• Slope 
• Aspect 
• Aspect (north/south axis) 
• Aspect (east/west axis) 
• Solar radiation 
• Distance to water 
• Vertical distance to water 
• Cost distance to water 
• Distance to water confluences 
• Topographic variation 
• Soils 
• Landuse 
• Distance to historic trading paths 

Not all GIS data collected for use in modeling were useful and much of it required 
manipulation. Elevation data collected from multiple sources had various problems and 
issues, including: edge effects, biased values near water, etc. Hydrography for the state 
included many man-made features such as reservoirs and ponds. These all had to be 
removed and replaced with historic hydrography by digitizing historic maps and stream 
beds available from USGS quads. STATSGO soil data were available for the entire state, 
but were far too generalized and spatially homogeneous to be useful in this project. 
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Detailed SSURGO soils data were missing for Chatham county, and so could not be used 
in this project. There were no existing data for stream confluences or vertical distance to 
water, so these had to be created using the ArcHydro data model for use with ArcGIS. 
The data for prehistoric trading paths were determined to be too generalized to be useful 
for modeling at this scale. 

The environmental variables initially created for modeling included: distance to water, 
cost-distance to water, distance to stream confluence, cost-distance to stream confluence, 
slope, aspect, solar radiation, and topographic variation. The distance to water and stream 
confluence were calculated using a Euclidean distance algorithm. The cost-distance to 
water and confluences were calculated by combining the slope and Euclidean distance. It 
should be noted that multiple versions of the distance and cost-distance variables were 
made based on streams created with different thresholds for starting to map a stream. 
Although slope and aspect are traditionally used for archaeological predictive modeling, 
we divided aspect into 2 variables. Aspect east to west and aspect north to south variables 
were created to capture directional trends in the data. Related to the aspect variables, 
solar radiation was calculated to represent the southwest to northeast exposure of the 
landscape. Topographic variation was calculated by analyzing the diversity of elevation 
values in a neighborhood analysis. 

The archaeology data that had been generated in Task 1 by digitizing the location of 
all archaeological resources also had to be further manipulated. Smaller sites were 
represented as points, but larger sites were digitized as polygons. We standardized these 
data for the statistical analysis by using the site centroids of the polygon data. The impact 
of this decision on the statistical analysis is uncertain, as a site may cover a large area 
with different environmental variables, but since we were dealing with a total of 4,838 
archaeological sites in the study area, it was necessary to have a single location for each 
site to be compared with the environmental data. 

Once all of the potential environmental variables were created, the Pearson’s 
Correlation statistic was used to eliminate variables that contained redundant information. 
Redundant variables can falsely increase the amount of variation explained by a logistic 
regression model. The Kil-morogov-Smirnov (K-S) test was used to identify variables 
that showed a relationship with the archaeological data. These data were identified as 
being useful or relevant to the modeling process. 

A total of 11 GIS data layers emerged out of this process: 

1. Aspect East/West 
2. Aspect North/South 
3. Cost Distance to Water 100*  
4. Cost Distance to Water 1000 
5. Cost Distance to Water 10000  
6. Cost Distance to Confluence 1000 
7. Cost Distance to Confluence 10000  
8. Distance to Stream Confluence 500 
9. Elevation 
10. Slope 
11. Topographic Variation 
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These were the environmental GIS data used in the statistical analysis of the distribution 
of the archaeological site data. Logistic regression was used as the statistical technique 
because of its’ ability to be normalized and mapped as probability values (Chou 1997). 

15.7 Modeling Research Design 

A major concern in this project was the issue of appropriate scope and scale of the 
predictive model. North Carolina is generally thought to consist of three physiographic 
provinces, but where does the piedmont end and the mountains begin? How many models 
are needed to cover all of North Carolina? One single model might be more consistent, 
but it would certainly be less robust in predictive power, especially at the scale of an 
individual highway corridor 100 meters wide. The various cultural components are also 
very different across the state. One hundred county models may be more robust, but we 
would have significant edge effects between counties that would make this difficult for 
use in highway planning. Several counties have had very few archaeological surveys, 
thus providing a limited or biased sample. Models developed at the quad map level might 
be the most robust in predictive power, but you again have the edge effect problem and 
quads with either no sites or an insufficient or biased sample. How we balance these 
issues for this project became a major topic of discussion in project design. In the end, we 
decided to construct a variety of models, using the same logistic regression technique and 
environmental data, to quantitatively test these questions. A total of eight different 
predictive models were created; two at the level of the entire seven county project area, 
two at the county level (for Randolph and Guilford counties), one at the quad level (for 
the Asheboro quad within Randolph county), and three using a new technique  

* Data layers with a number represent calculations based on different stream thresholds. 

developed for this project (for the Asheboro, Pleasant Garden, and Randelman quads). 
The results of these different models were evaluated to provide one functional model that 
covers the seven county study area and recommendations on future modeling efforts by 
NCDOT. 

A new technique was developed by Madry and refined by Madry, Cole, and Kvamme 
for this project. The goal was to find a new way to balance these competing constraints of 
model scale and precision. In this approach, a new model is developed for each individual 
quad that is based on the environmental and site data for not only that quad but the eight 
surrounding quads as well. This ‘roving window’ approach was adapted from raster 
filtering techniques used in image processing. The idea is that the surrounding eight 
quads of data will create a more locally appropriate model for that area in terms of both 
the environment and cultural resources, but with a sufficient sample size and with a 
reduced edge effect. 
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15.8 Model Validation 

One traditional problem with archaeological predictive modeling has been the lack of 
appropriate validation procedures. Many such models have been created and never 
validated at all, or have been tested only against a small ‘withheld’ sample. As the results 
of this work will be used in a very practical manner by NCDOT, it was our intention to 
test the models as rigorously as possible, within the time and cost constraints. A total of 
4,838 archaeological sites recorded by OSA are located in the study area. A 10% random 
sample (484 sites) was withheld from the statistical analysis for use as an internal 
‘jackknife’ sample for model verification, leaving 4,354 use in the regression analysis. A 
second validation sample was acquired from the Research laboratories of Archaeology at 
the University of North Carolina at Chapel Hill. This is a state-wide database of lithic 
diagnostics that is separate from the OSA database, which contained a total of 2,242 sites 
in our study area and includes a significant number of sites not included in the OSA 
database. It is different in that it only contains the location of diagnostic lithics (stone 
points). A third validation sample is the archaeological sites located in the ‘edge’ areas of 
the study area. All site information was extracted from the quads that border the seven 
county area, but only the sites within the counties were used in the analysis. 

A final validation process consists of a detailed field sample for the NCDOT bypass 
being planned around the town of Asheboro. A field crew from ESI, with no knowledge 
of the results of the GIS analysis, conducted a survey of the entire proposed corridor 
using the standard technique of 30-meter shovel tests. All positive shovel tests were 
located using differential GPS for comparison with the predictive model for that area. 
These allowed us to accurately compare and measure model effectiveness. 

15.8.1 Results 

This work is ongoing, but preliminary results are available at this time. Upon initial 
evaluation, the county models used different environmental inputs, and the resulting 
models were very different and the edge effects between counties were pronounced. The 
roving window procedure worked very well in two cases, but poorly in a third, perhaps 
due to a limited and biased site sample in that area. The edge effect was significantly 
reduced. One of the two models of the entire area was the best predictor of sites overall. 

This final, seven county model was developed using the following variables: Aspect 
NS, Cost-Distance to Water_100, Cost Distance to Confluence 1000 and 10000 (major 
and minor confluences), Slope, and Topographic Variation. This model was then 
iteratively processed into high, medium, and low probability zones. Figure 15.5 shows 
the site distribution of the preliminary final model in terms of area and compared with 
site distribution in the 10% withheld sample, the 90% sample used to create the model, 
and the UNC lithic database. Also shown are the sites per square mile located in each of 
these. This model contains 20% of the project area and accounts for 70.8% of the UNC 
diagnostic lithic sites. 
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FIGURE 15.5 
Final seven County Archaeological 
Predictive Model. Variables Include: 
Aspect N/S, Cost-Distance to Water, 
Cost Distance to Water Confluences, 
Slope, and Topographic Variation. 
Major river drainages are visible as 
high probability areas. 
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FIGURE 15.6 
Results of the preliminary predictive 
model. At bottom is the low 
probability zone, middle is medium, 
and top is high. This is shown for the 
10% withheld sample, the 90% sample 
used for the model, and the UNC 
diagnostic lithic database. The high 
zone in the model contains 20% of the 
area, and 70.8% of the sites in the 
UNC diagnostic database. On the right 
are the archaeological sites per square 
mile for each of the same three 
datasets. 

Task 2 results consisted of both graphical and numerical representations of the 
probability of a given 30-meter area for containing archaeological sites. Probability is 
expressed in two ways. The first is as areas of High, Moderate, or Low potential. These 
were defined as areas that are most likely to contain cultural resources, areas that may 
contain such resources, and areas least likely to contain them. Some cultural resources 
will be located in all three categories. 

A second product shows the range of probability for site location in a range from 0.0–
1.0 (Figure 15.6). This gives the analyst a wider range of information regarding the 
patterns of probability across the varying landscape. 

Refinements to these basic categories are expected as the system is used over time. 
Graphic representations (Figure 15.7) will include GIS layers delineating a transportation 
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project area’s potential for containing archaeological sites. Together, these products 
should lead to a streamlined road planning and design process, expediting selection of 
preferred alternatives and project schedules. This project should lead to a more 
comprehensive understanding of archaeological potential over a given project area and 
improved decision making. 

 

FIGURE 15.7 
An example of the ArcIMS web-based 
Decision Support System interface 
developed for the project. This shows 
an orthophoto and surveyed area, with 
a buffer zone built around it. Data for 
an archaeological site within the area 
are displayed below. At right are 
options for viewing different data. At 
top are the various display and analysis 
functions. 
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15.9 Conclusions 

The North Carolina DOT has developed a GIS-based archaeological predictive model for 
the piedmont region of North Carolina for use in the merged NEPA/404 permit process. 
Final model development is underway. The modeling process we have used shows great 
potential for predicting archaeological sites. Existing archaeological site files and 
relevant other data (such as historic map information) have been digitized. Also created 
was a user friendly, web-accessible DSS that should provide benefit to the NCDOT, 
OSA, and other users throughout the state, as well as a user friendly, webaccessible DSS 
interface that should provide benefit to the NCDOT, OSA, and other users throughout the 
state. 

15.10 Future Directions and Recommendations 

We have significant additional work to complete on this project. We still have to scan the 
remaining 827 OSA master quads and digitize the site data from these. We also have to 
extrapolate our Piedmont model to the rest of that area and test its effectiveness. We must 
then develop predictive models for the mountains and coastal plain areas of the state. 

Detailed SSURGO soils were not used in this analysis because one county did not 
have them available. Based on our previous experience, this could significantly improve 
model effectiveness in addition to having general utility for NCDOT. 

All sites were considered equal in this analysis, which is arguable, but since the 
NCDOT is interested in only the presence or absence of cultural resources, no attempt 
was made at analysis by culture period or site significance, and there is certainly great 
potential for more detailed analysis of site types and cultural periods in the future. 

Traditionally, GIS applications in archaeological research have focused on modeling 
prehistoric site locations based on the distribution of a suite of environmental variables 
similar to those mentioned above. To date, the use of GIS in historical research has 
focused more on the display of cartographic data, reference to site function, and 
locational distribution. We collected and processed historic archaeological data for this 
analysis, but we were not able to conduct the historic analysis due to time and funding 
constraints. We hope to do this in the future, as the NEPA/404 process concerns all 
cultural resources. 

Beyond the immediate project goals we see benefits in improved access to integrated 
data, ongoing updating and processing of state archaeological records, and improved 
teaching and research potential. 
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16  
Multicriteria/Multiobjective Predictive 

Modeling: A Tool for Simulating 
HunterGatherer Decision Making and 

Behavior  
Frank J.Krist, Jr. 

16.1 Introduction 

Geographic information system (GIS)-based multicriteria/multiobjective predictive 
models have been successfully used to predict the location of archaeological sites. 
However, such models often lack explanatory power and are unable to identify the range 
of behaviors occurring at the archaeological sites they locate. The research presented 
here—making use of the multicriteria/multiobjective decision-support tools found within 
the GIS environment and with guidance from “satisficer” approaches and decision 
theory—proposes a model that simulates behaviors resulting from the decisions made by 
prehistoric hunter-gatherers. The proposed model, based on a hypothesized hunter-
gatherer adaptive strategy, can be used to simulate the location and nature of activities 
relating to resource use and settlement within the landscape and, thus, to predict the types 
of sites or activity areas that would be expected within a region. 

This chapter describes the development of a model that simulates the behavior of 
hunter-gatherers based on their decisions or adaptive strategies in various real-world 
settings. Unlike other approaches (Binford 1980; Keene 1979, 1981; Belovsky 1987; 
Kelly 1995), the research design provides an efficient means for interpreting the 
settlement systems of hunter-gatherers without relying on direct comparisons between 
specific ethnographic and archaeological data sets. Following the lead of Jochim (1976, 
1981, 1998), this model considers hunter-gatherer subsistence and settlement behaviors 
as the result of an adaptive strategy with a series of embedded decisions chosen for the 
ability to resolve problems while satisfying various objectives/goals (Figure 16.1). This 
approach, rooted in Jochim’s satisfier theory, provides a means to simulate the adaptive 
responses (behaviors) of hunter-gather groups that result from the utilization of a 
particular strategy in a particular real-world setting. Bettinger (1980) argues that 
traditional hunter-gatherer models have been unsuccessful in this area. 

This research is applicable to general hunter-gatherer studies in several ways: 



• The approach provides an alternative to the more traditional models of hunter-gatherer 
adaptive strategies, which depend on archaeological or ethnographic data for 
construction (Bettinger 1991). Models constructed solely from archaeological data 
contain biases or inaccuracies as a consequence of regional and local taphonomic 
processes, site-formation processes, and data-recovery methods (Keene 1981; Raab 
and Goodyear 1984). According to Wobst (1978), the use of ethnographic data to 
decipher the past places a perceived ethnographic reality or construct onto the 
interpretation of past hunter-gatherer lifeways, leading to biases in the interpretation of 
the archaeological record. The proposed model does not rely on either ethnographic 
analogies or a direct comparison between the ethnographic and archaeological records, 
thus allowing archaeologists to test hypotheses about past human behaviors in regions 
with a paucity of archaeological data or ethnographic analogs. This capacity also 
allows researchers to develop simulations (scenarios) or to predict past adaptive 
strategies independent of preconceived notions about hunter-gatherer behaviors. 
However, the model can also accommodate available ethnographic and archaeological 
data to provide valuable insights into the construction of alternative hypotheses that 
can be used as a point of departure for further model development. 

• The approach is dynamic, with the ability to simulate hunter-gatherer behaviors for any 
given time and at any spatial resolution. 

 

FIGURE 16.1 
The approach advocated in this 
research, which simulates the behavior 
of hunter/gatherers. 

• The model is flexible, accommodating a wide range of hunter-gatherer adaptive 
strategies, goals, and objectives, which can be social or economic in nature. 

• The proposed systematic methodology makes the model easy to use and the results 
replicable. 

• The study demonstrates the utility of GIS for generating decision-based models of 
hunter-gatherer adaptive behaviors. 
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Because most human behaviors are the result of conscious decisions and traditions, a 
theoretical framework that accommodates the motives or goals guiding (constraining) 
decisions is critical for constructing a model of past hunter-gatherer behavior (Jochim 
1998). This framework is outlined in the remainder of this chapter. First, though, we 
briefly review decision theory as it relates to the model utilized in this research. 

16.2 Decision Theory 

Decision theory outlines the logic used to choose between alternative options (Eastman et 
al. 1995; Eastman 1999). Social and economic problems demand a response, and the 
chosen response is shaped by the environment. For example, imagine the view of hunter-
gatherers about their landscape and the alternative courses of action they might take to 
meet their physical and social desires. 

According to decision theory, choices between alternatives are based on two forms of 
criteria: factors and constraints (Eastman et al. 1995, Eastman 1999). Factors enhance or 
detract from the suitability of an alternative. For example, patches containing a diversity 
of edible foods are highly suitable for an individual seeking dietary variety. Constraints, 
on the other hand, limit the number of possible alternatives from which an individual may 
choose. In the case of a hunter-gatherer, limited for physical or social reasons to foraging 
trips no greater than 20 km round trip, areas outside this range would be excluded, 
regardless of the diversity. The same forager might not utilize diverse resource patches if 
they are too small or if patches are not adjacent to one another. In addition, due to 
religious or mythological beliefs, some regions of the landscape might be viewed 
unfavorably or avoided altogether by hunter-gatherers (Cleland 1992). 

Many decisions are influenced by a number of alternatives, and a particular real-world 
setting may require an individual to consider a host of fuzzy criteria prior to making a 
decision. For example, how far will a forager walk to reach a particular patch of 
resources to satisfy the desire for variety? Using this example, the forager contemplates a 
complex set of factors and constraints, such as walking distances between and within 
resource patches, patch size, patch diversity, terrain roughness, social and political 
boundaries, and possibly mythological beliefs about the landscape. Therefore, the 
researcher considers the degree to which varying criteria trade off to affect the final 
decision-making process. 

Objectives help determine the real-world features that become criteria for an 
individual or a band of hunter-gatherers. Although objectives are based on social 
perspective and motives that may vary between bands or individuals, a limited set of 
universal goals guide the choices that hunter-gatherers make about such issues as 
resource use and settlement placement (Eastman et al. 1995; Jochim 1976, 1998). This 
limited set of goals is reinforced as a population begins to meet its needs, and the 
objectives are either consciously or subconsciously reinforced, resulting in patterned and 
redundant decision making (Egan 1993; Jochim 1998). 

The final selection and evaluation of criteria is aided by a strategy, or set of strategies, 
known as a decision rule (Eastman et al. 1995; Eastman 1999). The decision rule, 
formulated in the context of a given set of objectives, also contains the means by which 
selected alternatives are acted upon. For example, hunter-gatherers, utilizing a forager 
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strategy (Binford 1980) in which settlement-location decisions and resource patches 
(criteria) are guided by a desire to move the entire group to resources, would find 
locations that provide direct access to resources more favorable. 

16.3 A Predictive Model of Hunter-Gatherer Decision Making 

Predictive modeling in archaeology really began with Jochim’s progressive 1976 work 
Hunter-Gatherer Subsistence and Settlement: A Predictive Model (Bettinger 1998). 
Jochim demonstrated that predictive models of subsistence, settlement, and population 
size could be generated from the presumed goals of a population and the resource 
characteristics of a region that a society occupied. The shortcoming of Jochim’s 
predictive model was that it relied heavily on quantitative measures as input (Bettinger 
1998; Jochim 1998). Precise quantitative measures are difficult to obtain, considering the 
unknowns about past ecosystems and the beliefs and strategies that prehistoric peoples 
adopted. Despite these limitations, archaeologists continued to develop predictive models 
relying heavily on quantitative measures for model inputs (Reidhead 1979, 1980; Keene 
1981; Mithen 1990). Undoubtedly, these models contributed greatly to our understanding 
of the behaviors of past societies; however, such models are often difficult to utilize 
because of their quantitative requirements (Jochim 1998). An alternative to building 
predictive models on precise mathematical measurements is to utilize general 
relationships among factors. However, simplistic models are more likely to be unrealistic. 
Egan (1993) has worked to resolve this problem through the use of detailed information, 
producing rankings that depict the general relationships between resources or factors. To 
address these issues, this research takes a unique approach by standardizing information 
about factors affecting the behavior of hunter-gatherers through the production of ratings 
within a comparison matrix. Ratings can be based on either general relationships among 
factors, i.e., resource A tastes better than resource B, or quantitative measures that 
specifically assess the ability of a criterion to satisfy an objective, i.e., resource A has ten 
more grams of sugar than resource B. The ability to utilize both precise and nonprecise 
measures when assigning ratings to every criterion enables the model to take advantage 
of all available information about the past while allowing the model to grow as the 
archaeological knowledge base increases. 

Over the last 20 years, the development of geographic information systems (GIS) has 
stimulated the use of predictive models in archaeology (Kvamme 1995). These models 
are useful in identifying regions with a high archaeological site potential. Such 
information is particularly useful for cultural resource management studies and the 
preservation/avoidance of regions likely to contain archaeological resources (Brooks et 
al. 1996). In general, the ability of GIS to efficiently manipulate and analyze large 
amounts of spatial and tabular data makes it a particularly useful tool for the construction 
of multivariate predictive models (Kvamme 1999). 

Traditionally, predictive models constructed within GIS are limited to confirming the 
existence of spatial correlations between past activity areas and physiographic features 
(Ebert 2000). Recently, archaeologists have developed GIS-based predictive models that 
consider how humans make choices (Dalla Bona 2000). However, these models fail to 
consider the objectives of past hunter-gatherers or how those goals affected decision 
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making. Because such models are unable to explain why hunter-gatherers conducted 
activities in the locations they did, the applicability of GIS-based predictive modeling for 
archaeological problem solving is in question. The research presented here demonstrates 
how a predictive-modeling approach rooted in both anthropological and decision theory 
can be efficiently implemented within a GIS system and used to simulate the hunter-
gatherer decision-making process and thus archaeological problem solving. 

The primary assumption of the behavioral model outlined here is that the conscious 
decisions made by hunter-gatherers are directed toward achieving or satisfying a set of 
specific goals or objectives, such as those outlined by Jochim (1976, 1998). Another 
assumption is that hunter-gatherers make rational decisions based on their ability to 
satisfy their objectives. Therefore, goals and objectives are the guiding force behind the 
development of a hunter-gatherer adaptive strategy. 

The approach offered here is designed to simulate the outcome of hunter-gatherer 
problem solving, and although it is easily implemented within a raster GIS system, such a 
system is not required to run the model, and evaluations can be calculated by hand. The 
model comprises three modules in which both hypothesized and observed information 
about hunter-gatherer behavior and the environment, related to a particular problem such 
as settlement placement, can be input: (1) objectives, (2) decision rule, and (3) criteria 
(Figure 16.1). The first module requires the researcher to determine the objectives of the 
hunter-gatherer group under study and the relative importance of these objectives in 
solving a particular problem. For the second module, the researcher establishes the 
adaptive strategy utilized by the hunter-gatherer group to meet their objectives. For 
example, a group of hunter-gatherers might determine that, in order to meet an objective 
of minimizing energy expenditure while obtaining enough food resources for survival, a 
forager strategy dependent on large game is the best solution. The decision to pursue 
large game and the objectives surrounding this choice help to formulate a worldview by 
determining which features on the landscape become the factors and constraints that are 
entered into the model using the criterion module. Factors and constraints are not limited 
to features on the landscape. They may be culturally derived, for example, in which 
groups or individuals avoid areas of the landscape due to social or religious beliefs. Once 
data are collected for each module, suitability values are calculated (using a weighted 
linear multicriterion/multiobjective evaluation) for comparison with the archaeological 
record to predict the likelihood that human behavior(s) occurred at a particular 
location(s). 

Although GIS software is not required to run the modules outlined below, it is 
particularly useful when examining an entire region or evaluating a large number of 
objectives and criteria. The raster GIS software IDRISI is recommended because it 
possesses a comprehensive set of tools for conducting multicriterion/multiobjective 
evaluations (Eastman 1999; Malczewski 1999). 

16.3.1 Module One: Objectives 

Once a set of objectives has been defined, the relative importance of each objective is 
entered into a pairwise comparison matrix. This matrix is used to generate a set of 
weights representing the relative importance of each objective in affecting hunter-
gatherer behaviors. Prior to entering values into the pairwise matrix, comparisons must be 
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made between each objective using a continuous rating scale. Ratings represent the 
relative importance of each objective compared with the others (Table 16.1). For 
example, if direct access to resources is significantly more important in determining 
settlement placement, this objective receives a value of 5. Table 16.2 depicts a sample 
pairwise comparison when every possible pairing of objectives is entered into the matrix. 

After entering the ratings into the comparison matrix, the principle eigenvector is 
calculated and then used to produce a best-fit set of weights from the criteria ratings 
(Table 16.3). Within IDRISI, the Weight command is used to calculate these weights, 
which sum to one. The Weight module also determines the degree of uniformity that was 
utilized in generating the criteria ratings by producing a consistency ratio every time a set 
of weights  

TABLE 16.1 
Continuous Rating Scale 

Description Comparison Rating 
Most important 1 

  1/2 

Moderately less 1/3 

  1/4 

Strongly less 1/5 

  1/6 

Very strongly 1/7 

  1/8 

Extremely less 1/9 

  1/10 

Unsuitable N/A 

Source: After Eastman, J.R., IDRISI 32: Guide to GIS and Image Processing, Vol. 2, Clark Labs, 
Clark University, Worcester, MA, 1999. 

TABLE 16.2 
Sample Pairwise Comparison Matrix for the 
Objective of Settlement Placement 

  Resource Proximity Shelter View 

Resource 1 5 7 

Proximity       

Shelter 1/5 1 2 

View 1/7 1/2 1 
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TABLE 16.3 
Sample Weights Resulting from Calculation of 
Principal Eigenvector of the Pairwise Comparison 
Matrix for Settlement Placement 

Criteria Weight 
Resource proximity 0.7396 

Shelter 0.1666 

View 0.0938 

is calculated. A ratio of less than 0.10 indicates that the pairwise matrix values were not 
generated at random. When values greater than 0.10 are obtained, the matrix ratings 
require reevaluation. An approximation of the weights generated from the principal 
eigenvector can be calculated by filling out the entire matrix and summing each column 
to get the column marginal total. Each rating in the matrix is then divided by the marginal 
total of its column. Finally, the weights across the rows are averaged. 

16.3.2 Module Two: Decision Rule 

The decision rule requires the researcher to determine what strategy a group of hunter-
gatherers might have used to meet their objectives and is generally derived from a 
hypothesis, or set of expectations, of how peoples behaved in the past. Information about 
the decision rule is not entered directly into the model per se; rather, these data determine 
the way in which objectives and criteria interact to produce a final outcome. Once a 
group of hunter-gatherers select a strategy to meet their objectives, that strategy 
determines how resources, settlement locations, other bands, etc. are considered within 
the decision-making process (Jochim 1998). 

Two broad, economically focused examples of a decision rule are Binford’s (1980) 
forager and collector settlement strategies. Food resources play a different role in the 
decision-making process for each of these strategies. Foragers choose residential 
locations based on the proximity to food resources including water, while collectors 
select residential settlement locations for their proximity to key nonfood resources 
required for immediate survival, such as water (Kelly 1995). Collectors use logistical 
forays as a primary means of bringing edible resources to settlements. When simulating 
the activities of foragers, immediate access to food resources is the dominant criterion 
affecting decisions regarding forager settlement patterns. Each resource acts as a 
criterion, since foragers move people from resource to resource. For collectors, adjacency 
to key nonfood resources in areas that allow remote access to a wide range of edible 
resources is the main criterion affecting decisions about collector settlement patterns. 
Thus, direct access to food resources plays only a minimal role in collector settlement 
selection. 
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16.3.3 Module Three: Criteria 

Criteria, or factors, are features both physical and cultural that enhance or detract from 
the suitability of a location toward meeting an objective (East-man 1999). As discussed 
earlier, determining which criteria play a role in hunter-gatherer decision making is based 
on the objectives and adaptive strategy (decision rule) found within a group of hunter-
gatherers. Depending on the number of criteria the researcher identifies for each 
objective, the model will be relatively simple or quite complex. Factors can also be 
changed and the model recalculated to test different hypotheses. The criteria themselves 
are often generated from, but not limited to, known facts about the landscape, such as the 
availability of plant or animal resources. The objective of obtaining shelter from the 
elements, for example, may consist of several factors, such as forest cover, slope, and 
aspect (Table 16.4). As a result, this type of model places the driving force behind the 
criterion rankings in the pairwise matrix on the desires of the hunter-gatherers under 
study. The model is a vehicle by which hypotheses about the desires of hunter-gatherers 
can be tested and the outcome simulated. 

TABLE 16.4 
Sample Pairwise Comparison Matrix for Shelter 
Factors 

  Forest Cover Slope Aspect 
Forest Cover 1 — — 

Slope 2 1 — 

Aspect 2 1 1 

Note: Only the lower half of the table needs to be filled out. 

Each objective is assigned a group of criteria for which a comparison matrix is 
constructed (Figure 16.2a). After calculating factor weights for each objective (Table 
16.5), a list of constraints, if any exist, must be identified. Constraints are not ranked, but 
represent areas to avoid regardless of the factors that may be present. Regions may be 
inaccessible due to territorial boundaries or because of a physical desire to walk no more 
than a specific distance. 

To represent each factor within a GIS, raster cells are assigned numeric values based 
on the potential to satisfy a particular criterion. For the factor of resource proximity as it 
relates to the objective of logistical settlement placement, areas that are adjacent to a 
suitable patch are assigned a value of 10 (most suitable), while a location greater than a 
specified distance receives a value of 0 (unsuitable). In this example, factors receive a 
numeric value ranging from 0 to 10 to ensure standardization and allow the comparison 
of criteria that are based on different techniques or values, such as slope and tree cover. 
Other common standardized scales include 0 to 1 and 0 to 255. Standardization is 
achieved by performing a linear scaling between the minimum and maximum factor 
values as follows (Eastman 1999): 

xi=(Ri−Rmin)/(Rmax−Rmin)*standard_range   
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where R=raw score 

Depending on the adaptive strategy, objectives may be satisfied by only a single criterion. 
For example, resource use at logistical camps is often intensely focused on a single 
resource patch or activity (Binford 1980; Jackson 1998). To identify which resource a 
group of foragers might focus on at a logistical site, the suitability of each resource is 
evaluated individually in the context of the group’s objectives. 

When a single criterion exists for each objective, a comparison matrix is not necessary 
because factors are not being compared with one another to determine how well a group 
of criteria satisfies each objective (Figure 16.2b). Instead of assigning a weight to a 
criterion using a continuous rating scale, an individual criterion is ranked (by percent) 
based on how well it satisfies each objective (Table 16.6). Percents range from zero to 
100, with 100% fully satisfying an objective. The percent rank adjusts the original factor 
value according to its ability to satisfy an objective. To adjust the value, each factor rank 
is multiplied by the standardized criterion value, thus lowering the  

 

FIGURE 16.2 
Method of combining criteria for 
objectives with multiple criteria (A) 
single criterion (B). 
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original value. For example, an unreliable and unpredictable resource would not satisfy 
an objective to minimize risk, and therefore it receives a low rank. If the resource has a 
suitability value of 8 at a particular location and the rank is 40%, the adjusted value is 
3.2. On the other hand, this same resource  

TABLE 16.5 
Sample Weights Resulting from Calculation of 
Principal Eigenvector of the Pairwise Comparison 
Matrix for Shelter Factors 

Criteria Weight 
Forest cover 0.2 

Slope 0.4 

Aspect 0.4 

TABLE 16.6 
Rank Percent Equivalents for Criteria Ratings 

Percent Rank Importance Ranking 
100% Most important (1) 

90% (1/2) 

80% Moderately less important (1/3) 

70% (1/4) 

60% Strongly less important (1/5) 

50% (1/6) 

40% Very strongly less important (1/7) 

30% (1/8) 

20% Extremely less important (1/9) 

10% (1/10) 

0% Not a factor (0) 

might satisfy the population aggregation objective of a group and thus receive a high rank 
for this goal. 

16.3.4 Multicriteria/Multiobjective Evaluations 

Once the factor values and a set of weights are generated for each objective and the 
objectives themselves, the information is combined in the IDRISI MCE module using a 
series of weighted linear combinations (Figure 16.2). Within the first set of weighted 
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linear combinations, the factors are combined by multiplying the weight of each criterion 
by its value followed by a summation of the results (Eastman 1999): 

 

  

In the locations containing constraints, the following equation would apply: 

 

  

The output from the weighted linear combination (WLC) is typically a value ranging 
from 0 to 10 (depending on the common scale), with the highest values representing the 
most suitable locations for meeting a particular objective. The results of the weighted 
linear combinations for all the objective’s criteria are combined using another WLC, with 
the weights generated from a pairwise comparison matrix created for the objectives. This 
produces a final suitability value depicting the likelihood that a location was utilized as a 
solution to a problem that hunter-gatherers encountered. The entire procedure for 
developing objective/factor values and weights and their combination is summarized in 
the flowchart in Figure 16.3. 

If a set of objectives contains a single factor, such as the problem of logistical resource 
use, the adjusted values for this factor are also combined using the WLC (Figure 16.4). 
When considering logistical resource use, a WLC is calculated for each resource type 
based on its ability to satisfy each objective. In addition to these calculations, the IDRISI 
MDChoice (multidimensional choice) module can be used to produce a summary map 
depicting the regions in which logistical-resource-extraction activities are most likely to 
have taken place. The MDChoice command performs a multidimensional choice 
procedure identifying the highest suitable value occurring at each cell. MDChoice records 
the resource type with the highest suitability at any one location. A suitability threshold is 
set within MDChoice that represents the minimum value needed before any resource is 
recorded for a location. 

The results from the weighted linear combinations identify the range of potential 
behaviors that may have occurred at a particular location based on hypothesized 
objectives of the hunter-gatherers under study. Correlations between simulated activity 
areas and the archaeological record suggest that the culture under study did indeed base 
their decisions on the simulated adaptive strategy. 

Hunter-gatherer decision making is complex and multidimensional, and care must be 
taken not to oversimplify. Despite this complexity, some criteria and objectives likely 
play a more significant role in the decision-making process. For example, Jochim (1976) 
has identified a set of cross-cultural goals or motives related to resource use that often 
guide hunter-gatherer decision making: 

• Attainment of a minimum amount of food and manufacturing materials 
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• Population aggregation 
• Efficiency in the form of minimizing expenditures of energy and time 
• Risk minimization  

 

FIGURE 16.3 
Flow chart for the behavioral model 
outlined in this chapter. 

 

FIGURE 16.4 
Method of combining criteria when 
only a single criterion exists for each 
objective. 

• Attainment of good-tasting foods 
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• Attainment of a variety of foods 
• Attainment of resources that carry prestige 
• Maintenance of differentiation of sex roles 

Jochim’s work provides a point of departure for model building using the approach 
advocated in this chapter. 

How do we account for risk taking that several researchers (Cashdan 1990; Halstead 
and O’Shea 1989; Jochim 1998) have identified as a critical part of hunter-gatherer 
decision making? Risk can be accounted for in this model in three ways. The simplest 
way to examine the possible effects of risk minimization is to use the highest suitability 
values in the final output, eliminating any regions that have the potential to be risk 
averse. The second means of modeling risk minimization is to incorporate it as an 
objective of the hunter-gatherers that are being studied, as Jochim (1976) did. Having risk 
as an objective allows control over the weight, or effect, that risk has on behavior. This 
method has the potential to address the question of the extent to which hunter-gatherers 
factored risk minimization into their decision making. The third method, which is the 
most complicated, can be used in conjunction with the second. An ordered weighted 
averaging (OWA) approach can be used to combine the factor values. The OWA method 
is similar to the WLC, but the OWA accommodates a second set of weights. This second 
set of weights control the degree to which weighted factors are aggregated (Eastman 
1999). In the OWA approach, factors with low values receive extra weight in the 
outcome regardless of their original weight. Thus, highly weighted factors are prevented 
from dominating suitability scores in locations where all other factor scores are much 
lower. Therefore, orienting the second set of weights toward the minimum factor values 
ensures that the final suitability does not contain high values in locations based on any 
single factor. For example, weighting minimumfactor values to a higher value creates a 
low-risk suitability model in which higher suitability values represent areas containing 
the likelihood that several resources will be available in that area. If one resource fails, 
the hunter-gatherer will have something to fall back on. The latter two approaches are 
used in this chapter. 

16.4 Discussion 

The model presented in this chapter provides a framework for simulating the behaviors of 
hunter-gatherers. Recent research conducted by Krist (2001) has demonstrated the utility 
of this approach in the study of prehistoric peoples. With the aid of detailed digital 
cartographic representations of late Pleistocene floral and faunal distributions, Krist 
successfully simulated behaviors related to logistical and residential resource use and 
settlement for early paleo-Indian hunter-gatherers occupying Lower Michigan. 

In addition to its applicability to prehistoric societies, the model can also aid research 
on existing hunter-gatherers. For example, within a modern culture, where the goals and 
objectives are not clearly understood, the model can be run and rerun to determine which 
results match the observed patterns found within a culture. Anthropologists can then 
objectively reevaluate cultural data recorded in the ethnographic record. Once a firm set 
of criteria and objectives are generated for a culture, the model can be used as a tool to 
evaluate the effects of potential environmental and cultural change on existing indigenous 
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cultures. Such an approach could be particularly useful in regions where significant 
ecological and cultural changes are taking place. 

The overarching methodology behind the behavioral model outlined within this work 
is rigorous for several reasons: 

• The model is relatively easy to implement and is repeatable. The approach is also 
flexible, accommodating a wide range of information (criteria and objectives). This 
flexibility allows the model to be used at any scale, from the site to the regional level. 

• Data with different units of measure, such as taste and soil dryness, can be incorporated 
into a single model. Upon review, or with the introduction of new evidence, criteria 
scores and rankings can be changed and the model recalculated to produce updated 
results. Quantitative approaches for archaeological predictive modeling can be used to 
provide insights into criteria weights and scores. 

• The data being entered into the model need not be highly accurate. Therefore, the model 
can be run using different levels of accuracy. 

• The model was designed to accommodate the hunter-gatherer decision-making process. 
In implementation, the design of the model enables the incorporation of the goals and 
desires of a group of hunter-gatherers being studied. 

• Although relatively simple, the model can incorporate an unlimited amount of data 
layers. With the development of GIS, it has become easier to incorporate a large 
number of criteria, goals, and objectives into a model such as the one presented here. 

• Once a set of criteria and objectives have been tested and entered into the behavioral 
model, the model can be used to predict the location of various activity areas on a 
landscape that has not undergone archaeological survey. This can aid archaeologists in 
the practical aspects of resource management by pinpointing regions that should be 
avoided during destructive land-altering activities. 

There are two limitations to the model presented here. First, the accuracy of the results is, 
of course, limited by the least-accurate data set entered into the model. Therefore, great 
care must be taken to understand the limitations of data entered into the model. Second, 
the results generated within a multicriterion approach are subject to the effects of error 
propagation. When uncertainty exists within the data entered into the model, error will 
propagate throughout the analysis (Eastman 1999; Malczewski 1999). In addition, 
inaccuracies from different layers will combine, compounding the errors within the final 
output. This is a particularly acute problem for archaeologists who utilize data collected 
about the past, which frequently possess some degree of uncertainty (Jochim 1998). 
Further compounding this shortcoming, testing the output of such models is frequently 
difficult because of the lack of data for comparison. However, there are several 
techniques for quantifying these errors, such as the Monte Carlo simulation and the 
analytical error-propagation method (Malczewski 1999). A simpler way to minimize the 
effects of error propagation is to reclassify the output suitability values into generalized 
classes, such as the high, medium, and low categories, that can be used until the accuracy 
of input data can be determined. 

Despite these limitations, the model presented in this chapter holds great promise of 
providing anthropologists with an objective means of simulating and understanding the 
behavior of hunter-gatherers. The model also demonstrates the importance of 
anthropological theory in the development of archaeological models constructed within a 
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GIS environment, and it shows how the GIS environment can be used as a tool for 
archaeological problem solving. 

References 

Belovsky, G.E., Hunter-gatherer foraging: a linear programming approach, Journal of 
Anthropological Archaeology, 6, 29–76, 1987. 

Bettinger, R.L., Explanatory/predictive models of hunter-gatherer adaptations, in Advances in 
Archeological Method and Theory, Vol. 3, Schiffer, M., Ed., Academic Press, New York, 1980, 
pp. 189–255. 

Bettinger, R.L., Hunter-Gatherers: Archaeological and Evolutionary Theory, Plenum Press, New 
York, 1991. 

Bettinger, R.L., foreword to A Hunter-Gatherer Landscape: Southwest Germany in the Late 
Paleolithic and Mesolithic, by Jochim, M.A., Plenum Press, New York, 1998. 

Binford, L.R., Willow smoke and dog’s tails: hunter-gatherer settlement systems and 
archaeological site formation, American Antiquity, 45, 4–20, 1980. 

Brooks, A., Hudcak, G.J., Gibbon, G.E., and Hobbs, E., A Predictive Model of Precontact 
Archaeological Site Location for the State of Minnesota, report prepared for Minnesota 
Department of Transportation, Minneapolis, 1996. 

Cashdan, E., Risk and Uncertainty in Tribal and Peasant Economics, Westview Press, Boulder, 
1990. 

Cleland, C.E., Rites of Conquest: The History and Culture of Michigan’s Native Americans, 
University of Michigan Press, Ann Arbor, 1992. 

Dalla Bona, L., Protecting cultural resources through forest management planning in Ontario using 
archaeological predictive modeling, in Practical Applications of GIS for Archaeologists: A 
Predictive Modeling Kit, Wescott, K.L. and Brandon, R.J., Eds., Taylor and Francis, London, 
2000, pp. 73–99. 

Eastman, J.R., IDRISI 32: Guide to GIS and Image Processing, Vol. 2, software manual, Clark 
Labs, Clark University, Worcester, MA, 1999. 

Eastman, J.R., Jin, W., Kyem, P.A.K., and Toledano, J., Raster procedures for multicriteria/multi-
objective decisions, Photogrammetric Engineering and Remote Sensing, 61 (5), 539–547, 1995. 

Egan, K.C., Hunter-Gatherer Subsistence Adaptation in the Saginaw Valley, Michigan, Ph.D. 
dissertation, Department of Anthropology, Michigan State University, East Lansing, 1993. 

Halstead, P. and O’Shea, J., Introduction to Bad Year Economics, Halstead, P. and O’Shea, J., Eds., 
Cambridge University Press, Cambridge, 1989, pp. 1–7. 

Jochim, M.A., Hunter-Gatherer Subsistence and Settlement: A Predictive Model, Academic Press, 
New York, 1976. 

Jochim, M.A., Strategies for Survival: Cultural Behavior in an Ecological Context, Academic 
Press, New York, 1981. 

Jochim, M.A., A Hunter-Gatherer Landscape: Southwest Germany in the Late Paleolithic and 
Mesolithic, Plenum Press, New York, 1998. 

Keene, A.S., Economic optimization models and the study of hunter-gatherer subsistence 
settlement systems, in Transformations: Mathematical Approaches to Culture Change, 
Renfrew, C. and Cooke, K., Eds., Academic Press, New York, 1979, pp. 369–404. 

Keene, A.S., Prehistoric foraging in a Temperate Forest, Academic Press, New York, 1981. 
Kelly, R.L., The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways, Smithsonian 

Institution Press, Washington, DC, 1995. 
Krist, F.J., Jr., A Predictive Model of Paleo-Indian Subsistence and Settlement, Ph.D. dissertation, 

Department of Anthropology, Michigan State University, East Lansing, 2001. 

GIS and archaeological site location modeling       324



Kvamme, K.L., A view from across the water: the North American experience in archaeological 
GIS, in Archaeology and Geographical Information Systems: A European Perspective, Lock, G. 
and Stančič, Z., Eds., Taylor and Francis, Bristol, PA, 1995, pp. 1–14. 

Kvamme, K.L., Recent directions and developments in geographic information systems, Journal of 
Archaeological Research, 7 (2), 153–201, 1999. 

Malczewski, J., GIS and Multicriteria Decision Analysis, John Wiley and Sons, New York, 1999. 
Mithen, S., Thoughtful foragers, Cambridge University Press, Cambridge, 1990. 
Raab, L.M. and Goodyear, A.C., Middle-range theory in archaeology: a critical review of origins 

and applications, American Antiquity, 49, 255–268, 1984. 
Reidhead, V.A., Linear programming models in anthropology, Annual Review of Anthropology, 8, 

543–578, 1979. 
Reidhead, V.A., The economics of subsistence change: a test of an optimization model, in 

Modeling Change in Prehistoric Subsistence Economies, Earle, T. and Christenson, A., Eds., 
Academic Press, New York, 1980, pp. 141–186. 

Wobst, H.M., The archaeo-ethnology of hunter-gatherers, or the tyranny of the ethnographic record 
in archaeology, American Antiquity, 43, 303–309, 1978. 

Multicriteria/Multiobjective predictive modeling      325



 

17  
Predictive Modeling in a Homogeneous 

Environment: An Example from the 
Charleston Naval Weapons Station, South 

Carolina  
Thomas G.Whitley 

ABSTRACT Using what has typically been referred to as a “deductive” 
approach to creating probabilistic formulas seems to be more reliable than 
traditional “inductive” methods in the context of very homogeneous 
environments, where slope and distance to water are not discriminating 
factors. However, the terms “deductive” and “inductive” are incorrect in 
the context of probabilistic modeling, and the ultimate dichotomy must be 
considered one of probabilistic causality versus inferential determinism. 
Inferentially deterministic models are limited by the nature of inductive-
statistical scientific explanation and their dependency on flawed data sets. 
The alternative model presented here, though limited by the reliability of 
research in the region as a whole and the nature of the environmental and 
social variables employed in the model, produces multiple “expert 
system”-based formulas that cast a much wider net over site-selection 
behavior. The result is a model that can address very homogeneous 
environments, very specific site types, and sites with poor representation 
in the archaeological record. The approach also forces us to think about 
the ways in which site placement is cognized, rather than providing just a 
single “lowest common denominator” type of predictive formula. 

17.1 Introduction 

The research presented in this chapter was part of a project to evaluate the potential for 
archaeological resources located within the boundaries of the Charleston Naval Weapons 
Station (NWS), Berkeley and Charleston Counties, South Carolina (Whitley 1999). 
Brockington and Associates, Inc., conducted a geographic information system (GIS) 
evaluation of the known archaeological sites and the available environmental information 
to understand (a) the distributions of potentially significant archaeological sites and (b) 
the areas where such sites might occur but are unknown at present. Identifying 
particularly sensitive areas allows foresight into alternative evaluations for future 



projects, potential avoidance or mitigation strategies, and the application of differential 
survey priorities. 

Following a brief overview of archaeological probabilistic modeling, this chapter 
presents a discussion of modeling in a homogeneous region, addresses some of the 
factors that led to the model strategy, and presents modeled results. A detailed analysis of 
the environmental or cultural background of the region is not included, but a number of 
sources can be consulted for additional information (Adams 1987; Anderson and Logan 
1981; Anderson et al. 1979; Brooks and Canouts 1984; Cable 1993, 1996; Drucker and 
Anthony 1979; Goodyear and Hanson 1989; Goodyear et al. 1979; Panamerican 
Consultants 1997; Rust 1997; Soil Systems 1982; Stephenson 1998; Stine 1991; Stine et 
al. 1993; Tidewater Atlantic Research 1995; Zierden et al. 1986). 

17.2 Archaeological Probabilistic Modeling 

The potential for any hypothesis to be true is a factor of its relationship to all other 
mutually exclusive possibilities. Although the mathematics for evaluating probability can 
become quite complex, even for simple parameters (see Pearl 2000:2–6), in 
archaeological probabilistic modeling this usually translates into a simple declarative 
statement that any given land point has the potential to be either part of an archaeological 
site or not. Of course, this does not take into consideration the complex nature of defining 
sites by the presence of artifacts or features, the use of so-called nonsite areas, the nature 
of social and cognitive landscapes, the effects of postdepositional processes, and the 
methods and motivations of archaeologists looking for sites. All of these factors greatly 
influence the definition of “site” itself, and it might be argued that the concept is not a 
useful designation in any sense of the word (Dunnell 1992). The nature of regulatory 
archaeology, though, ensures that some categorical distinction be made. Therefore, in 
applications of probabilistic modeling, the definition of site is assumed to be an 
aggregation of artifacts or features either previously recorded as a site or that can be 
recognized in the field, based upon the experience of the researcher, as a focal point of 
human activity. 

Archaeological probabilistic modeling relies on an understanding of the relationships 
between such “sites” and a series of independent variables that are assumed to be the 
conscious or subconscious causal factors in the intentional or unintentional placement of 
those artifacts or features by previous inhabitants of the area. Thus it makes several 
assumptions: 

1. Humans make cognitive decisions about where to locate themselves in the available 
environment. Such decisions need not be conscious, but they are reflected in either 
explicit or implicit behavioral rules or tendencies. 

2. Behavioral rules or tendencies are correlative with environmental parameters. The 
environment does not imply strictly ecological variables, but social and temporal ones 
as well. For instance, social territorial boundaries are every bit as real to site-
placement decisions as distance to specific resources. 
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3. Reconstructed behavioral rules or tendencies can be applied to unsurveyed areas to 
reveal patterns of site potential or, in contrast, to causally explain patterns of 
settlement. 

The two primary approaches to archaeological probabilistic modeling are traditionally 
referred to as inductive and deductive. The pluses and minuses of these two perceived 
categories have been addressed in numerous studies of probabilistic modeling (most 
notably Kohler and Parker 1986; Judge and Sebastian 1988; Dalla Bona 1994). Most 
succinctly, Ebert (2000) has pointed out the differences between the two methods in 
terms of explanatory capacity. In the end, almost all archaeological models have, in 
practice, been of the so-called inductive kind. Several factors, though, have greatly 
influenced the choice of modeling approaches. Foremost among these is the existing 
paradigm of scientific explanation currently in place in North American archaeology. 

Although, the term “deductive” has been applied to models that rely on previously 
constructed formulas rather than formulas inductively derived from a statistical 
evaluation, the use of both terms is in fact a misnomer. The dichotomy between the two 
perceived approaches to probabilistic modeling has little to do with the origins of 
hypotheses and their subsequent testing (i.e., Hempel 1965). Rather it has to do with the 
nature of inductive inference, probabilistic causality, and determinism. The assumption 
has been that very strong empirically driven correlative models (those based on Hemper’s 
[1965] inductive-statistical [I-S] model of scientific explanation) are required for accurate 
probabilistic forecasting (i.e., prediction, or in the case of archaeology, retrodiction). This 
argument mistakenly assumes that inductive models are producing viable statistical 
inferences. This has been severely called into question (Jeffrey 1971). 

Regression, Bayesian, and many other approaches to archaeological probabilistic 
modeling use an existing set of archaeological data to build algorithmic “inferences” 
(Kohler and Parker 1986; Judge and Sebastian 1988; Kvamme 1990a, 1990b, 1995; Van 
Dalen 1999; Wescott and Brandon 2000). By default, that data is limited to identified 
sites located in previously surveyed areas. Even if we accept the representativeness and 
completeness of the archaeological data (and the inherent usefulness of the site concept), 
the statistical methods of correlative analysis are dependent on the notion that explanation 
is limited to evaluating the strong correlations between site location and the observed 
environmental or cultural factors. Any weak correlations are inherently not conducive to 
analysis and must be excluded from the examination. The result is a single formulaic 
statement that is essentially the “lowest common denominator” for site location 
prediction. 

In any causal explanation of a phenomenon we would expect to generate a discussion 
of both how and why, not merely that an observation occurs (Jeffrey 1971:21). Empiric-
correlative type probabilistic models, in fact, demonstrate that correlations occur and 
summarize them in a mathematical relationship (the probabilistic formula). However, in 
an I-S model, the explanation of that formula is actually post facto applied as an 
interpretation (if it is applied at all) to the received mathematics and mistaken for logical 
inferential substantiation. Multiple nonlinear or logistic regression analysis, though, has 
no inherent explanatory capacity. It is merely a correlative evaluation that becomes tied 
to our observations of human behavior and used as statistical justification. This sets up a 
situation in which explanatory knowledge is relegated to an insistence on deterministic 
causality (cf. Salmon 1998:38–42). 
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This is clearly illustrated in Jeffrey’s (1971:21–22) example of the weather glass 
(barometer) problem. When the barometer falls, the weather turns bad. A statistical 
analysis of numerous instances of observing both the weather and the barometer would 
produce a formula that can be expressed in terms of a very accurate prediction for the 
weather based on the height of the liquid in the barometer. But it does not clearly explain 
why or how the correlation occurs. That interpretation is dependent on known 
relationships between the expansion of liquids and atmospheric pressure plus those 
between atmospheric pressure and inclement weather. Unless they are specified, the 
explanation is not complete (it is merely an observation of the correlation). In fact, 
without the concurrent knowledge of the laws of chemistry and physics, we could 
logically infer that not only does bad weather cause the barometer to fall, but the falling 
barometer may equally cause the weather to turn bad. 

In archaeological probabilistic models, I-S-based empiric-correlative analysis is but a 
quantification of the observed correlations. In fact, it is actually limited to a 
generalization of only statistically significant correlations strictly in the context of the 
known and measured environmental variables (not all of the potential factors). The nature 
of how or why these correlations occur is not specified in the statistical analysis, and 
therefore any post facto interpretation of how or why they occur is no more statistically 
inferred than any other hypothesis that could result in the same generalized correlations 
(cf. Jeffrey 1971:26–27). 

The perceived notion that inductive (that is to say I-S based) probabilistic models are 
somehow more accurate than deductive models (where how or why relationships are 
constructed before application of archaeological data) because they have been generated 
by explanatory statistical inference is patently absurd. In fact, several alternative 
approaches to I-S based probabilistic models have been presented in the literature that fit 
much more within the context of a statistical-relevance (S-R) model of explanation (cf. 
Salmon 1971, 1984, 1998), but that are generally acceptable to the peer group of 
probabilistic modelers because they have been couched in positivist terminology for what 
are essentially simplified forms of cognitive decision making (e.g., Boolean models, see 
Stančič and Kvamme 2000; Stančič et al. 2001). 

We need to bear in mind that all probabilistic models are sterile, unproductive 
exercises if we do not explore the nature and relevance of the causeand-effect 
relationships identified. The lack of large data sets, though, does not imply the absence of 
explanatory reasoning (as suggested by inferential I-S based modeling). We must 
recognize the inherent unpredictability of some cultural behavior that will never be 
amenable to deductive-nomological (D-N) or I-S type explanation. Complexity theory, 
fuzzy modeling, and cognitive studies are mature and detailed enough to strongly suggest 
that limiting archaeological explanation to predictable empirical correlations (and 
assuming a wide range of applicability for the correlative generalizations extracted) is 
much too simplistic of an approach. Instead, we need to address mechanisms of behavior 
(e.g., cognition) and to evaluate the ways within which empirically observed phenomena 
probabilistically reflect such causal mechanisms. 

In the long run, we should not characterize probabilistic modeling with the simplified 
and incorrectly applied terms of “inductive” and “deductive.” Similarly, I have replaced 
the term “predictive” with “probabilistic” to reflect a greater degree of indeterminacy. 
We need to focus on understanding that hypotheses of settlement tendencies or site 
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placement “rules” should be based on our interpretations of the cognitive decision 
making employed by prehistoric or historic populations, and not on a simplistic 
mathematical device. If we choose to build models that are merely highly empirical-
correlative and have no explanatory capacity, we have to realize that, in such cases, the 
goal of predictive modeling cannot be to understand prehistoric settlement; rather, it must 
be an application of modern cost-benefit analysis in the context of large regulatory 
projects. Such models may illuminate the best alternatives with which to avoid cultural 
resources, but they should be seen in the same light as barometric measures of site 
potential, and not as interpretations. 

The salient differences between approaches to probabilistic modeling are, in essence, 
exemplified by either the acceptance or rejection of prior interpretation of settlement and 
whether it is appropriate to allow a statistical method to generate an “organic” predictive 
formula and then apply it as if correlation shows causality. These two approaches are, 
perhaps naively, described here as “data dependence” and “data independence.” 

17.2.1 Data-Dependent Models 

Traditionally, the most common archaeological probabilistic models are derived from 
observing and statistically measuring the correlations between environmental 
characteristics and the locations of archaeological sites. They depend on observations of 
the archaeological record. As such, they tend to be limited to the ecological variables that 
can be easily measured and classified, and I have identified them here as data-dependent 
models. 

There are, though, some major problems with data-dependent models: 

1. They are reliant on the archaeological data as it is currently known. Whatever biases 
are inherent in the collection of the data are transferred to the model itself. For 
instance, any intuitive probabilistic model used by the surveyors will be inherent in the 
hypothetically objective formulas created by regression analysis or some other 
statistic. Unsurveyable areas also are going to be de facto excluded from proper 
consideration, since no known archaeological sites generally correlate with them. 

2. Areas in which the most-recent human settlement has occurred affect inferential 
models in two ways. Sites in modern settlement areas are more likely to have been 
destroyed than those in the unsettled or back-country areas, leading to a possible 
overemphasis on marginally placed sites than might be natural. Likewise, sites in areas 
developed since the implementation of the National Historic Preservation Act are 
more likely to have sites recorded for them, leading to possible overemphasis on those 
areas as well. 

3. Most such models are based on the survey results compiled by many different 
archaeologists, sometimes even generations of archaeologists. The nature of the data is 
usually very inconsistent and unlikely to generate much confidence when sites are 
classified by temporal period or function. The vast majority of previously recorded 
sites (in the U.S.) are not classifiable, anyway, being simply nondiagnostic lithic 
scatters. 

4. The definition of “site” is a fluid generalization made by the archaeologists doing the 
survey. Some states record sites on the basis of a single artifact; others require a 
minimum of ten (or three different kinds). Site boundaries can be as much as 10,000 
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m2 for a site containing two lithic flakes, or they can be tightly drawn around clusters 
of high artifact density in a relatively small area. Frequently, they are bound to modern 
roads or rights-of-way and have no relationship to the prehistoric landscape. 

5. Many states record the locations of archaeological sites but not the areas within which 
the archaeological surveys occurred. Thus any correlations between sites and 
environmental variables are often built without knowing the nature of how much was 
surveyed or where. This can create very misleading correlations. 

6. Multiple, nonlinear, or logistic regressions are typically the statistical methods used for 
establishing site/environment correlations, yet these statistics make the assumption 
that the independent environmental variables used are the only ones required in the 
model. Additional environmental data added to the model at a later date requires a 
recalculation of the formula and can radically alter the outcome. 

7. Perhaps most commonly encountered, the sample size of the archaeological sites must 
be sufficient to produce statistically significant results for each and every site type, 
temporal period, and function that would result in a different settlement pattern. This 
can only be accomplished in many regions by expanding the study area to such a large 
extent that it has likely captured sites across unknown territorial or cultural 
boundaries. 

Some of these problems can be worked around. For instance, it is possible to use only 
data from an area that has been uniformly surveyed specifically for creation of the 
probabilistic model. The techniques used for the survey, though, must provide equal 
weight to all possible landforms (including unsurveyable ones) and derive enough 
archaeological sites to adequately develop regression formulas for each and every site 
type or temporal period that may have resulted in a different settlement pattern. 

17.2.2 Data-Independent Models 

If a model relies on one particular data set to estimate site/environmental correlations, it 
must be realized that those correlations can only represent a partial abstraction of the 
entire cultural decision-making system, due to the limitations of observable 
archaeological and historical data. Data-independent models are constructed by creating 
the model prior to the application of a data-based testing regime. Though they are not 
truly independent of the influence of archaeological data, because they are based on an 
“expert system” (the previous experience of regional archaeologists), it is convenient to 
refer to them as data-independent because they are not based on a formula statistically 
derived from the data set of known sites. 

Data-independent models are much more like meteorological forecasting models and 
much less like barometers. The formulas for weather prediction are not based on a 
database of past statistical correlations between weather systems and environmental 
factors (i.e., barometrical observations). Rather, they are based on an understanding of 
the way that (what we call) weather systems react to current atmospheric conditions. Of 
course, that understanding is based on an interpretation of past weather systems (hence it 
is an expert system). For archaeology, such models face several challenges. Kohler and 
Parker (1986:432–440) address several of these issues. A “deductive” model must: 
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1. Consider how humans make choices concerning location (a subset of the larger 
problem of how any decision is made), which requires considering: 

a. A mechanism for decision making 
b. An end for decision making (what is the goal?) 

2. Specify the variables affecting location decisions for each significant chronological or 
functional subset of sites 

3. Be capable of operationalization; it must propose a means for measuring each of the 
relevant variables and must allow for a set of predictions that can be compared with 
the archaeological data (Kohler and Parker 1986:422) 

In considering the first requirement postulated above, it is clear that a number of 
conditions might exist that greatly affect the process of making decisions on site 
placement. If too much information is available, a decision may not reflect rational 
assessment of important factors, but may be reliant upon “cultural precedent” or 
“simplified logics” (heuristics). Likewise, rational assessment may not occur in situations 
where not enough information is available (uncertainty of future conditions, or 
unfamiliarity with the area). The ability to model site locations probabilistically is always 
responsive to the context in which the site-placement decisions are made, and these 
limitations are inherent in inferential models as well. 

Another problem arises in consideration of the decisions that are costbenefit neutral. In 
other words, clear preferential alternatives may not be evident in decision-making 
processes that do not bear on the individual’s (or group’s) ability to extract resources 
from the environment efficiently The cost-benefit strategy of decision making might not 
always apply for all important factors. An understanding of complex economic benefits 
may be beyond the grasp of the model if all constraints are not fully understood. 

Third, some decisions may be based on circumstances that are inherently 
unpredictable. Even if the distributions of major food resources can be predicted in a 
given environment, it is just as likely that the fluctuations in patterns of warfare between 
two neighboring groups may be unpredictable, yet have a profound influence on site 
placement. 

The benefits of a data-independent model, however, are: 

1. A more complete comprehension of the cognitive decision-making processes that have 
led to the variety of settlement patterns in the region. In essence, the creation of a data-
independent model is a simulation of the process by which prehistoric or historic 
inhabitants of a region thought about their environment and how it affected their 
settlement. 

2. No dependence on the usually questionable data of previous archaeologists, their 
surveys, and their interpretations. To some degree, data-independent models are still 
reliant on the abilities and judgment of regional archaeologists, in that hypotheses 
about settlement are always subjective, but this need not be a limiting factor given the 
potential to test many multiple theories, even ones not previously envisioned for the 
region. 

3. No reliance on having a large accurate sample size of previously recorded 
archaeological sites on which to base the formulas. A good sample size of sites is of 
course required to provide a sufficient test for the model, but it becomes possible to 
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address issues of very specific site types or functions that may have a very small 
representation in the archaeological record. 

4. Similarly, it becomes possible to develop formulas that address the use of specific 
areas or habitats in which it is unlikely that site remains would be identified. This 
would not only include areas that are currently unsurveyable or heavily disturbed, but 
also those that may have been used strictly for resource procurement. 

The principal arguments against data-independent models have been their complexity and 
difficulty in implementation. It has always been easier to create a regression-based 
inferential statistical model (assuming the database of sites was large enough) and apply 
the resulting formulas to unsurveyed areas. In contrast, archaeologists have had little 
precedent and even less guidance in creating data-independent formulas. Where to begin? 
What variables to include? How to weight them appropriately? 

In the last decade, GIS has facilitated the application of inferential models, and it can 
no longer be considered overly difficult to implement data-independent ones either. The 
statistics are not particularly difficult or obtuse (unlike regression-based inferential 
models), and I believe that data-independent models make more intuitive sense and thus 
can be more readily understood and used by nonspecialist archaeologists. 

17.2.3 Modeling in a Homogeneous Environment 

The real advantage of a data-independent model is the ability to make conclusions that 
are causally related to settlement systems and not merely reflective of site preservation or 
obvious generalities. The primary reason that inferential probabilistic models have been 
most frequently employed in archaeology is that they have the immediacy of a real-world 
data set, but very little need to understand or interpret the values produced by the 
regression statistics. The statistically generated formulas need only be reapplied to 
unsurveyed areas, and very often the model produces somewhat reliable results. The 
reliability of the results, though, is predicated upon the ubiquitous use of two very 
important environmental factors: terrain slope and distance to water. 

In most regions where a useful semiaccurate archaeological probabilistic model has 
been applied, the major site-delimiting factors are almost invariably slope of the terrain 
and site distance to water. Not surprisingly, these regions are usually highly dissected and 
often arid, or the models refer only to large-scale village or agriculturally based sites. For 
areas that are very homogeneous and well-watered, there are few highly accurate and 
precise probabilistic models; this is likewise true for hunter-gatherer groups. Where water 
is limited and slope is quite variable, it makes sense that those factors should strongly 
correlate with archaeological sites. But how different is that from an intuitive model? 
Archaeologists have long used intuitive models for limiting survey strategies. Does it 
make sense to develop a statistically sophisticated inferential probabilistic model that 
merely supports an already well-understood intuitive model? 

More difficulty is encountered when addressing site potential in a homogeneous 
environment. The primary fall-back environmental factor often used in probabilistic 
modeling, when slope and distance to water are not sufficient, is soil type. But is it 
legitimate to argue that certain soil types were prehistorically preferred when they are 
largely autocorrelative with modern wetland distributions (which are unsurveyable) or 
with highly plowed surfaces (where sites are more visible)? Clearly, the basis of 
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prehistoric soil-type preference must lie in the nature of the ecological factors to which it 
is linked, in other words, to soil fertility, potential for wildlife habitats, and resource 
procurement (such as clay sources). Each of the factors associated with soil types needs 
to be understood on its own, not as a simple site-to-soil-type relationship. 

Unfortunately, just as in every other type of environment, data-independent 
probabilistic modeling in a homogeneous region must rely on the accuracy and 
availability of the environmental data. Environmental data problems may include: 

1. Inaccurate spatial data 
2. Spatial autocorrelation of variables 
3. Inability to model past environments 
4. Incomplete data sets 
5. Inappropriate scaling 
6. Map-edge effects 

In the case of a data-dependent model, though, the reliance is on the accuracy of both the 
environmental data and the archaeological data. The following sections describe in detail 
one attempt to produce a data-independent probabilistic model for a homogeneous 
environment. 

17.3 Probabilistic Modeling at NWS 

This study was not intended to identify areas of archaeological significance so that they 
could be entirely avoided. Rather, the identification of highprobability zones allowed 
management decisions to be made prior to the undertaking of any construction project. 
Alternative treatment options for different probability areas are a possibility, but being 
able to identify the likelihood for some areas to contain archaeological sites prior to 
survey allowed full consideration of project options and created a prioritization and 
appropriate survey strategies for the unsurveyed land units. In addition, examination of 
ongoing or projected adverse effects is likely to benefit from knowing which land units 
are probably the most sensitive. 

The study area includes the four USGS 7.5-min quadrangles encompassing the Naval 
Weapons Station in Berkeley County, South Carolina: North Charleston; Ladson; Mount 
Holly; and Kittredge (Figure 17.1). Limiting the study to these quadrangles was based on 
the estimated computer analytical capacity available to process the chosen digital data. 
Larger study areas would require considerably more time to process, and smaller areas 
would be less useful. 

17.3.1 Previous Modeling in the Study Area 

Berkeley County was included in the Charleston Harbor study (Cable 1996), a 
comprehensive probabilistic model produced by New South Associates, Inc. (New 
South). The Charleston Harbor study included assessment of soil, spatial, and distance 
values to produce several regression equations that were overlaid on prospective project 
areas within two distinct geophysical districts (maritime and interior). A sample of 
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archaeological sites from both districts was included in the analysis. The model was 
developed without the use of GIS data and was intended to be applicable without the use 
of GIS evaluation. 

 

FIGURE 17.1 
Study area location. 

In general, Cable’s (1996) results suggest that some correlations between soil classes, 
streams, site densities, and distances between sites may exist, which would allow an 
argument for restricted survey strategies in designated probability areas. Cable (1996) 
found that his modeled probability areas tended to show a weak positive correlation 
between where sites were predicted and where they actually occurred. Unfortunately, this 
is already the case for what archaeologists have routinely employed as intuitive 
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probabilistic models (i.e., limiting fieldwork away from heavily sloped, disturbed, or 
saturated areas, as well as concentrating on streamside locales). 

If the goal of probabilistic modeling is to understand prehistoric settlement strategies 
in the region, the Charleston Harbor study provided little new information. No causal 
explanation for site/soil or site/stream correlations is tested, so it cannot be assumed that 
prehistoric people were consciously seeking out specific soil types, soil-type interfaces, 
soil-drainage variability, or stream sizes. Locations of sites on particular soil types, near 
certain stream orders, or near specific soil interfaces may be causally related to some 
other ecological or social variables not considered. 

If the goal of probabilistic modeling is to provide a tool for archaeologists and 
planners to reduce costs by making alternative decisions prior to investigation, the 
Charleston Harbor study also created little new potential. This is in large part due to the 
choice of variables, the tedious way in which they were measured (and would have to be 
measured in future applications), the marginal results, and the limited applicability to 
unsurveyed areas. Survey strategies are not likely to be developed based on an 
assessment of the distances to different soil-class interfaces or particular stream classes 
for every point in a potential project area. It may be possible to manually assess a small 
project area, but this could only be done with a GIS analysis for any large tract of land. 

The contrast between these two possible goals is no small matter. The idea that we can 
save time and money by predicting site locations involves two very distinctive 
assumptions. One assumption is that we can understand and predict the behavior of long-
dead people. The second assumption is that such an understanding will allow us to 
control or limit spatial types of archaeological investigations. For this project, the Cable 
(1996) model provided little usable data. Because it was not a GIS-based, easily 
replicated process, there was no potential to just apply the Cable (1996) model to the 
study area. Instead, it was determined that a new model would need to be created. For 
this new model, three major phases of analysis took place: data gathering and extraction, 
creation of probability surfaces, and formula evaluation. 

The most appropriate means of assessing the regional patterning of probability areas 
was to acquire the necessary data for the four adjacent USGS 7.5-min quadrangle maps 
surrounding the study area. The digital data from these maps—downloaded from the 
South Carolina Department of Natural  
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TABLE 17.1 
Original Data Sources 

Data Source Name Type of Data 
1 North Charleston 30-m digital elevation model 30-m grid data set 

2 Ladson 30-m digital elevation model 30-m grid data set 

3 Kittredge 30-m digital elevation model 30-m grid data set 

4 Mount Holly 30-m digital elevation model 30-m grid data set 

5 North Charleston 7.5-min USGS digital quadrangle Georeferenced TIFF image 

6 Ladson 7.5-min USGS digital quadrangle Georeferenced TIFF image 

7 Kittredge 7.5-min USGS digital quadrangle Georeferenced TIFF image 

8 Mount Holly 7.5-min USGS digital quadrangle Georeferenced TIFF image 

9 North Charleston hydrology Polygon data set 

10 Ladson hydrology Polygon data set 

11 Kittredge hydrology Polygon data set 

12 Mount Holly hydrology Polygon data set 

13 North Charleston USEPA wetlands Polygon data set 

14 Ladson USEPA wetlands Polygon data set 

15 Kittredge USEPA wetlands Polygon data set 

16 Mount Holly USEPA wetlands Polygon data set 

17 North Charleston soils Polygon data set 

18 Ladson soils Polygon data set 

19 Kittredge soils Polygon data set 

20 Mount Holly soils Polygon data set 

21 North Charleston digital orthophoto quarter quads Georeferenced TIFF image 

22 Ladson digital orthophoto quarter quads Georeferenced TIFF image 

23 Kittredge Digital orthophoto quarter quads Georeferenced TIFF image 

24 Mount Holly digital orthophoto quarter quads Georeferenced TIFF image 

25 North Charleston SCIAA archaeological site data Polygon data set 

26 Ladson SCIAA archaeological site data Polygon data set 

27 Kittredge SCIAA archaeological site data Polygon data set 

28 Mount Holly SCIAA archaeological site data Polygon data set 

29 1825 Mills’s Atlas map of Charleston District Georeferenced TIFF image 
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30 Naval Weapons Station boundaries Polygon data set 

Resources (SCDNR) Data Clearinghouse Web page, various USGS data clearinghouses, 
and through a data request from the South Carolina Institute of Archaeology and 
Anthropology (SCIAA)—provide the background from which the model was developed. 

17.3.2 Data Gathering and Extraction 

The original base map data sources used in the analysis are listed in Table 17.1. Data 
sources 1 through 20 were downloaded from the SCDNR GIS Data Clearinghouse 
(http://www.dnr.state.sc.us/gisdata/). The digital orthophoto quads (data sources 21 
through 24) were ordered from the USGS through Microsoft’s Terraserver Web page. 
The archaeological site boundaries (data sources 25 through 28) were requested from the 
SCIAA. The 1825 Mills’s Atlas map (data source 29) was scanned at 300 dpi from a hard 
copy  

TABLE 17.2 Derived Data Sources 

Data 
Source 

Name Type of Data 

31 Merged-grid 30-m digital elevation model 30-m grid data 
set 

32 Merged hydrology polygons Polygon data set 

33 Merged USEPA wetlands polygons Polygon data set 

34 Merged-soils polygons Polygon data set 

35 Merged archaeological site data Polygon data set 

36 Degree of slope 30-m grid data 
set 

37 Navigable waterways Polygon data set 

38 Rubber-sheeted 1825 Mills’s Atlas map 30-m grid data 
set 

39 1825 Mills’s Atlas-based historic resources Polygon data set 

40 Cost surface: combined slope and wetlands travel costs 30-m grid data 
set 

41 Cost distance to navigable waterways 30-m grid data 
set 

42 Cost distance to historic resources 30-m grid data 
set 

43 Cost distance to marsh ecotones 30-m grid data 
set 
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44 Size of nearest marsh ecotone 30-m grid data 
set 

45 Soil codes: drainage rankings 30-m grid data 
set 

46 Soil codes: seed/grain crop capacity values 30-m grid data 
set 

47 Soil codes: wild plants capacity values 30-m grid data 
set 

48 Soil codes: woodland wildlife capacity values 30-m grid data 
set 

49 Soil codes: wetland wildlife capacity values 30-m grid data 
set 

50 Soil codes: open land wildlife capacity values 30-m grid data 
set 

51 Standardized soils codes: drainage (SDR) 30-m grid data 
set 

52 Standardized soils codes: seed/grain crop (SSCC) 30-m grid data 
set 

53 Standardized soils codes: wild plants (SWPC) 30-m grid data 
set 

54 Standardized soils codes: woodland wildlife (SWOWC) 30-m grid data 
set 

55 Standardized soils codes: wetland wildlife (SWTWC) 30-m grid data 
set 

56 Standardized soils codes: open land wildlife (SOWC) 30-m grid data 
set 

57 Standardized slope (DOS and DOS2) 30-m grid data 
set 

58 Standardized cost distance to navigable water (CDNW and 
CDNW2) 

30-m grid data 
set 

59 Standardized cost distance to historic resources (CDHR and 
CDHR2) 

30-m grid data 
set 

60 Standardized cost distance to marsh ecotone (CDME and 
CDME2) 

30-m grid data 
set 

61 Standardized size of nearest marsh ecotone (SNME) 30-m grid data 
set 

(Mills 1979) and georeferenced to overlay the quadrangle maps. The Naval Weapons 
Station Boundaries (data source 30) were digitized directly on top of the digital 7.5-min 
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quads. All received data sources were projected into the UTM projection, North 
American 1927 datum. 

A series of additional data layers was created using the 30 data sources listed in Table 
17.1. These are referred to as derived data sources (Table 17.2). Derived data sources 31 
through 35 were merely combined versions of the specific data layer for each of the four 
quads. Data source 36 (degree of slope) was calculated using ArcView’s internal slope 
calculation routine applied to data source 31 (the merged DEM). Data source 37 
(navigable waterways) was extracted from the combined hydrology layers (data source 
32). Navigable waterways implies that the hydrologic area is not considered a wetland 
but is traversable by small watercraft (i.e., canoe, etc.). It does not imply modern shipping 
capability. 

Using the digital image of the 1825 Mills’s Atlas map, 12 landmarks were identified 
and then colocated on the digital quads. The index table identifying the UTM coordinates 
of each of the 12 points on both historic and modern maps was used to stretch and fit 
(rubber sheet) the Mills’s Atlas to the modern quadrangles (data source 38). This aligned 
the known landmarks and created a starting point from which historic roadways and 
probable historic structure locations were digitized into data source 39. 

Wetland areas were extracted from the hydrology features layer (data source 32) and 
combined with the degree of slope (data source 36) to create a cost-surface map (data 
source 40). This map was used in the cost-distance analysis for data sources 41, 42, and 
43. “Cost surface” refers to the cost of traveling through any given land unit. When 
measuring distance variables, it is often realized that direct linear distance does not 
accurately take into consideration the effort that would be expended by anyone traveling 
between two points. Because we know that it takes a greater effort to traverse a steep 
hillside than flat terrain, and it is more difficult to walk through thick marshland than dry 
uplands, those factors need to be considered in evaluating distance variables. Therefore, 
cost distance from navigable waterways (data source 41) was calculated using degree of 
slope and presence/absence of wetlands as mitigating travel factors and navigable 
waterways (data source 37) as the origin. Similarly, cost distance to historic resources 
(data source 42) was calculated with the same travel costs and the Mills’s Atlas historic 
resources (data source 39) as the origin. 

Cost distance to marsh ecotones (data source 43) takes the wetland values from the 
hydrology data source (data source 32) as an origin source and uses data source 40 as 
travel cost. No distinction is made between salt and freshwater marshes (that 
identification is not possible for two of the four quads). Size of nearest marsh ecotone 
(data source 44) was calculated by a proximity analysis that assigns the acreage value of 
the nearest marsh ecotone to each grid point in the study area. 

The soils polygons (data source 34) were used to assign drainage rankings, seed/grain 
crop, wild plants, woodland wildlife, wetland wildlife, and open land wildlife capacity 
values (data sources 45 through 50) based on the Berkeley and Dorchester County soil 
surveys (Eppinette 1990; Long 1980). The Charleston County soils data were not 
digitally available. Rankings were established by translating the qualitative values of 
good, fair, poor, and very poor into numeric classes of 1, 2, 4, and 5; soils not measured 
were given a value of 3. 

The soil code rankings (data sources 45 through 50) were converted to standardized 
probabilistic indices (data sources 51 through 56) by changing the numeric categories (1 
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through 5, representing “good” through “very poor”) to 0.75, 0.25, 0, −0.25, and −0.75, 
respectively. Thus a “good” ranking for any of the soil code variables earned a discrete 
0.75 value, indicating a presumed positive relationship with archaeological sites. Discrete 
values were only assigned to the soil codes data layers, since they are categorical in 
nature. 

Data sources 57 through 60 are standardized versions of each continuous variable, so 
that data values range between −1 and 1. This means that the values associated with each 
grid unit (from data sources 41 through 50) were translated proportionally to fit the range 
of −1 to 1, with −1 representing the furthest observed cost-distance value and 1 
representing the nearest. The size of the nearest marsh ecotone variable (data source 43) 
was recalculated to create data source 61 by finding the average-size marsh value and 
translating it into 0. The range of −1 to 0 represents the values between 0 and the average 
marsh size. The range of 0 to 1 represents the values between the average marsh size and 
twice the average size. Any value more than twice the size of the average was 
recalculated as equal to 1. This implies that above-average-size marsh ecotones are 
preferred and that below-average ones are not. 

When proximity or slope variables were translated into exponential values using data 
sources 57 through 60, a transformation routine was used to transform the data into a 
positive range of 0 to 2 prior to squaring the value. After squaring, the value was once 
again standardized to fit the range of—1 to 1. This was necessary to eliminate the 
problem of squaring negative numbers, which always results in a positive value. 

17.3.3 Creation of Probability Surfaces 

Cable (1996) used a series of variables extracted from soil-drainage groups based on a 
GIS assessment done by Scurry (1989), including mean soildrainage-rank diversity at the 
measurement point, soil-drainage-rank diversity at different search radii from the 
measurement point, and linear distances to each soil-drainage rank. In addition, he used a 
linear distance to nearest stream measure, along with linear distance to nearest known 
site. Through a series of correlation coefficients and a multiple regression evaluation, the 
statistically evaluated relationships to predict site potential were based on both site 
density and linear distance to the nearest known site. His initial choice of variables is 
conditioned by his familiarity with the region and the high interdependence between sites 
and soil types observed through years of fieldwork. But the application of those variables 
comes by evaluating their statistical relationship to a database of known sites and a 
collection of randomly placed “nonsite” control points. 

Using a more data-independent approach, we assume that past discussions of 
prehistoric subsistence and settlement patterning made in previous studies are the basis 
upon which to model potential patterns of site placement. This means that we choose the 
variables to employ in the study on the basis of two factors: (1) how we perceive they 
might have contributed to the prehistoric or historic processes of site placement, and (2) 
how easily we can measure them today. 

Although relatively few directed research projects have been carried out in the region 
around the Naval Weapons Station, a long sequence of work has existed for much of the 
Interior Coastal Plain of South Carolina. This work is summarized in reports by Anderson 
et al. (1982), Brockington et al. (1995), Brooks and Canouts (1984), Cabak et al. (1996)-, 
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Cable (1993), Goodyear and Hanson (1989), Panamerican Consultants (1997), and 
Sassaman and Anderson (1995). Detailed examinations of past settlement and subsistence 
systems have coalesced into several definitive interpretations for specific time periods. 

17.3.3.1 Hunting-Gathering Adaptations 

Both the Paleo-Indian and Archaic periods are seen as intervals of intensive hunting and 
gathering dominance. Habitation locales may have been selected primarily for their low-
cost access to preferred resources or as focal points for a hunting camp—base-camp 
seasonal strategy. Groups may have formed according to complex territorial 
arrangements that evolved early on. Such territories probably shrank considerably as 
populations increased or seasonal rounds developed based on smaller prey species 
(Anderson and Joseph 1988). The distribution of fluted points and diagnostic tools 
suggests to Anderson (1996) a highly mobile South Atlantic macroband (500–1500 
people) consisting of at least eight parallel band territories encompassing the large 
watersheds. The average size of a band may have been approximately 50 to 100 people. 
Early Archaic exploitation of many animal species and ecotones is suggested by the 
scattering of low-density sites across a wide variety of landscapes contrasted with high-
density sites in restricted stream terrace locales (Sassaman 1996). 

It is often difficult to reconstruct the paleoenvironment, given the lack of available 
physical data and the confusion presented by historic disturbance (Cable 1993:9). Some 
interpretations can be made to suggest that distributions of climax forest communities and 
hardwood species, in particular, were much more widespread in the distant past 
(Anderson et al. 1979:15–18). With the ubiquitous presence of pine forest in the uplands 
today, the key ecological indicators of past plant and animal distributions are now limited 
largely to soil characteristics, especially structure and fertility. 

Intensive Paleo-Indian and Archaic hunting and gathering reflected not only territorial 
arrangements (which are very difficult to project on a local level, especially with the lack 
of detailed site-location knowledge currently available), but local plant and animal 
resource availability. In the Interior Coastal Plain, emphasis may have been placed on the 
exploitation of both upland and marsh resources during the Archaic period (Anderson et 
al. 1982; Panamerican Consultants 1997; Mistovich and Clinton 1991). As more 
intensive use of local resources evolved, a larger reliance may have been placed on marsh 
or estuarine environments. Brooks and Canouts (1984) see this focus on marsh ecotones 
as increasing through the Woodland period and becoming most prominent during the 
Mississippian period. 

17.3.3.2 Agricultural Economies 

Similar to the gradual increased exploitation of marsh or estuarine resources during the 
transition from Paleo-Indian through Archaic into Woodland and Mississippian, 
agricultural intensification is reflected in the focus on welldrained, fertile soils beginning 
during the Early Woodland and continuing through Historic times. Though hunting and 
gathering never ceased to be an important activity, horticultural sophistication demanded 
a more sedentary lifestyle. 
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Brooks and Canouts (1984:23) suggest a Middle-Late Woodland settlement pattern 
that reflects a “diffuse or generalized subsistence economy, involving exploitation of 
riverine and interriverine resources.” The Mississippian pattern reflects a focal strategy 
involving intensive exploitation of the riverine resources (marsh ecotones). Anderson et 
al. (1979:86–87) suggest that the multicomponent Cal Smoak site shows a long sequence 
of upland resource utilization (especially of deer and rabbits) and perhaps a later use of 
marsh resources (based on the presence of turtle remains and significant numbers of bird 
points). Although the site is located in a marginal area, it is adjacent to some of the most 
suitable microenvironmental zones for both plant and animal resources (Anderson et al. 
1979:23). 

Anderson et al. (1982) suggest that Woodland and Mississippian occupation at the 
Mattasee Lake sites was very short term and geared toward exploitation of both marsh 
and upland resources. Little evidence exists to suggest long-term occupation or intensive 
agricultural use of this Interior Coastal Plain locale. The distribution of Mississippian 
period archaeological sites may have been keyed to well-defined sociocultural territories 
and trade networks as well. Because we have little definitive evidence for reconstructing 
prehistoric social territories, it is unlikely that we will be able to incorporate such 
variables into a probabilistic model anytime soon. For now, we can only focus on 
understanding the distribution of sites with respect to the more easily measured 
ecological variables. 

17.3.3.3 Historic Settlement 

Several sources have addressed the distribution of Historic period archaeological 
localities in and around the region (e.g., Drucker and Anthony 1979; Soil Systems 1982; 
South and Hartley 1985; Stine 1991; Stine et al. 1993; Tidewater Atlantic Research 1995; 
Zierden et al. 1986). They largely summarize historic settlement patterns as resulting 
from a combination of factors, including access to navigable waterways, suitable 
agricultural terrain (welldrained, fertile soils), and proximity to other travel arteries. 

Although historic settlement may have been patterned on the dispensation of land 
grants and the ability of absent grantees either to settle their claim or to subdivide it and 
sell the parcels, other factors led to site-placement strategies within land units. Rivers, as 
the primary early travel arteries, assumed the most prominent role at first (Soil Systems 
1982:37). Later, roads allowed access to the interior, usually in the place of previously 
existing native trading paths. Some geophysical features contributed to the pattern of road 
networks, especially the distribution of marshes, but in some cases roads followed the 
patterns of settlement rather than vice versa. 

Nevertheless, we should strongly suspect that historic sites are likely to occur in the 
near vicinity of roads (in the interior) and navigable waterways. Arable land and 
pasturage are clearly important, especially during times of most intensive cash cropping. 
Similarly, the distributions of specialty sites such as brick kilns may be a factor of 
available clay sources and access to navigable water. The soil surveys (Eppinette 1990; 
Long 1980) consistently rank soils by particle-size class, but not in sufficient detail to 
determine whether they were of use in brick manufacture. 
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17.3.4 Probabilistic Formulas 

Based on observations of previous studies, it seems relevant that categorizing 
probabilistic formulas by time period can be limited to major settlementsubsistence 
strategies. A hunting-gathering primary subsistence mode is known for the Paleo-Indian 
through Early Woodland periods. Though the level of dependency on hunted or gathered 
resources decreases through time, a diffuse hunting-gathering economy is suggested. 
Weighting of openland wildlife, woodland wildlife, wetland wildlife, and wild plants’ 
soilcapacity values should rank fairly high. 

With the progression of time and the increasing dependence on marsh ecotones, 
proximity to a marsh ecotone and the size of the nearest marsh ecotone contribute 
increasingly to the formulation. Proximity to navigable water may have played a much 
smaller role in comparison with later time periods. Soil drainage may have been a small 
consideration for comfortable habitation, along with the small regional variation in 
degree of slope. Distance to drinking water and soil seed/grain crop capacity would not 
likely have contributed to the process of Paleo-Indian–Early Woodland settlement, since 
water is nearly ubiquitous in the region and horticulture was not yet fully practiced. 

For Middle Woodland through Mississippian periods, increased horticultural and 
agricultural sophistication supplanted hunting-gathering as the primary subsistence mode. 
Although dependence on open land, woodland wildlife, and wild plants’ capacity values 
decreased, it is not suggested that wetland plant capacity, proximity to marsh ecotone, 
and the size of the nearest marsh ecotone was reduced. The regional analyses seem to 
indicate that marsh, estuarine, and riverine resources did not decrease in importance. 
Seed/grain crop capacity, however, would have played a larger role in the site-placement 
process, along with an increased dependence on access to navigable waterways. As sites 
became larger and more permanently settled, we would expect an increase in the role 
played by habitability concerns, namely slope and soil drainage. 

Historic period sites are in part agricultural, and many would likely be keyed to soil 
seed/grain crop fertility values. Because we have period documentation in the form of 
historic maps (e.g., the 1825 Mills’s Atlas), it is possible to include a high dependence on 
proximity to mapped historic resources, especially roads. Likewise, we know that the 
earliest historic travel arteries were navigable waterways, so we would expect to find 
sites in close proximity to them as well. Some level of minor importance may have been 
played by soil wildlife capacity values, but we would expect that unfamiliarity with the 
local conditions would have often led to settlement in unusually species-poor areas, at 
least in the beginning of the Historic period. Because historic sites represent the most 
intensive occupation and the sites least likely to have been destroyed, the greatest number 
of known sites date to the Historic period. 

Although the total number of known archaeological resources in the study area is 
enough to evaluate the significance of the relationship between sites and probability 
formulas, we do not have a complete understanding of the nature of all previous survey 
areas and survey strategies. Without that information we have no way of determining if 
significance testing is valid. (We would have to make the shaky assumption that known 
sites represent a random sample of all sites.) Therefore, until that information is compiled 
and digitized, we can only use the information with respect to those survey areas where a 
known, uniform survey strategy has occurred; namely the survey tracts from the NWS 
since 1994. This affects the significance testing in three ways. First, all land units 
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including archaeological sites are divided into 30×30-m squares, with a site value of 
either 1 or 0 (a single site may consist of one or many land units with the value 1). 
Second, temporal periods are divided only into Prehistoric and Historic, since we have 
too few archaeological land units from known survey areas in the NWS to create valid 
divisions between prehistoric subperiods. Third, because the longer Prehistoric period 
represents more-diverse settlement strategies, it is less likely that any one formula would 
be a very significant probabilistic tool. The one that fits the prehistoric data best will be 
more general than some that fit well with one settlement strategy. 

Prior to the selection of weighting values for each independent variable, a multiple 
regression analysis was carried out to determine if the data were suitable for creating 
accurate beta values (statistically derived weighting values) and, therefore, an inferential 
probabilistic model. The values for each independent variable at each site were calculated 
based on the site centroid. In addition, three dependent variables (site size, site density 
within 1-km radius, and proximity to the nearest known site) were calculated. Twelve 
multiple regression analyses were carried out incorporating each temporal category 
(Prehistoric and Historic)—once with a straight linear relationship to the proximity and 
slope variables (cost distance to historic resources, cost distance to navigable waterways, 
cost distance to marsh ecotones, and degree of slope) and once using a logarithmic 
relationship to the same variables—for each dependent variable. 

Though there was a total of 370 sites in the database (representing 429 occupations), 
the variation in the sample was such that in all 12 cases less than 20% of the variation in 
any dependent variable could be explained with a multiple regression analysis. The 
adjusted r2 values could be increased by dropping independent variables, but it appears 
that site size, occupation density, and site clustering cannot be explained easily with the 
data on hand. Likely this is due to irregular survey coverage (plus the inability to 
accurately model most previous survey areas) and the inconsistency in assuming that site 
size or site density accurately represent intensity of occupation. A regression analysis 
incorporating artifact densities or more-detailed examination of site significance might 
fare a little better, but these data are not available. 

Multiple regression analysis does not appear to be useful in this situation, and 
ultimately this is probably due to the homogeneous nature of the environment. Applying 
a wide range of variables with controlled weights allowed us to directly assess known or 
hypothesized settlement strategies with the archaeological data, rather than allowing the 
data to provide a single solution. Therefore, significance evaluation of the formulas with 
new and existing data forms the core of the hypothesis testing. 

Fifteen formulas incorporating various combinations of the independent variables at 
different weights were used (Table 17.3). Using Arc View’s internal map calculator 
routine, each formula created a 30-m grid theme  
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TABLE 17.3 Probabilistic Formulas Used in the 
Analysis 

Label Formulaa 
Formula 
1 

Y=(0.21)SWPC+(0.08)SWOWC+(0.08)SWTWC+(0.08)SOWC+(0.08)SNME 
+(0.08)CDME+(0.13)CDNW+(0.05)DOS+(0.08)SDR 

Formula 
2 

Y=(0.21)SWPC+(0.08)SWOWC+(0.08)SWTWC+(0.08)SOWC+(0.08)SNME 
+(0.08)CDME2+(0.13)CDNW2+(0.05)DOS2+(0.08)SDR 

Formula 
3 

Y=(0.5)CDNW2+(0.1)DOS2+(0.4)SDR 

Formula 
4 

Y=(0.5)CDNW+(0.1)DOS+(0.4)SDR 

Formula 
5 

Y=(0.2)CDHR2+(0.3)SNME+(0.4)CDME2+(0.05)DOS2+(0.05)SDR 

Formula 
6 

Y=(0.11)SSCC+(0.07)SWPC+(0.07)SWOWC+(0.11)SWTWC+(0.07)SOWC 
+(0.11)SNME+(0.18)CDME+(0.18)CDNW+(0.03)DOS+(0.07)SDR 

Formula 
7 

Y=(0.11)SSCC+(0.07)SWPC+(0.07)SWOWC+(0.11)SWTWC+(0.07)SOWC 
+(0.11)SNME+(0.18)CDME2+(0.18)CDNW2+(0.03)DOS2+(0.07)SDR 

Formula 
8 

Y=(0.4)CDME2+(0.4)CDNW2+(0.2)SDR 

Formula 
9 

Y=(0.4)CDME2+(0.2)CDNW2+(0.4)SDR 

Formula 
10 

Y=(0.2)SNME+(0.3)CDME2+(0.3)CDNW2+(0.1)DOS2+(0.1)SDR 

Formula 
11 

Y=(0.15)SSCC+(0.05)SWOWC+(0.05)SWTWC+(0.1)SOWC+(0.05)SNME 
+(0.05)CDME+(0.2)CDNW+(0.25)CDHR+(0.05)DOS+(0.05)SDR 

Formula 
12 

Y=(0.15)SSCC+(0.05)SWOWC+(0.05)SWTWC+(0.1)SOWC+(0.05)SNME 
+(0.05)CDME2+(0.2)CDNW2+(0.25)CDHR2+(0.05)DOS2+(0.05)SDR 

Formula 
13 

Y=(0.15)SSCC+(0.25)CDNW2+(0.4)CDHR2+(0.1)DOS2+(0.1)SDR 

Formula 
14 

Y=(0.5)CDHR2+(0.1)DOS2+(0.4)SDR 

Formula 
15 

Y=(0.5)CDHR+(0.1)DOS+(0.4)SDR 

aVariable abbreviations are given in Table 17.2 (Y=calculated probability value for each grid 
point). 

(i.e., each grid unit covered an area equal to 900 m2, or 30×30 m). For display over quad 
maps, the formula surfaces were resampled to a 5-m grid theme (25 m2, or 5×5 m) after 
testing. Because the formulas always included proportional weighting of each 
independent variable, the final probabilistic values for each grid point ranged between −1 
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and 1. Categorization of the probability values was then based on ten discrete 0.2-range 
classes (−1 to −0.8, −0.8 to −0.6, −0.6 to −0.4, −0.4 to −0.2, −0.2 to 0, 0 to 0.2, 0.2 to 0.4, 
0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1). 

17.3.5 Formula Evaluation 

The 15 formulas were evaluated by χ2 analysis of the numbers of observed archaeological 
land units and the expected number of archaeological land units (based on survey data 
from the NWS) by the probability value categories. There were 448 archaeological land 
units (i.e., 30×30-m grid units within the boundaries of previously recorded 
archaeological sites in the NWS) out of 15,976 total land units surveyed (Figure 17.2). 
Each site was categorized by two general time periods: Prehistoric and Historic (no 
smaller divisions were possible, since we were attempting to create a model that was 
most applicable to as many diverse sites as possible). The expected values were 
calculated by multiplying the proportion of each probability value class (of total land 
units surveyed) by the number of known site land units from each time period. The 
observed values were then tested against the expected values in a set of 30 χ2 analyses. 
This χ2 analysis was appropriate, given the categorical nature of the probability value 
classes. Significance of the χ2 values is based on an assessment of a normal χ2 
significance table with 19 degrees of freedom at p<0.005 (Rohlf and Sokal 1969:165). 

The χ2 significance was the logical starting point to assess the potential for each 
formula to suggest archaeological site probability, but it was important to note where 
within the classes the positive and negative relationships occurred. A strong positive 
relationship between site locations and highprobability values was sought, along with a 
strong negative relationship between sites and low-probability values. It was also 
important, however, to ensure that the proportions of known sites in other areas outside 
the NWS reflected these relationships. 

The most convenient way to examine the fit of the formula to the known 
archaeological site and survey data is to compare the histograms of observed minus 
expected values for each probability class. The ideal formula would combine a very high 
positive spike in the high-probability end of the histogram with a very low negative spike 
in the low-probability end. The closer the x-intercept falls toward the high end, the better 
is the potential for narrowing field efforts. A cutoff point can be assigned for high versus 
low archaeological site potential based on (a) assessing the histograms in conjunction 
with the total χ2 value and (b) the comparison of surveyed land units with all land units in 
the study area. 
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FIGURE 17.2 
Known archaeological sites (centroids) 
in the study area. 

When all of the site land units from all four quads (classed by Prehistoric and Historic 
periods) are compared against each formula, a mean probability value can be calculated. 
The mean probability value gives an indication of how well the formula would fit areas 
outside of the NWS, in the absence of knowledge concerning previous survey strategies. 
No statistical significance is assignable, since we do not know all of the survey strategies 
outside the NWS, but the mean probability values indicate how well the formulas fit the 
larger picture. The standard deviation shows an approximation of the spread of land units 
across all probability value classes. 
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A significant χ2 in conjunction with a high x-intercept, a high probability mean, and a 
low standard deviation does not necessarily indicate a good formula. The formula must 
also show a good distribution of all land units across the probability value scale, 
preferably a normal curve. A good formula will not only show significant relationships, 
but also must be a good land-discrimination tool. If too many of the probability values are 
skewed to either end of the scale, it will not function well as a means to reduce survey 
areas or determine field strategies. In other words, we could easily create formulas that 
show significant relationships with archaeological sites, but if those formulas only 
produce mostly highpotential areas with a few scattered low-potential zones, then we 
might need to add more discriminatory variables. 

17.3.5.1 Results 

Fifteen probabilistic formulas were constructed based on a reading of the previous 
research in the region. Each formula was modeled in the study area and classified into 
probability classes. The χ2 evaluations of known site data against expected site data by 
each formula were then calculated. Significance was set at p<0.005 (which for 19 degrees 
of freedom falls at χ2≥38.582). 

Figure 17.3 and Figure 17.4 show the histograms of observed minus expected 
archaeological values for each formula (Prehistoric and Historic periods, respectively) by 
probability classes. Table 17.4 lists all of the significant χ2 values by formula and time 
period, as well as the x-intercepts, the mean probability values, and their standard 
deviations, for all site land units in the study area. The highest χ2 values in conjunction 
with strong positive spikes on the right of the histogram, strong negative spikes to the 
left, and a high-scoring x-intercept indicate the formulas that best fit the known pattern of 
sites. The formulas with the best compromise of these characteristics (with a good spread 
of all land units across probability value classes) show the most promise as land-
management tools. 

17.3.6 Prehistoric Site Probability 

For the combined Prehistoric period (86 total land units in the NWS), significant χ2 
values were identified for only three formulas (Formulas 5, 10, and 12), of which only 
Formulas 5 and 10 show the required positive relationship between high-probability 
values and known archaeological site land units. The histogram for Formula 5 shows an 
x-intercept at 0.2, a high positive spike at 0.5, and a low negative spike at −0.1 (Figure 
17.3). The χ2 value for Formula 5 falls at 99.71. The mean probability value for all 
prehistoric sites is 0.4762, with a standard deviation of 0.2338. The minimum observed 
value at any archaeological site land unit is −0.29. These numbers indicate that Formula 5 
has a significant positive relationship between highprobability values (those over 0.2) and 
prehistoric archaeological sites on the NWS. It also has a significant negative relationship 
between lower probability values (less than 0.2) and prehistoric archaeological sites on 
the NWS. The mean probability value for all archaeological sites in the four-quad study 
region indicates that 98% of the known prehistoric archaeological site land units have 
Formula 5 probability values greater than 0.0086 (two standard deviations less than the 
mean). 
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FIGURE 17.3 
Histograms of numbers of observed 
minus expected prehistoric 
archaeological land units by 
probability value categories for each 
formula contrasted against idealized fit 
(curve). 
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Approximately 82% of the known prehistoric archaeological site land units have Formula 
5 probability values greater than 0.2424 (one standard deviation less than the mean). No 
known prehistoric site falls in an area with less than −0.29 as a Formula 5 probability 
value. 

Formula 10 has an x-intercept at 0.2, a high positive spike at 0.5, a low negative spike 
at 0.1 (Figure 17.3). The χ2 value for Formula 10 is 85.91. The mean probability value for 
all prehistoric sites is 0.3245, with a standard deviation of 0.2323. The minimum 
observed value at any archaeological site land unit is −0.41. These numbers indicate that 
Formula 10 has a significant  

 

FIGURE 17.4 
Histograms of numbers of observed 
minus expected historic archaeological 
land units by probability value 
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categories for each formula contrasted 
against idealized fit (curve). 

positive relationship between high-probability values (those over 0.2) and prehistoric 
archaeological sites on the NWS. It also has a significant negative relationship between 
lower probability values (less than 0.2) and prehistoric archaeological sites on the NWS. 
The mean probability value for all archaeological sites in the four-quad study region 
indicates that 98% of the known prehistoric archaeological site land units have Formula 
10 probability values greater than −0.1401 (two standard deviations less than the mean). 
Approximately 82% of the known prehistoric archaeological site land units have  

TABLE 17.4 
Significant χ2 Values, x-intercepts, Probability 
Means, and Standard Deviations for Probabilistic 
Formulas by Time Period 

  Prehistoric Period Historic Period 

Formula χ2 x-Intercept Mean SD χ2 x-Intercept Mean SD 
F1 — — — — 172.07 0.4 0.3552 0.2496 

F2 — — — — 185.75 0.4 0.3088 0.2242 

F3 — — — — 559.24 0.6 0.1129 0.6265 

F4 — — — — 533.79 0.6 0.1866 0.6541 

F5 99.71 0.2 0.4762 0.2338 170.27 0.2 0.4764 0.2572 

F6 — — — — 224.68 0.4 0.3567 0.2556 

F7 — — — — 198.39 0.4 0.2773 0.2351 

F8 — — — — 292.65 0.4 0.2156 0.2908 

F9 — — — — 411.06 0.4 0.0946 0.3704 

F10 85.91 0.2 0.3245 0.2323 262.95 0.2 0.3048 0.2622 

F11 — — — — 135.91 0.6 0.4932 0.2536 

F12 42.39 0.6 0.4564 0.2218 443.55 0.6 0.4302 0.2378 

F13 — — — — 202.99 0.6 0.4966 0.2740 

F14 — — — — 293.75 0.8 0.4545 0.3073 

F15 — — — — 413.44 0.8 0.5018 0.3039 

Formula 10 probability values greater than 0.0922 (one standard deviation less than the 
mean). No known prehistoric site falls in an area with less than −0.41 as a Formula 10 
probability value. 
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Formula 5 is indicative of a diffuse settlement pattern that is loosely keyed to several 
different upland and marsh resources. The variables used in the formula are size of and 
cost distance to the nearest marsh ecotones, degree of slope, soil-drainage ranking, and 
cost distance to known historic resources. Formula 10 differs only in the absence of a 
dependence on historic resource locations in favor of cost distance to navigable water. 
High Formula 5 probability values may, in fact, show a positive relationship with 
prehistoric archaeological sites based on the location of known historic resources only 
because historic resources themselves may be correlated with cost distance to navigable 
water, and historic roads may reflect locations of prehistoric pathways. Therefore 
although Formula 10 best fits what we would expect to see given the previous research in 
the region, Formula 5 seems to be keyed slightly more toward upland resource 
procurement through the association between Historic period inland travel routes and 
possible prehistoric interior pathways. Formula 5 appears to be most representative of a 
general gloss of prehistoric settlement (in spite of the use of a Historic period variable) 
and thus most applicable to land-management needs on the NWS.  

17.3.7 Historic Site Probability 

All of the formulas had significant χ2 values for the Historic period. Formulas 3, 4, and 
12 had the most significant χ2 values and the best spread of land units across probability 
value classes. The histogram for Formula 3 shows an x-intercept at 0.6, a high positive 
spike at 0.7, and a low negative spike at 0.5 (see Figure 17.4). The χ2 value for Formula 3 
falls at 559.24. The mean probability value for all historic sites is 0.1129, with a standard 
deviation of 0.6265. The minimum observed value at any archaeological site land unit is 
−0.96. These numbers indicate that Formula 3 has a significant positive relationship 
between high-probability values (those over 0.6) and historic archaeological sites on the 
NWS. It also has a significant negative relationship between lower probability values 
(less than 0.6) and historic archaeological sites on the NWS. The mean probability value 
and standard deviation for all archaeological sites in the four-quad study region indicates, 
however, that known historic archaeological site land units range widely in probability 
values. A small positive spike in the low-probability value end of the scale indicates that 
Formula 3 cannot accurately assess the probability of Historic period site land units in 
interior portions of the region. 

The histogram for Formula 4 shows an x-intercept at 0.6, a high positive spike at 0.9, 
and a low negative spike at 0.5 (Figure 17.4). The χ2 value for Formula 4 is very high at 
533.79. The mean probability value for all historic sites is 0.1866, with a standard 
deviation of 0.6541. The minimum observed value at any archaeological site land unit is 
−0.91. These numbers indicate that Formula 4 has a significant positive relationship 
between high-probability values (those over 0.6) and historic archaeological sites on the 
NWS. It also has a significant negative relationship between lower probability values 
(less than 0.6) and historic archaeological sites on the NWS. The mean probability value 
and standard deviation for all archaeological sites in the four-quad study region indicates, 
however, that known historic archaeological site land units range widely in probability 
values. A small positive spike in the low-probability value end of the scale indicates that 
Formula 4 cannot accurately assess the probability of Historic period site land units in 
interior portions of the region. 
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Formula 12 has an x-intercept at 0.6, a high positive spike at 0.7, and a low negative 
spike at 0.5 (Figure 17.4). The χ2 value for Formula 12 is high at 443.55. The mean 
probability value for all historic sites is 0.4302, with a standard deviation of 0.2378. The 
minimum observed value at any archaeological site land unit is −0.27. These numbers 
indicate that Formula 12 has a significant positive relationship between high-probability 
values (those over 0.6) and historic archaeological sites on the NWS. It also has a 
significant negative relationship between lower probability values (less than 0.6) and 
historic archaeological sites on the NWS. The mean probability value for all 
archaeological sites in the four-quad study region indicates that 98% of the known 
historic archaeological site land units have Formula 12 probability values greater than 
−0.0454 (two standard deviations less than the mean). Approximately 82% of the known 
historic archaeological site land units have Formula 12 probability values greater than 
0.1924 (one standard deviation less than the mean). No known historic site falls in an 
area with less than −0.27 as a Formula 12 probability value. 

Between all of the formulas recognized as having a significant χ2 values for the 
assessment of Historic period archaeological land units, Formula 12 shows the most 
promise as a land-management tool. Formula 12 indicates a historic settlement pattern 
that focused on exponential cost distance to navigable waterways and interior travel 
routes, but that also was keyed to seed crops and open-land wildlife capacities. A smaller 
emphasis was placed on marsh ecotones, wetland and woodland wildlife capacities, 
degree of slope, and soil-drainage ranking. 

17.3.8 Field Testing the Model 

The data provided by the best-fit probabilistic formulas can help determine field efforts 
and project planning in several ways: 

1. By knowing what types of sites are likely to be encountered in any zone 
2. By knowing the approximate frequency at which sites would be encountered 
3. By being able to alter field methods to accommodate that information 

By using the known site and survey data from the NWS, we were able to test the 
probability formulas against a uniform survey strategy and estimate their relationships 
with site areas outside of the NWS. 

The next step in the process was to develop appropriate probability zonation to 
complete the assessment of unsurveyed lands in the NWS. Classes were created using the 
x-intercept as the cutoff point for high- versus moderateprobability zones, and using two 
standard deviations below the mean value as the cutoff between moderate- and low-
probability zones. The following equations show the transformation of probability values 
into probability classes: 

Low probability ≥−1, and≤mean−2·SD (from Table 17.4) 
Moderate probability>mean—2*SD, and≤x-intercept (from Table 17.4) 
High probability>x-intercept (from Table 17.4) 
For the Prehistoric period (Formula 5), the probability classes are 

defined as: 
Low probability≥−1 and≤0.01 
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Moderate probability>0.01 and≤0.2 
High probability>0.2 

TABLE 17.5 
Potential for Finding Cultural Remains by 
Probability Class 

  Probability Class (%) 
  Low Moderate High 

Period: Formula Observed Projected Observed Projected Observed Projected 
Prehistoric: Formula 
5 

0.5 0.8 0.4 2.5 5.1 4.0 

Historic: Formula 12 0 0 1.5 1.1 2.4 7.6 

For the Historic period (Formula 12), the probability classes are defined 
as: 

Low probability≥−1 and≤−0.04 
Moderate probability>−0.04 and≤0.6 
High probability>0.6 

A total of 15,967 land units have been surveyed on the NWS (3592 acres) out of a 
possible 61,047 land units (13,736 acres). This constitutes 26% of the total NWS acreage. 
Another 15,704 land units (3,533 acres) have been fieldverified to be disturbed beyond 
the potential to contain intact archaeological resources. The remaining 29,376 land units 
(6,610 acres) include a mix of surveyable and potentially disturbed land that was not 
field-verified prior to formula development. 

Table 17.5 shows a projection of the likelihood of encountering cultural resources by 
best-fit formula for each time period. The likelihood is calculated by dividing the number 
of observed site land units by the total land units in each class. Using the best-fit formulas 
(Figure 17.5 and Figure 17.6) in high-probability areas, 4 out of every 100 shovel tests 
placed at 30-m intervals will contain prehistoric artifacts; about 8 out of every 100 will 
contain historic materials. 

In moderate-probability areas, though, the efficiency of shovel testing at 30-m 
intervals drops to almost half for prehistoric sites and less than onefifth for historic sites. 
In low-probability zones, 30-m shovel testing produces positive prehistoric or historic 
results very rarely and never identifies significant sites (based on known site-eligibility 
determinations). 

After the model was created, an additional 8889 land units (about 2000 acres) were 
surveyed at the NWS, including at least 3168 land units (about 713 acres) located within 
Formula 5 and 12 low-probability zones. Survey of these areas was carried out as a 
uniform 30-m shovel-testing regime (including those areas previously deemed 
unsurveyable, i.e., wetlands). The goal was to field-verify the model formulas. The 
results are shown in Table 17.5 as the observed values. 
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For Formula 5 we projected 1 positive shovel test for every 125 excavated in the low-
potential areas, and we encountered only 1 positive for every 200  

 

FIGURE 17.5 
Probability zones at the NWS based on 
Formula 5 (for prehistoric sites). 

excavated. We projected 1 positive shovel test for every 40 excavated in the moderate 
zones, and we encountered only 1 positive for every 278 excavated. We projected 1 
positive for every 25 excavated in the high-potential areas, and we encountered 1 positive 
for every 19 excavated. 
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For Formula 12 we projected no positive shovel tests in the low-potential areas, and 
we encountered none. We projected 1 positive shovel test for every 91 excavated in the 
moderate zones, and we encountered 1 positive for every 67 excavated. We projected 1 
positive for every 13 excavated in the highpotential areas, and we encountered only 1 
positive for every 43 excavated. After the results indicated general concurrence with the 
projections of the modeled formulas, the remaining 20,487 land units (about 4600 acres) 
at the  

 

FIGURE 17.6 
Probability zones at the NWS based on 
Formula 12 (for historic sites). 

NWS were surveyed with differential survey strategies, including pedestrian 
reconnaissance of approximately 2200 disturbed acres. 

Predictive modelling in a homogeneous environment      357



17.4 Conclusions 

The development of a GIS-based data-independent archaeological probabilistic model at 
the Charleston Naval Weapons Station provided several important observations about the 
region and probabilistic modeling in general: 

1. A better grasp of the cognitive nature of site placement and overall settlement patterns 
in any area results from evaluating environmental variables in a data-independent 
framework. Archaeological data dependency creates an additional level of potential 
error and provides much less incentive to develop truly explanatory settlement 
hypotheses. 

2. In a GIS framework, data-independent probabilistic models are not more difficult to 
create than inferential ones. They are more intuitive and potentially more likely to be 
employed by nonspecialists as well. 

3. Homogeneous environments are difficult settings within which to create accurate 
probabilistic models. Without examining causal factors from the perspective of 
cognitive decision making, it becomes virtually impossible to create a model that is 
both accurate (encompasses most known sites) and precise (has a high site-to-
probabilityarea ratio). 

4. Although the model focuses strictly on a general categorization of sites as “prehistoric” 
or “historic” (due to the limitations of the available archaeological data, and the need 
to recommend differential survey strategies), the greatest potential for data-
independent models might be realized in a situation where specific site types or 
characteristics are more easily determined. 
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18  
Predictive Modeling in Archaeological 
Location Analysis and Archaeological 
Resource Management: Principles and 

Applications  
Tatj ana Veljanovski and Zoran Stančič 

ABSTRACT The main objective of this chapter is to illustrate the various 
aspects of academic and practical applications of predictive modeling and 
to discuss the need to assess the reliability of the results and the 
implications of reliability assessment on the further development of 
predictive models. To accomplish this, some focus is directed to 
reconsideration of error propagation. The chapter begins with a short 
introduction to prediction and the predictive-modeling approach in 
archaeology. This is followed by a discussion of a number of 
methodological issues and concerns, with emphasis on the presentation of 
several case studies. The first set of case studies can be treated as 
academic applications. They focus on the examination of a possible 
mental space of the Bronze Age culture on the island of Brač, in Croatia, 
by modeling the potential distribution of Bronze Age hill-fort locations 
and barrows on the island. Next, some results of the application of 
multivariate statistical techniques and the Dempster-Shafer method of 
land-use modeling (used for the analysis of Roman settlement patterns) 
are presented as an anticipated enhancement to the Boolean overlay 
approach. Finally, a case study of a project in the Pomurje region, 
Slovenia, is used to show how potential archaeological locations were 
predicted in a highway construction project. This final case study 
demonstrates the extent to which the predictivemodeling approach can be 
employed in a useful and practical application. The chapter concludes 
with general remarks based on the experience gained with these models 
while emphasizing the need to develop new approaches to predictive 
modeling, to test model accuracy, and to evaluate the predictive power of 
archaeological models. 

 



18.1 Background to Principles and Applications 

18.1.1 Prediction 

Prediction is a conventional procedure used in countless situations. It is used particularly 
in cases where the main endeavor is oriented toward the observation of a possible 
continuation (yet unknown) of manners, actions, or some behavior, or where prediction 
(or, more likely, interpolation) is used as a tool to supplement missing data. Predictions 
are made in weather forecasting, and a similar principle can also be found in risk 
analysis, animal behavioral studies in biology, material behavior in chemistry, etc. The 
predictive techniques and technological environments in which predictions are made 
differ from field to field. Technological environments can range from a specific 
computer-based environment such as a geographic information system (GIS) to complex 
expert systems joining several specific environments especially tailored for artificial 
knowledge-based applications. Within a GIS environment, the concept of prediction is 
more restricted than the generally understood meaning of the comprehensive term 
“prediction.” A GIS-based prediction yields spatially focused predictive information 
about specific locations that are likely to be of archaeological significance. The 
combination of GIS with the principles of advanced modeling techniques has been 
successfully used to tease out archaeological implications in the landscape (Lock and 
Stančič 1995; Exon et al. 2000; Gillings et al. 1999). 

18.1.2 Modeling and Prediction in Archaeology 

Although predictive modeling is something archaeologists always keep in mind when 
attempting to locate yet unknown sites, the early beginnings of computer-based 
predictive-modeling techniques (i.e., GIS) date back to the late 1970s, when geographical 
information systems were introduced into archaeology. Predictive models have a fairly 
long tradition in American archaeology (Judge and Sebastian 1988), where they are 
intensively used for cultural-resource management. During the past decade, such use has 
become common throughout the world. There are two branches of archaeological 
predictive models (van Leusen 1996; Wescott and Brandon 2000): (a) those developing 
in relation to the pragmatic aspect of use (i.e., mapping sensitive areas within a landscape 
to protect the current archaeological heritage) and (b) the academic models, where an 
attempt to reconstruct past societies leads toward models that would increase our 
understanding of settlement logic on the basis of location determinants. The reasons for 
these developments have been discussed in numerous publications, but it is useful to 
briefly note the role of conceptual distinction between the two principles. 

The main distinction between the two approaches is the evident inclination of the 
academic approach to establish the determinants that influenced the settlement behavior 
in the past. Following this, a given archaeological site can be understood as a reflection 
of certain decisions representing the final choice within a certain cultural system. For 
example, the selection of a dwelling place within a given landscape is a complex 
reflection of such decisions which may also be influenced by personal preference, in 
accordance with the potential offered by the natural environment. The incorporation of 
the human component within location modeling acknowledges the role of subjective 
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judgment. However, making the models more cognitive may also introduce a hardly 
manageable complexity Despite this, the analysis of the social environment might include 
those variables that are understood as descriptive of humans’ cultural, religious, 
ideological, or economic relationships with the landscape, as they can offer us additional 
information. Still, the fact remains that they are often omitted from the modeling 
procedure because they are more difficult to obtain and because it is nearly impossible to 
reliably transform them into a meaningful GIS layer. 

Besides, human knowledge of the past is neither perfectly certain nor absolutely 
uncertain. Predictive modeling should therefore be viewed as a vital attempt to draw 
recognized behavior further, i.e., an extension of an otherwise unobservable 
phenomenon. One possible way of dealing with limited knowledge certainty is to think in 
terms of belief reflected through probabilities. Another way that has also been adopted in 
the field of archaeology (and even more so in cultural-resource management) is to think 
in terms of the potential that a given location may possess. However, both 
methodological approaches rely heavily on statistics. Thus, when speaking about an 
archaeological potential map within a given landscape (as a result of a prediction), we 
should be well aware that it can only play a role of a valuable output to the main interest 
of environmental planning, i.e., on a landscape-management level, and rarely support 
archaeological fieldwork planning on a local scale. Together with the nature and qualities 
of modeling techniques, the methodology process itself should be reserved to stretch 
more deeply into the scope of reconstructing the past, archaeological explanation, and 
anticipated interpretation. 

Within archaeology, the study of settlement patterns is important when debating any 
degree of knowledge as regards the landscape and past human occupation of the area. 
Through this point, the expression “archaeological predictive modeling” is generally and 
hereby introduced. Predictive modeling is a procedure used to predict site locations 
within a region. This is performed on the basis of observed patterns or on assumptions 
about human behavior (Kohler and Parker 1986; Judge and Sebastian 1988). 
Archaeological predictive models are essentially based on the fundamental assumption 
that our knowledge of the known archaeological sites allows us to establish which factors 
influenced their location in the landscape and to use this data in empirical testing. 
Prediction is merely the elucidation of settlement “rules” in a form that allows us to map 
locations that conform to the “conditions” predicted by the model for settlement. To 
achieve this, we analyze the relationship between the natural and social environment and 
archaeological site location. The idea itself is very simple and good, but what should 
never be neglected is the fact that we can never be certain to what degree the available 
(thus far representative) archaeological data sample can represent the context of past 
settlement. 

18.1.3 Model Verification and the Methodology Transparency 
Problem 

The step open to discussion in developing predictive models is how to test the model 
accuracy and evaluate its predictive power. It is important to emphasize this particular 
problem, since the quality of archaeological predictive models is mainly based on the 
ability to test their efficiency. An archaeological sample of representative sites or other 
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past features within a region is not unlimited, and we may be forced to include all or at 
least the majority of the existing data into the model-developing process. Because most 
techniques that we employ in the predicting procedure still rely upon a statistical basis, a 
sample size must turn out to be a key issue. However, if this is the case, we soon realize 
that no real independent data is left with which to test the model or the modeling 
procedure. Luckily this is not applicable on areas where archaeology is dense. 

The predictive modeling procedure’s result map frequently shows information that is 
too general and thus may be hard to interpret in a sober archaeological context. 
Consequently, the interpretation component usually depends on the techniques involved 
in model development and the principle for verifying the model’s results. In most cases, 
this approach is acceptable, even though it can hardly be used for regional planning 
purposes. On the other hand, the archaeological context is seldom discussed in 
publications, yet it should encourage a greater interest. 

There are three important objectives related to quality and the transparency problem, 
all of which need special attention in predictive modeling. 

1. Concern about the quality of the data and its reliability within the past landscape 
context 

2. Concern about the quality of techniques implemented in the predictive-modeling 
procedure within specific environments (both natural and computer) 

3. Concern about the possibility of misleading or opposite interference with the 
settlement “rules” that might occur if such rules were derived solely empirically 

However, all this remains within the analyst’s frame of decision making, modeling care, 
and aims. Almost two decades have passed since the adoption of predictive modeling 
within the archaeological community, and there is an urgent need for further innovation 
in acquiring qualitative interpretation and evaluation of modeled results and modeling 
procedures. A possible approach may be offered by the so-called tracing methods known 
within data tracing and the error-propagation field familiar to those who use GIS to 
model spatial data. 

Data tracing is a process used to gather information on data behavior (for example, 
changes in attribute value, coordinate, or path). In general, tracing tools are able to 
calculate and visualize the execution (behavior) of a program or procedure. However, 
because data tracing in computer and software sciences usually means inserting a special 
code at the entry and exit points, data tracing introduces the cunning problem of correctly 
implementing the code (ASKALON 2002), and at the same time, it requires 
comprehensive programming efforts. The basic idea is that the code collects information 
on the code region, which is comparable with the processing stage in the modeling. This 
information is stored in trace files that can then be used to describe the dynamic behavior 
of the code region, providing a means of obtaining information on data behavior at a 
particular processing stage. The major problem with data tracing occurs when data with a 
spatial dimension is introduced. Tracing the attributes of spatially referenced data should 
not cause problems, for this can be taken into account by the analyses of error 
propagation (see Heuvelink 1998; Burrough and McDonnell 1998). However, tracing 
two-dimensional spatial accuracy in the modeling process may prove to be more 
problematic, mainly because of the exposed problem that arises from coding.  
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Nevertheless, it seems that the described approach will be applicable to the 
geographical computer environment in the near future, and this could consequently 
facilitate an advanced evaluation of the results of predictivemodeling procedures. Indeed, 
intelligent GIS might be a solution for all GIS users (Longley et al. 2001). 

18.1.4 Predictive-Modeling Techniques 

The purpose of this chapter is not to advance the very first technology tools, but to 
stimulate thoughts on what could be improved and to advocate archaeological predictive-
modeling efforts. It is also not our purpose to discuss in detail the theoretical approaches 
to predictive modeling, but rather to comment on the various modeling techniques that 
are used in predictive modeling today. We have defined two theoretical approaches to 
archaeological prediction: inductive and deductive. The truth is that both approaches 
overlap in practice, as do the modeling techniques. The technological limits when 
applying any of these approaches are also worthy of consideration. Generally speaking, 
one can apply a number of alternative procedures, each having its own advantages and 
disadvantages. The Boolean overlay of variables, which has been proved to have 
influenced the location patterns, can be utilized alongside multivariate statistical 
techniques (linear regression, logistic regression, discriminant analyses) or some other 
decision-support methods (i.e., Dempster-Shafer theory, a belief method). Knowledge-
based approaches (neural-network applications, agent systems) show promise as a viable 
alternative to the established predictive methods. At this point in the development of 
predictive models, the appropriateness of the chosen technique is primarily subject to the 
modeling aim and the available data range. 

To overcome the statistical requirements for scarce archaeological data, a variety of 
techniques have been developed based on probability theory, fuzzy theory, and agent 
theory, although less rigorous modeling of complicated (location) systems may also be 
used. These techniques, which are born from the recent explosion of interest in chaos 
theory, dynamic modeling, and complex systems theory, have been applied to a variety of 
problems and may well lead to fresh insights. Hopefully, some of them could become 
relevant to archaeological explanation or hypothesis testing, while the vast majority could 
improve interpretation of modeled results. However, within this sphere of sophisticated 
approaches, it is imperative that we recognize the axioms underlying past modeling 
efforts and the subsequent approximations resulting from modeling simplification. We 
must be aware of the lack of the absolute knowledge and its involvement in the success 
and failure within archaeological computer modeling.  

18.2 Case Studies Perspective 

This section examines some results and experience that the authors obtained using 
different predictive-modeling techniques. The first set of case studies focuses on the 
application of multiple overlays of thematic layers for modeling potential Bronze Age 
hill-fort locations. Some results of the multivariate statistics applied to Bronze Age 
barrow locations and to the analysis of Roman settlement patterns are also shown. These 
are then followed by the implementation of the Dempster-Shafer belief method, and the 
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results are briefly compared. All of these approaches were performed to test the behavior 
of three different techniques and to observe their response to the interpretation of location 
patterns, and they are therefore considered as “academic applications” of predictive 
modeling. Finally, a case study that can be considered to be a useful “pragmatic 
application” of predictive-modeling efforts is presented. This case study shows how 
archaeological potential was predicted in a Slovenian national highway construction 
project. 

18.2.1 “Academic” Applications on the Island of Brač, Croatia 

Applications on the island of Brač relate to the work carried out in the Central Adriatic, 
where an international team has been studying the past colonization of Central Dalmatian 
islands. The Adriatic Island project has carried out work within a transect of islands. 
Currently, a synthesis of the project is in progress. During the field campaign in 1994, the 
island of Brač was surveyed using an extensive sampling strategy. A total of over 600 
sites were recorded within the database (Stančič et al. 1999). Next, a natural-environment 
database was produced. Thematic data on soil, geology, and contour lines were acquired 
from different data sources. The alternative, vegetation data, had been collected by 
satellite images using a Landsat thematic mapper (TM). Moresophisticated models, 
combining data for variables from the natural database (e.g., the vegetation index, erosion 
model, etc.), were produced. 

Note that the aim of the following sections is focused on the observed behavior of the 
various techniques that we tested. A detailed description of the response of these 
techniques in the context of archaeological interpretation is beyond the scope of this text. 

18.2.1.1 Predicting Bronze Age Hill-Fort Locations with the Boolean 
Overlay Technique 

The main objective was to test the extent to which predictive modeling can be based on a 
small number of sites. The model was developed on an area measuring approximately 
120 km2, which is approximately one-quarter of the total surface of Brač selected area 
also greatly overlaps with one of the three physiographic regions on the island where 
almost half of all Bronze Age barrows and hill forts were located. The area is commonly 
considered as a center of Bronze Age activities on the island of Brač. 

Because the hill-fort locations could be predicted using a very small data set (eight hill 
forts), the goal of this study was to predict locations using a number of variables 
describing both the natural and the social environment. The relationship between the hill-
fort locations and the following variables was analyzed: relief (elevation, slope, 
ridge/drainage index, rim index, and relief-below index), cumulative viewshed index, 
distance from the coast, distance between the hill forts, and cumulative distance from 
barrows and other points (see Stančič and Kvamme 1999) that were considered to be of 
potential importance. All the correlations were examined by various quantitative and 
descriptive statistical approaches. 

A threshold value on each variable was defined based on the insights provided by the 
relationships. The threshold values could be defined in different ways, but in this case a 
simple criterion was employed, such that the threshold would capture all known sites. 
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Finally, a predictive model was made as a sum of those grid cells that proved to have 
influenced hill-fort locations (Figure 18.1). 

Besides testing the technique’s predictive power, we also wished to evaluate its 
transparency. The results show that the predictive model of the Bronze Age hill-fort 
locations is simple yet powerful. The model efficiently excludes the reliably potential 
areas from the background. Given its simplicity and procedural transparency, the Boolean 
overlay technique appears to be suitable for use with smaller (but homogeneous) 
archaeological data samples in a nonmonotonous landscape. The main inconvenience of 
the technique lies in the uniformity of the predictors’ arrangement in a settlement pattern, 
but this can be overcome by incorporating weighting into the process. 

 

FIGURE 18.1 Archaeological 
predictive model based on Boolean 
overlays for the Bronze Age hill-fort 
locations on the island of Brač and the 
distribution of hill-fort locations. 

18.2.1.2 Predicting Roman Settlement Sites with the Linear Regression 
Technique 

The second case study was aimed at examining the potential of multivariate statistical 
techniques in the development of predictive models. Special emphasis was paid to the 
location analysis of Roman settlement sites dating between the second century B.C. and 
the second century A.D. A total of 29 sites out of approximately 90 Roman sites that 
were recorded could have been interpreted as settlements (Stančič et al. 1999). Because 
the number of these Roman settlement sites is not great (concerning multivariate statistic 
requirements), and considering the specifics of site distribution across the entire island of 
Brač, we decided that the model should be developed for the island as a whole. 
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An important step in analyzing settlement patterns is to show that the characteristics of 
site locations significantly differ from those of other locations across the landscape. The 
first step in variable selection is based both on previous experience and empirical 
measurement of data. Therefore, the initial data set incorporated eight variables: 
elevation; degree of the surface slope; the surface aspect; quality of soil; land use; 
proneness to erosion; distance from the coast; and the proximity to Sennone limestone, 
which is viewed as an extension of surface geology (see Stančič and Veljanovski 2000). 
Finally, four variables were accepted as the possible predictors for Roman settlement 
locations on the island of Brač: aspect (southwest-facing slopes), distance from Sennone 
limestone (proximity to the thin limestone zone), elevation (avoidance of elevated areas), 
and slope (places that are less steep). Promising variables were subjected to a linear 
regression analysis, regarded as a linear-trend extrapolation technique. 

Given the fairly large number of sites, it was hoped that a regression analysis might be 
applied. However, regression solutions and the resulting equation relating site potential 
on 29 observations were not very promising in any variable combination we made. (The 
adjusted r2, interpreted as a part of explained variance, did not exceed 48% in any of 
these cases.) 

In general, it was learned that the linear-regression-based predictive technique makes 
it possible to predict the potential that a site possesses at a given location only when 
substantial care in handling data is introduced (data ordering and correlation observation, 
data normalization, etc). Despite the fact that the results were not as good as anticipated, 
it should be emphasized that this technique is good for providing a more detailed insight 
into the importance of individual variables and their relative contribution to the 
settlement pattern. Illustrating this on the Roman settlement case study, it was confirmed 
that the thin layer of Brač “marble” might have gravely influenced the decision as regards 
the location on the island during the Roman period. According to the regression analysis 
results, the other three important factors forming common sense for Roman settlements 
on Brač also seem to be aspect (southwest-facing terrain), followed by elevation, and 
finally the slope. 

 

FIGURE 18.2 Archaeological 
predictive model based on linear 
regression for the Roman settlement 
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sites on the island of Brač and the 
distribution of sites. 

When the results (Figure 18.2) were analyzed in greater detail, it became apparent that 
the poor statistical performance might be seated in the archaeological data. What we have 
interpreted as homogeneous Roman settlement sites could have been a mixture of several 
types of Roman settlements. Therefore, it was decided to carry out a more refined 
analysis to provide new ideas on the possible clusters of sites. The K-means cluster 
analysis identified three distinguished clusters representing the proneness to three 
different strategies of control over natural resources. We provisionally denoted them as 
seaport type, quarry type, and agricultural type of Roman sites (Stančič and Veljanovski 
2000). 

Predictive models derived with the linear regression technique (also predictive models 
of identified subtypes) are not satisfactory because the predictive power is quite poor. 
Besides the lack of any statistical significance, the main deficiency of the models is that 
the insight into the impact of single variables, observed as spatial extrapolation in a 
predictive-model result (a map), is somewhat blurred. This is mainly due to the mixture 
of the positive and negative influences of variables (a direct consequence of data 
ordering), therefore possibly nullifying the identified trends as well as the potential 
exaggeration at the edges belonging to the linear regression equation (and linear 
modeling nature). However, the linear regression technique (applied to archaeological 
data) remains promising and powerful as a method to explore the relative relationships 
between variables affecting site location. Other case studies—the linear regression 
technique applied to 88 barrow locations and even the technique applied to eight hill forts 
and Roman settlement subtypes—also proved the above statement about linear regression 
behavior on spatially referenced problems (see Figure 18.3). For mapping the 
archaeological potential, it would be more appropriate to use at least a polynomial 
regression form and a sufficiently large sample size of archaeological data. 

While the transparency of the regression technique can be obtained in the intermediate 
stage (the given regression equation), this cannot always be said for the final stage: 
mapped potential. The potential map directly reflects a quite generalized trend surface, 
which is due to the nature of this technique’s underlying premise that the surface is most 
often regularly continuous, with no significant changes (defragmentation) on small 
distances. However, with the case study it was also learned that the success or failure in 
producing predictive models heavily rely on the preparation of the archaeological sample 
upon which the model is generated. The functionality of sites should be envisaged in 
preparation of the representative sample. Although it may be claimed that a higher level 
of homogeneity would result in an increase of the model’s predictive power, the nonideal 
ordering of variables may still significantly decrease the efficiency of the mapped results 
based on a regression method. 
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FIGURE 18.3 Archaeological 
predictive model based on linear 
regression for the Bronze Age barrows 
(upper) and hill forts (lower) locations 
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on the island of Brač with 
corresponding regression equations. 

18.2.1.3 Modeling the Reconstruction of Roman Settlement Land Use 
with the Dempster-Shafer Belief Method 

This section presents the results of a small joint project between the Scientific Research 
Center of the Slovenian Academy of Sciences and Arts and the Department of Prehistoric 
Archaeology of the University of Aarhus. The main objective was to compare different 
predictive-modeling techniques and to develop modeling examples based on the 
Dempster-Shafer theory. 

The Dempster-Shafer theory is a variant of the Bayesian probability theory, which 
explicitly recognizes the existence of ignorance due to incomplete information and is 
therefore directly suited for archaeological data. Within this method we define a decision 
frame of the defined hypothesis. In our case there were two hypotheses, [presence] and 
[absence], to which we assigned probabilities on the basis of the independent variables. 
Having defined these hypotheses, the Dempster-Shafer technique automatically generates 
another hypothesis, [presence, absence], describing the probability that we cannot decide 
between the former two, i.e., our degree of ignorance (Bo Ejstrud, personal 
communication, November 2000). 

When setting the basic probability assignments, it is important to consider which 
hypothesis is supported by the given evidence or variable. There are no strict rules for 
setting the basic probability assignments. The results of the Dempster-Shafer method are 
divided into three. The first result, belief, is a calculation of the minimal conditional 
probabilities in favor of our hypotheses [presence]. Secondly, there is a calculation, 
plausibility, indicating how little speaks against it. And finally, by measuring the 
difference between these two, we get a calculation, belief interval, representing the 
degree of uncertainty. High values in the belief interval point out areas where we need 
additional or better data. 

Three belief models were performed for three subtypes of Roman settlement sites on 
the island of Brač. Then the highest belief values for each were isolated and consequently 
merged into what can be interpreted as a prediction of the most likely land use on Brač 
during the Roman period (Figure 18.4). The same location hypothesis as gained with the 
regression efforts was incorporated into the development of the belief models. 

When comparing the results of the Dempster-Shafer method with the results gained 
from the regression procedure, it can be said that the slightly  
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FIGURE 18.4 Reconstruction of the 
Roman settlement land use based on 
the Dempster-Shafer belief method and 
the distribution of Roman settlement 
sites. 

more fragmented landscape of the Dempster-Shafer method (compared with the 
regression method) seems more consistent with the archaeological interpretation of the 
landscape. However, this is a far more complex technique, and a great deal of previous 
knowledge on location hypotheses is required. Making predictions with the Dempster-
Shafer belief method is an iterative procedure, and the above results present only the first 
iteration. Based on the significant behavior of variables, the belief method gives us the 
ability to incorporate partially deductive variables in the otherwise inductive models. 
However, a better differentiation—or a stronger fragmentation—of the landscape (belief 
intervals) was expected. 

18.2.2 Practical Application in Archaeological Resource Management 
in Pomurje, Slovenia 

It is important to stress that within the context of the Pomurje study, the goal was not 
oriented toward the development of a model that could improve our understanding of the 
known distribution of sites, as it was in the Dalmatian case studies. Our aim was clearly 
designed: to develop a consistent model that would prove helpful during the process of 
highway planning (Stančič et al. 2001). The Slovenian national plan seeks to complete 
and link highways in a network across the entire country. Concern over the costs of 
archaeological fieldwork led to an invitation to design a methodology for predicting 
archaeological sites within a test section of a highway corridor in the Pomurje region, in 
northeastern Slovenia. The corridor measured approximately 11.2 km in length, and 
archaeological research had already been carried out in the area. This provided an 
opportunity to use fieldwork results for a true evaluation of the predictive model’s 
efficiency. 
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The project’s specifics guided us in the choice of the approach we finally 
implemented. Considerable problems can occur when the samples of sites analyzed are 
small and we intend to integrate multivariate statistics. Another problematic issue was 
that most of the variables playing a key role in location studies are naturally based on the 
topographic characteristics of the area. Surface topography is important due to its 
association with past land use and shelter. Because the Pomurje case study area is almost 
flat, it would be difficult to extract any delineating rules or to predict potential based 
solely on the relief-based distribution of the sites. Given this set of circumstances, 
complex methods based on multivariate statistics or belief failed to suit our data. 
Therefore we decided to apply a simple traditional method of Boolean overlay to create a 
predictive model of different site locations within the region. Because the deficient 
number of variables was a potential pitfall in performing location analysis for the purpose 
of prediction, we additionally investigated and substantially implemented the potential of 
remotely sensed data. 

Along a high-resolution and accurate DEM (digital elevation model), a remotely 
sensed land-use layer was created in addition to geological structure and soil data. Two 
layers, the proximity to the nearest stream and to the main river within the region, were 
calculated. We were concerned with the variables that could provide a description of 
differences in the lowland, and we felt that this information was likely to be obtained 
from remotely sensed data. Besides land use and a vegetation index, original information 
relating to surface soil type was obtained through the generation of mineral delineation 
layers. These indices are used extensively in mineral exploitation and vegetation 
analyses, essentially because they can indicate small differences between various rock 
types and vegetation classes. Therefore, three layers suitable for the GIS analysis were 
produced: clay minerals (correlation to pottery manufacture), ferrous minerals, and ferric 
minerals (iron oxide), interpreted as pointers of the soil quality. In calculating these 
indices, we hoped to obtain evidence for significant variation in the lowland that could 
not have been anticipated from the geomorphic variables. 

Exploration and statistical analyses were carried out for five archaeological data 
samples. All records were acquired from the National Archaeological Database ARKAS 
(Tecco-Hvala 1997): prehistoric settlements (9), Roman and Early Medieval settlements 
(11), barrows (29), undated barrows (18), and isolated finds (mainly prehistoric axes, 15). 
Univariate descriptive statistical tests (χ2 and Student t-test) were used to test the 
correlation between site locations and each of the variables. The results indicated that 
different site types in the study area tended to occur in different environmental settings; 
however, from a statistical point of view, the correlation was quite tentative. 
Nevertheless, all variables that were initially examined for significance were later 
included in the model, and the appropriate “threshold” conditions were applied (for 
details, see Stančič et al. 2001). As a result, we obtained five models for five different 
archaeological data types, based on 12 variables. For the purposes of project fulfillment, 
merging the five (weighted) model outputs created a predictive model of the region. 

The weights are used to represent the relative relations between location determinants 
within the past settlement system and to calibrate the model. The criterion for weighting 
the five models was based upon the assumption that a good predictor isolates an explicit 
area and therefore acts as a distinct pointer in comparison with the background situation. 
Consequently, weights were applied in proportion to the identified power of the variable. 
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Three mineral indices and the vegetation index seemed to be highly correlated 
(complemented information), and it was decided to give them additional weights. Each of 
their powers was diminished by one-fourth, and ultimately they represented, in a 
combined form, the role of a single variable.  

The validity of the calibrated model was tested by measuring the predicted potential 
accuracy using two different test samples. The first was a sample of the archaeological 
sites that were used to develop the model. This type of testing is interpreted as internal 
testing and was carried out as a control measure. Its results indicated that the model’s 
prediction of potential was correct in 81% of the sites, where “high potential” 
incorporates areas with potentials ranging from 70 to 100 (Figure 18.5). The remaining 
19% of sites fell within the limits of “medium potential” (40 to 70); no sites fell into the 
“low potential” range. The data used for external testing was obtained through a recent 
archaeological survey in the highway corridor, and was therefore considered as an actual 
independent test sample. It additionally proved that the model’s predictions are highly 
accurate and efficient within the corridor area; all identified locations were captured 
within zones representing the potential of over 85%. 

What should be highlighted in relation to the Pomurje case study is that the modeling 
procedure succeeded in distinguishing between locations where sites are most likely to be 
present and locations where they are not, even in geomorphologically disagreeable 
conditions. Although this process has deficient substance issues from the archaeological 
interpretation point 

 

FIGURE 18.5 Archaeological 
predictive model for the Pomurje 
region: the situation (left) and 
weighted model (right) with the 
distribution of sites upon which the 
model was developed. 
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of view (the model performance is poor when observing an archaeological context for a 
region), the predictive power of such a model may still be regarded as useful for highway 
network planners. 

18.2.3 What Can Be Learned from These Case Studies? 

The strength of predictive modeling is that the methodology itself enables exploration 
and evaluation of location factors or location specifics deriving from social spaces. Due 
to the fact that this is mainly important in archaeological settlement-pattern research, it 
remains a specific segment of past-location understanding. The knowledge of possible 
site-location determinants can be tested and quantified, and therefore they might prove 
useful in assisting archaeological interpretation. Despite this, we must be aware that each 
of the predictive-modeling techniques has its advantages as well as disadvantages, and 
the choice of a suitable technique should always be guided by a clear purpose of 
modeling aims and the availability and quality of the data. It is often the case that the 
modeling procedure is where new insights for archaeological explanation are 
accumulated, and not in the results. 

The case studies performed on the island of Brač in Croatia encourage predictive-
modeling efforts, since some interesting correlations of natural conditions versus site 
locations have been identified, which seems an improvement in content from what was 
previously thought. The regression technique and the Dempster-Shafer belief method 
have both proved promising in location hypothesis testing and in implementing the 
corpus of location determinants into the modeling procedure. Unfortunately, 
differentiation or a stronger fragmentation of the results (regression-based potential, 
belief intervals) was not as good as anticipated. Finally, the relatively poor performance 
of the predictive models may also result from inadequate archaeological data and the 
nonexpressive landscape situation of these studies. This seems to remain the main 
problem of mapping potential locations. On the other hand, even with a poor landscape 
situation and empirically driven location determinants, the Pomurje study in Slovenia 
showed what can be achieved. 

The highway case study encourages us to reach the conclusion that predictive 
modeling has great practical potential, especially for planning archaeological activity. 
The integration of predictive models offers great benefit to the early stages of planning 
(e.g., while selecting a highway corridor); therefore the results of predictive models (a 
sensitivity map) provide sufficient information for damage estimates over archaeological 
sites. Secondly, they can also be used during the construction stage, their main objective 
being to optimize the archaeological fieldwork methodologies in accordance with the 
construction work. Thirdly, a predictive model can be used as a planning tool to define 
the required fieldwork methodologies. Each of these propositions can facilitate time 
efficiency as well as promote a cost-efficient practice in the event that the model is 
trustworthy. 

Predictive modeling in a GIS environment has the potential for a wide range of further 
practical applications. The advantage of using computers is, of course, the ease with 
which large databases are processed. However, by using GIS, we also have the additional 
bonus that we are able to graphically show the results of an analysis on maps, and thus 
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give landscape or planning managers something visible and concrete to base their 
decisions upon. 

18.3 Conclusions 

The range of applications and techniques for location-modeling ideas is enormous. 
Location modeling with GIS technology deserved extensive attention mainly because the 
environmental variables such as slope, elevation, and soil type are easy to quantify 
digitally. However, it soon became apparent that this was not the case with the concepts 
of social space. According to its definition and underlying theoretical concepts, modeling 
archaeological potential is a form of location modeling. However, if archaeological 
prediction is to be successful, social and cultural concepts should not be mistreated 
during the modeling procedure. Therefore, it is perhaps worth reconsidering what has 
already been achieved, what is still left to do, and what are the limits of predictive-
modeling efforts. 

On the basis of the established methodological approaches to locationprediction 
problems, a mass of more or less meaningful maps of potential, or probability, of 
archaeological proneness or sensitivity were produced. The success of different 
approaches and techniques has most often been evaluated and stressed on the basis of the 
fulfillment of results into acceptable levels of meaningful interpretation and simple 
testing of the model’s apparent efficiency. Failures, such as evidently false areas of 
potential and the problem of archaeological context assessment, are discussed on a few 
occasions. A disappointing aspect of the previous publications is the manner in which 
they present the quality of the results. We do know that the quality of results (map 
accuracy) is reflected through the following components: the quality of data used (spatial 
and attribute accuracy), the appropriateness of the applied technique (in relation to the 
used data), and finally the quality of algorithms used in the modeling procedure. To 
evaluate the results of predictive-modeling efforts, the value of these components (which 
also contribute to error generation) also needs to be estimated. Total error estimation is a 
necessity in any modeling with GIS technology, and therefore it is essential for a reliable 
evaluation of archaeological location modeling. 

The presented predictive techniques may satisfy cultural-resource management needs, 
and the resulting trustworthy models may be used for planning purposes. The success of 
predictive-modeling techniques as an exploratory tool is thereby mainly related to a 
positive coincidence of the data used in the modeling procedure and the modeling skills 
and aims. For a better understanding of and eventually the ability to predict the complex 
settlement systems or culture-location interaction during the past times, major emphasis 
should be placed on demanding the involvement of artificial knowledge or numerical 
modeling, and certainly the work should move from the location itself (empirical 
measurements on site locations) toward landscape perception. The modeling efforts have 
to determine the variability or similarity of the observed locations, whether one 
component/variable of the system derives variability in another, and whether complex 
modes of location variability/similarity, once identified, are predictable. The predictive-
modeling procedure therefore has to solve a complex causality—an interactive task 
beyond and betraying only location. 
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The location predictive-modeling procedure is particularly crucial due to the lack of 
observational records of sufficient length for landscape variables, combined with the need 
to synthesize sparse archaeological data. With hope to overcome this critical point and to 
step ahead from sensitivity maps, other techniques with predictive capabilities need to be 
developed and demonstrated. However, the value of artificial-knowledge-based 
applications and numerical modeling for archaeological prediction tasks will be 
impossible to evaluate until feedback from any resulting models and predictive-modeling 
procedures becomes available. A new depth of understanding the archaeological 
prediction phenomenon will hopefully be explored at a later stage. 
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19 
The Changing Mesopotamian Landscape as 

Seen from Spot and Corona Images 
Carrie Ann Hritz 

19.1 Introduction 

Predictive modeling as a tool for archaeological research is not new. The use of different 
predictive models to understand historical questions such as shifts in settlement patterns 
can be seen in archaeological projects from as early as Thorkild Jacobsen’s work in 
Mesopotamia (preserved in unpublished notes with basic methodologies in 1936 [1958]), 
Braidwood’s work in Anatolia (1937), and V.Gordon Willey’s (1953) Peruvian research, 
to the modern studies of the Roman European countryside (Robert 1996). Given the 
importance and the characteristics of the Mesopotamian alluvium, it is not surprising to 
find that many researchers have used these data in predictive-modeling efforts to enhance 
historical understanding.  

The alluvial plain of southern Mesopotamia saw the rise of the earliest urban 
settlements in the ancient world. To understand the rise of these urban agglomerations 
and utilize analytic tools such as predictive modeling, the harsh environment that 
characterizes southern Mesopotamia must be understood. Choices that shape social, 
economic, and political history are based, in part, upon environmental constraints such as 
natural changes and human subsistence needs, and also result in a conglomeration of 
natural and artificial transformations of this complex landscape. 

In southern Mesopotamia, prediction of irrigation systems from settlement patterns 
were attempted by Thorkild Jacobsen as early as 1936 (1958). Robert Adams (1965, 
1972, 1981) continued this analysis of settlement in a systematic program. Subsequently, 
a Belgian team led by Leon De Meyer and Herman Gasche attempted an integrated and 
updated approach that employs a wider range of archaeological, historical, and 
geoarchaeological data. These two approaches and their resulting seminal case studies 
provide a basis for understanding the way in which settlement, and in effect history, in 
southern Mesopotamia developed. While these two approaches are often contrasting, it 
seems that an integration of approaches proves more appropriate when analyzing data for 
southern Mesopotamia. A major component of such an integrative approach is the use of 
GIS as a tool for the organization, classification, and presentation of vast amounts of 
different types of data from southern Mesopotamia. The present chapter results from a 
period spent working on a GIS system developed by the Ghent team, specifically Kris 
Verhoeven, and the continued development of a methodological protocol to be used in 
combination with remote sensing and archaeological data. Case studies of several small 



areas (Nippur, Nahrwan Canal, and Shatt al-Gharraf) provide a first stage in the analysis, 
which establishes the basic model for the larger analysis of the Mesopotamian alluvium 
as a whole. 

19.2 The Environmental and Archaeological Context of 
Mesopotamian Irrigation 

The environment of Mesopotamia is diverse. Northern Mesopotamia is characterized by 
semiarid plains with seasonal wadis that enable rain-fed agriculture to be the main mode 
of food production. This fairly easily cultivated northern landscape contrasts with 
southern Mesopotamia, which is arid and generally harsh, with a mean annual rainfall of 
less than 150 mm. Vegetation is sparse throughout the annual cycle, and irrigation is 
necessary for successful cultivation. 

The southern landscape can be described as consisting of four primary topographic 
components. They are (a) lines of dunes, (b) remnants of canals, (c) river channels, and 
(d) mounds of former settlements (Adams 1981: xviii). These prominent physical features 
overlie the primarily flat plain. This physical landscape is a direct product of the two 
major watercourses, the Tigris and Euphrates. 

The natural flatness of the plain renders it susceptible to river changes over time 
because there are few topographic restraints. In general, rivers tend to shift their channels 
abruptly and move to lower elevations, a process known as avulsion (Schumm 1977). 
Despite being conducive to irrigation works, the gentle gradient of the plain is a negative 
factor in that it hinders proper drainage, with the result that the plain experiences repeated 
cycles of salt and water table problems (Buringh 1969:90–100) 

As a result of this environment and the struggle to maintain balanced conditions, the 
southern alluvium exhibits complex patterns of topographic features (Figure 19.1). 
Abandoned canal patterns crisscross the entire plain, as do relict meanders from the 
shifting Tigris and Euphrates courses. Mounds standing above the southern 
Mesopotamian plain signify areas of former habitation that include important historical 
cities (Figure 19.2). It is likely that erosion and alluvial deposition have destroyed or 
obscured prehistoric and historical settlement remains, leaving a somewhat unclear 
picture of settlement pattern. 

19.3 The Adams Approach 

Robert Adams, following Jacobsen, approached settlement and watercourse patterns in 
southern Mesopotamia by applying archaeological principles to a theoretically predictive 
framework. Adams used basic archaeological survey to recover “the river and canal 
network of successive periods, and therewith their settlement patterns” (Jacobsen 1982: 
xiii). His basic assumption is that in a harsh semiarid environment, such as that of the 
alluvial plain, settlement was only possible where water was available along rivers and 
canals (Adams 1965: app. I). From this, he assumed that where the settlements of a given 
period showed linear patterns, it indicated that the lines were a reflection of the 
watercourses upon which the settlements depended. The concept is that settlement 
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accompanies agriculture, and that both are dependent upon assured supplies of irrigation 
water. From this analysis, he extrapolated the delineation of settled areas in a region and 
contrasted these areas with those of swamps or desert. He was also able to suggest where 
large-scale abandonment had occurred. In this approach, Adams tied the stability and flux 
of settlement of the Mesopotamian plain to the availability of irrigation agriculture. 

He concluded that mounds and watercourses can be brought together into an 
integrated and constantly changing system or sequence of systems (Adams 1981:28). 
Thus, if site habitation is dependent on channel success and use, then site abandonment is 
linked to channel abandonment. These  

 

FIGURE 19.1 Corona image 1968. 
Photo courtesy of U.S. Geological 
Survey. 
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phenomena are made more complex for multimounded sites in which occupation moves 
from place to place within a confined area. The watercourse development and human 
settlement are wholly interdependent. Using archaeological survey collections, Adams 
employed ceramic chronological indicators to date the sites as well as their dependent 
courses.  

Adams checked where his framework and model placed courses on both aerial 
photographs and on the ground. “Unfolding awareness of the pattern formed by sites 
occupied during a particular period led to hypotheses about where the associated canal 
routes should be sought” (Adams 1981:28). In other words, canals on aerial photographs 
provided a cross-check on the ground of visible site alignments. 

 

FIGURE 19.2 Spot image 1992–1995. 
Photo courtesy of National Geo-spatial 
Intelligence Agency. 
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The methodology of the survey of Adams must be considered in light of the norms of the 
time in which it was conducted. It excluded large areas of the plain, which could not be 
reached for ground truthing for numerous reasons. 

19.4 The Belgian Approach 

The University of Ghent uses microtopographic data to reconstruct the picture of river 
networks and main canals. The team employed this approach on the northern 
Mesopotamian plain, concentrating on the area around Tell ed-Der. This area was 
specifically chosen because of the amount of groundtruthing data available in excavation 
reports and surveys (Cole and Gasche 1998). 

In contrast to the approach of Adams, the Ghent team suggests that it is “no longer 
adequate to draw a line between two settlements because the textual sources situate them 
on the same watercourse, nor is it any longer sufficient to reconstruct watercourses 
connecting sites which supposedly belong to the same period” (Cole and Gasche 1998:2). 
Their method builds on the basic predictive idea put forth by Adams and attempts to 
include additional variables such as geomorphology to explain the disparities in Adams’s 
data. 

This approach essentially posits that the history of watercourses and settlement 
patterns can be interpreted on the basis of topographic features of the plain using 
geomorphological features as the primary variables for settlement. The Ghent group 
begins with a classification of the plain based on its geomorphological attributes. The 
most prominent geomorphological features of the plain are levees and channel avulsion 
scars. 

Levees are long, slightly swelling features that form very low ridges throughout the 
plain. In Mesopotamia, these features can be up to several kilometers in width and are 
rarely higher than 4 m, making their visibility on the ground extremely difficult. From the 
perspective of satellite imagery and aerial photography, these features contrast sharply 
with the natural flatness of the plain. 

Levees are built up over millennia. 

With each inundation the terrain close to the channel receives most of the 
sediment load, with the rest being transported to more distant areas. The 
perennial rhythm of seasonal inundations occasions a continuous 
heightening of the river’s approaches, with the water flowing more and 
more on its own alluvial material. Finally, the river channel is elevated 
well above the plain, with basins forming progressively on either side. 
The practice of irrigation along fluviatile arteries—where most favorable 
soils for agriculture are encountered—has also significantly contributed to 
their construction (Cole and Gasche 1998:6). 

Large and long-used levees leave an impressive and clear mark upon the landscape. They 
encourage long-term human use and provide relatively well-drained soils (Hill and Rapp 
1998:61–63). Thus, if the river shifted, humans had to either refurbish the old bed or 
replace it by a canal, which then could have taken advantage of the topography. The 
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replacement canal could have flowed along the slopes, rather than directly on top of the 
levee, depending on the level of water in the river from which the canal originated. This 
action, over time, would have broadened the levee and helps explain why relict meanders 
and alignments of sites could be at some distance from the levees. Thus, by the 
identification of levee remnants, both on images and on the ground, ancient watercourse 
patterns could be recognized as well as indications of associated sites. It also supplied an 
understanding of the area under cultivation. 

River shifts leave clear traces upon the landscape in the form of meander scars and 
avulsions. The plain is virtually flat and, as topographic barriers are created over time 
through the creation of levees, the landscape is changed. When the river course becomes 
barred from its natural path over time, the course moves invariably to a lower elevation 
area in the plain. While river discharge and barriers are constantly changing as a result of 
human agency and natural alluvial buildup, the river’s courses are in a constantly 
dynamic state. These changes and their causes leave topographic traces upon the 
landscape, which can be related temporally to one another. 

19.5 Our Theoretical Approach 

If these two approaches can be combined, a synchronic view of the present 
Mesopotamian landscape can be presented. The following types of data can be used for 
such landscape analysis. 

1. Irrigation channels 
2. Archaeological sites 
3. Topography of the plain 
4. Data derived from ancient texts 

Shortcomings are inherent in the Adams model in part due to limitations in the available 
technology and data sources. For example, Adams, at times, connected watercourses to 
sites without regard for the topographic reality of the plain because he lacked the 
appropriate data, such as detailed contour maps. In other words, he did not consider 
barriers in the landscape when positing a river course based on site alignments. Our 
approach does not discount the theoretical concept that settlements are tied to water 
availability and that channel patterns can be inferred from settlement pattern as shown by 
Adams, but we also recognize the significance of the topography of the plain itself. We 
place emphasis on the visible features of the landscape, which can be traced readily. This 
approach sees an interaction between settlement location and water availability, so that 
the process can be seen as interrelated with both settlement locations being created by 
water availability and water availability created by settlement processes. 

By emphasizing the present landscape, we are taking a retrogressive approach to 
interpreting the complex settlement and watercourse patterns on the southern alluvium. 
From textual, satellite imagery, and survey evidence, it has become apparent that the 
most visible network of irrigation patterns are of the first millennium B.C., i.e., Parthian, 
Achaemenian, Sasanian, and Islamic periods (Adams 1981; Le Strange 1905). For those 
periods, a relatively clear picture of intensive settlement and canalization appears. Sites 
are focused on the use of the Euphrates, and the canals form a crisscrossing pattern across 
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the plain to reach the Tigris. Identification of these patterns and subsequent topographic 
units of settlement, as well as associated canalization, is the first step in the testing of the 
predictive methodologies, protocols, and understanding of the landscape. 

19.6 The Combined GIS Methodology 

In our approach, traditional cartography and historical geography are applied to a 
combined data set of survey maps and satellite imagery. The Ghent team created a grid 
using latitude and longitude as well as a UTM projection. The grid, created in 
Microstation, covers all of Mesopotamia proper (excepting Northeast Syria and the 
extreme southern boundaries of the plain). This basic GIS framework was then integrated 
into the more capable and more easily manipulated ArcGIS program. 

The benefit of a multicoordinate grid is enormous. The use of latitude and longitude 
allows for the referencing of important early maps. For example, the British 1918 series 
maps, which can be used to locate sites in areas that our archaeological teams have not 
yet visited, can be incorporated by latitude and longitude coordinates. The use of UTM 
coordinates allows for the incorporation (Figure 19.3 and Figure 19.4) of more recent 
material without the loss of the older basic and invaluable sources. UTM coordinates also 
allow for a usable framework for future survey. 

The grid was then overlaid with 1/400,000 Spot negatives. These negatives provided 
the basic map for tracing both ancient and modern sites and hydrology. By using larger 
resolution Spots and the basic GIS grid, a base map GIS was created to act as a 
framework for more-detailed mapping of the landscape features of the plain. 

At this point, a series of Spot images, overlaid with a UTM grid, were incorporated. 
These images cover a large portion of the central and southern plain, but do not extend as 
far south as the area immediately surrounding the head of the Persian Gulf. These images 
are panchromatic Spot images from mission 2 February 1990 covering an area of 80×80 
km per image with a resolution of roughly 10 m. They were scanned from the negatives 
at 508 dpi so that each pixel equals 11 m. The images were incorporated into the digital 
vector grid using the UTM grid coordinates for each image. Once these images were 
referenced, survey maps covering numerous parts of the plain were referenced in both 
UTM and latitude and longitude. These surveys are: M.Gibson’s Kish survey (Gibson 
1972); Adams’s The Land behind Baghdad (1965), Heartland of Cities (1981), and Uruk 
Countryside (Adams and Nissen 1972) surveys; and the Belgian mission to Tell ed-Der 
survey of the Sippar area. For the first time, all of these surveys are in a digital format 
and a UTM coordinate system so that, theoretically, all site locations can be referenced 
on the ground with a GPS. 
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FIGURE 19.3 Modern river channels 
and archaeological sites from the 
Heartland of Cities (Adams 1981) 
survey vectorized in ArcGIS. 

The survey data are compared with the visible landscape of the Spot imagery. The 
perimeters of relict settlements and canals are based on Spot tonality interpretation and 
are not as accurate as those based on aerial photographs or larger scaled maps such as 
those used by the field surveyors. It is necessary to mention that what we map as relict 
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settlements, after comparison with the original survey data, are only those settlements and 
watercourses clearly visible on the imagery. 

 

FIGURE 19.4 Microstation UTM 
Grid vectors. Photo courtesy of Kris 
Verhoeven of University of Ghent, 
Belgium. 

Once this joint preliminary identification is completed, the less extensive but far more 
relevant and detailed Corona satellite photographs covering areas of roughly 17×180 km 
can be added and analyzed. The Spot imagery, because of the date of acquisition, 
presents problems in analysis and comparison. The effects of development projects of the 
1980s and 1990s are included on the Spot images, whereas the Coronas (Figure 19.5), 
dating from December 1967, show these same areas without major disturbances. The 
Coronas were scanned at 800 to 1200 dpi. The coverage available at the time of the study 
covered an area of 50 km N/S and 240 km E/W. This forced a focus on the southern and 
central portions of the plain. The resolution of these images, while on the whole superior 
to the Spot images, is variable throughout each individual strip, decreasing from the 
center toward the edges as a result of satellite rotation. Error is possible, and resolution is 
lost when these positives are scanned. When scanned, one pixel equals roughly 9 m. 
Corona images are the most useful because they were acquired at nearly the same time as 
many of the ground-mapping surveys. Thus, the data from the ground surveys are more 
easily referenced, compared, and placed into context with the Corona images than with 
the Spot images. A comparison of the two sets of images forms an invaluable tool in 
assessing modern landscape changes and how those changes affect ancient remnants of 
topographic features. 
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19.7 Analysis 

By using Spot and Corona imagery and comparing these with ground-survey data, it 
becomes clear that the predictive approaches based on the concept  

 

FIGURE 19.5 Spot image 1992–1995. 
Photo courtesy of National Geo-spatial 
Intelligence Agency. 
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of settlement and watercourse interaction as well as topographic features can and must be 
integrated. The images present a new way to approach these interactions based on what is 
visible. We have been able to confirm visually some of the long-held theories of 
watercourses on the southern alluvium. For example, Adams mentions two major courses 
visible in part on the aerial photographs and in part on the interpretation of settlement 
locations. One of these courses is clearly identifiable in the images (Figure 19.6). 

 

FIGURE 19.6 Corona image 1968. 
Photo courtesy of U.S. Geological 
Survey. 

Adams mapped a historically important course, in sections, running from the site of Adab 
to Umma. At the time of the survey, and on the corresponding Coronas, this course had a 
large dune field covering extensive parts of it and which continued in a southeasterly 
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direction. Adams posits that the dunes were part of a major levee running alongside and 
over parts of the actual watercourse. Using a combination of both sets of data, the course 
clearly appears to approach the site of Adab from the northeast and to continue past the 
site of Tell Jidr in a southeast direction. 

The Corona images clearly show a linear watercourse feature with a dark tonality 
signature as a result of continually held moisture (Lillesand and Kiefer 2000:240). This 
feature is obscured, at times, and runs parallel to an ever-widening band of dune fields. 
On the Coronas, the dunes cast off a shadow not unlike tells, but their tendency toward 
overlap and a “star”  

 

FIGURE 19.7 Archaeological sites 
and relict channels within sand dunes. 
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Corona image 1968. Photo courtesy of 
U.S. Geological Survey. 

shape (Cooke and Warren 1973:283), together with their clustering over great tracts of 
land, clearly differentiate them from tells (Figure 19.7). Their distinct morphology 
identifies them as classic Barchan-type sand dunes, which are ever shifting in location 
and shape as part of an alluvial desert environment. 

The Spot imagery, however, presents a different signature for this course (Figure 
19.8). During the 30 years between the images, the dunes have shifted slightly east, and 
the line of the course from Adab to Umma is more distinct and shows a greater contrast 
with the background topography. The Spot signature shows the dunes as washed-out light 
features, not nearly as distinct in morphology. The neighboring pixel signatures have 
become averaged in the processing, and the contrast between the dunes and moist areas 
has been  

 

FIGURE 19.8 Dunes and channels 
near the site of Nippur. Corona image 
1968. Photo courtesy of U.S. 
Geological Survey. 

GIS and archaeological site location modeling       392



obscured. Nonetheless, the line is still clearly identifiable. Topographically, the Spot 
imagery clearly shows an ever-broadening levee running parallel to the line in this area. 
The watercourse and levee lines are accompanied by two parallel lines of settlement, one 
following the levee and one farther out on the levee. The settlements farther out can be 
assumed to be following the levee as it broadens over time. This is a way in which 
inhabitants of the plain could take advantage of the natural features of the landscape and 
shift their settlement placements in response to a migrating channel. In this particular 
case, the combination of imagery allows for a more comprehensive  

 

FIGURE 19.9 Dunes, large relict 
channels, and archaeological sites. 
Photo courtesy of National Geo-spatial 
Intelligence Agency. 
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understanding of the relationship of three important topographic features: watercourse, 
levee, and sites.  

The junction of the Tigris and the Shatt al-Gharraf is another area where the modern 
and ancient topography appear together (Figure 19.9). Because Corona imagery was not 
available for this area at the time of the study, this area provides a clear example of the 
utility of the Spot imagery. The Shatt al-Gharraf, which is a major right-bank effluent at 
Kut, is needed to irrigate fields from the Tigris. 

In this area, the Spot images show clear meander scars to the west and south of the 
modern river course. These meanders appear in the modern cultivated fields with clearly 
recent topographic features overlying them. The meander traces are within 6 km of one 
another but exhibit different characteristics. Two meanders average 2 km in width, while 
a third is less than 1-km wide. 

The geometry of the meanders can provide a basis for determining the hydraulic 
characteristics of the river at a certain period in time. One of the two ancient courses 
appears to decrease in width as it moves to the east. The character and tonality signature 
visible on the Spot images changes as the line moves to the east. This may be an 
indication that there are two temporally different river shifts. The wider meander loops 
may represent an older shift of the river over a considerable period of time, which is then 
bisected by a more recent movement of the river in a dynamic state or the partial 
abandonment of one riverbed during an avulsion event (Verhoeven 1999). This course 
and its dating would not have been identified by the lineof-site method, since no sites 
were identified in this area by the Adams survey. However, sites appear clearly on the 
imagery both in the surveyed area and just outside the survey boundaries. 

I have identified several sites in this area that appear just off the line of this relict course 
and on the associated levees (Figure 19.10). Further north of the levee, linear patterns 
associated with a meander abandoned by an eastward movement of the Tigris crosscut 
the modern cultivation. Firm dating is not possible, but written sources do give an 
indication of historical periods that are relevant. Texts (Le Strange 1905) tell us that this 
kind of gridlike crosscutting linear pattern is representative of Sasanian-Islamic period 
watercourse and field patterns. We know that branches of the Tigris were under intensive 
irrigation in these periods. 

19.8 Abu Salabikh: A Case Study 

The area around Abu Salabikh, surveyed and mapped by Wilkinson (1990), provides our 
best data for ground truthing. This area presents a clear example of the integration of 
approaches that can be used to analyze the watercourse and settlement patterns. The area 
was mapped for geomorphology and archaeology field survey, and is covered by both the 
Spot and Corona images. The site and its immediate environs represent the westernmost 
limits of Adams’s survey data. Wilkinson’s survey objective was to “determine if an 
early branch of the Euphrates ran through the site, and if so, to attempt to trace its 
course…. It has been assumed that such a channel probably ran north-south between the 
main and west mounds of Abu Salabikh and its presence must have determined or limited 
the growth and shape of the Uruk and Early Dynastic towns” (Wilkinson 1990:75). 
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FIGURE 19.10 Modern Tigris River 
outlined in white. A large relict 
channel appears in the cultivated 
fields. Spot image 1992–5. Photo 
courtesy of National Geo-spatial 
Intelligence Agency. 

The area immediately to the west of the mounds of Abu Salabikh appears moist and 
under cultivation on the Corona images. The later Spot imagery shows the area remaining 
under cultivation but in a season of less moisture. Both sets of images retain enough 
contrast in tonality to illuminate ancient topographic features. These features can be 
understood when compared with the field survey and geomorphological data collected by 
Wilkinson (1990). 

For example, a relatively recent but abandoned river called the Shatt alHawa is clear at 
a distance of less than 2 km from the main mounds of the site and running through the 
surrounding cultivated fields (Figure 19.11). More important, the Corona of this area 
shows clearly a remnant of a sinuous canal that runs from northwest to southeast between 
the eastern and western mounds of the site. This course, identified by Adams as third 
millennium, was traced by Wilkinson through the mounds. The images show that this 
course can be traced farther to the northwest, outside of both Adams’s and Wilkinson’s 
survey boundaries, and closer to the Euphrates branch. In this case, the imagery has 
refined and clarified the conclusions presented by the surveyors. 
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Turning to the east of the site, another landscape picture appears from the imagery. 
Dunes appear just to the east of the main mounds, obscuring many of the sites mapped by 
the ground surveyors and providing a boundary for the Wilkinson survey Nonetheless, 
within these dune fields, a linear canal feature system appears. These channels come off a 
main channel that leads to the site (Figure 19.12). A small meander scar and traces of 
canals from the  

 

FIGURE 19.11 Shatt al-Hawa and the 
site of Abu Salabikh. Corona image 
1968. Photo courtesy of U.S. 
Geological Survey. 
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scar may indicate that (1) the system followed a more westerly course just south of Abu 
Salabikh and (2) sinuous canal traces linked the Abu Salabikh area to a larger regional 
system. 

This larger system is represented by the third functional unit identifiable around the 
site of Abu Salabikh (Figure 19.13 and Figure 19.14). While the system appears primarily 
on the Corona images, it is also traceable on parts of tracts on the Spot imagery. This 
system cuts down the center of the plain just east of the main mounds of Abu Salabikh. 
The imagery shows the Shatt  

 

FIGURE 19.12 Channels in dune 
fields around the site of Abu Salabikh. 
Corona image 1968. Photo courtesy of 
U.S. Geological Survey. 
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al-Nil clearly, and its feeder canals to the surrounding area take off from the area of the 
site of Ishan al-Jihariz. A comparison of the Spot and Corona images shows that in the 
later Spot imagery, the Shatt al-Nil line is almost totally covered by dunes, while the 
linear remains on the Coronas are unmistakable. This is a result of the eastward 
movement of the dunes and the drying of the marshes due to large-scale drainage 
projects. Off the right bank of this line, a clear pattern of canals emerges. A large canal 
from this system can be seen running from Ishan al-Jihariz to just past Abu Salabikh. 
North  

 

FIGURE 19.13 Channels and canals 
in the central portion of the 
Mesopotamian alluvium appearing on 
the 1968 Corona image. Photo 
courtesy of U.S. Geological Survey. 
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of this canal, the landscape appears to show meander scars and a levee. This system of 
levee and Shatt al-Nil line date to the post-Early Dynastic period (Adams 1981). The 
traces of a sizable canal appear to be coming into contact with the Shatt al-Nil from the 
northeast. While this system is periodically lost on the Spot images, it is clear on the 
Coronas. When it enters the vicinity of Tell Zibliyat, a complex pattern of takeoff canals 
emerges. This pattern appeared on a smaller scale in the Ur III period (Adams 1981). In 
the first millennium, this pattern is intensified, and the area is maximized in terms  

 

FIGURE 19.14 Channels and canals 
in the central portion of the 
Mesopotamian alluvium appearing on 
1992–1995 spot image. Photo courtesy 
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of National Geo-spatial Intelligence 
Agency. 

of cultivation. The pattern of maximization of agricultural production is described by 
Adams (1981:188) as: 

An interlocking, much more artificial grid of watercourses that broke 
large contiguous areas of cultivation into polygons of fairly uniform size 
and shape. In the older pattern, one must assume that a fairly broad 
uncultivated band was left between parallel branches, while the new, more 
tightly arrayed polygons suggest that fairly broad expanses of continuous 
cultivation had begun to be introduced. 

These canals run from the Shatt al-Nil to Sassanian-Islamic sites such as 702, 726, 728, 
and so on. 

Islamic geographers tell us that these patterns were common in the bureaucratic land 
management programs and that this particular line was in use during this period (Le 
Strange 1895). These canals and channels were used and reused through the Sasanian and 
Islamic periods. They present a network of irrigation works that fan out over the 
landscape in an east-west direction off the main north-south lines to cultivate the now 
dune-covered fields and their associated sites. The Coronas show this most clearly in a 
system of canals that run from the vicinity south of Zibliyat across a dunelike area, 
joining Sasanian and early Islamic sites and rejoining the Shatt al-Nil near Abu Sarifa. 
Adams maps a few canals and channels as well as two unconnected meanders in this area. 
The Coronas show four canals as well as clear meander scars that are related to the main 
north-south line and its associated field systems. 

This detailed study of the area around Abu Salabikh has provided three new insights 
into the ancient landscape. First, it is clear that the Shatt al-Hawa and canal running 
through the main mounds mapped by ground surveyors can be traced beyond the 
previous survey boundaries. These systems can then be related to a larger regional system 
and placed in their proper historical context. The imagery in conjunction with the survey 
data allows for a more comprehensive understanding of this system and its rela-tion to the 
site of Abu Salabikh. Second, it is clear that the Sasanian-Islamic field pattern east of the 
site is linked to the Shatt al-Nil and continues west. Third, a larger functional system of 
the Shatt al-Nil has been traced over an extensive expanse of the landscape, and in areas 
such as Tell Zibliyat, the relationship between this system and field systems as well as 
their associated sites can be traced. This presents a more clearly identifiable picture of 
irri-gation works and settlement in this area in the Sasanian-Islamic periods. 

Methodologically, the area provides an example of the integration of Spot and Corona 
imagery, as a combination of both data sets was needed to trace a functional landscape 
unit. The textual, archaeological, topographic, and geomorphological data were combined 
into the GIS system to illustrate the landscape. The combination of these interdisciplinary 
methods and data sets allow this system to be placed into its historical and sociocultural 
context. 
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19.9 Conclusions 

It is clear from the case study around Abu Salabikh that a combined and integrated 
methodology is preferred to a predictive framework when analyzing settlement and 
watercourse patterns. The Spot and Corona images proved to be valuable tools in analysis 
of the topographic features of the plain. It follows that while the concept of settlement 
alignments forming along channels remains valid, the topography, archaeology, and 
geomorphology of the plain is equally important and a key component to the 
development of these patterns. The use of remote sensing and GIS methodologies allow 
past assumptions to be tested in a systematic manner. These technological tools enhance 
organization of the multitudes of data and add a new level of physical realities of the 
plain to the research analysis. 

Precise dating of features remains a problem whose only solution would involve 
ground collection and stratigraphic analysis of canal sections to produce precise dates. 
Relative dating of irrigation patterns is possible through analysis of levee and 
topographical formations such as dunes. Through analysis of topographic relationships, 
we are able to expand the “picture” of settlements and watercourse patterns by including 
areas that were historically neglected for one reason or another by ground surveyors. 
Through this integration of GIS, predictive modeling, and textual sources—using a 
theoretical framework that emphasizes principles of archaeology, geography, and 
geomorphology and places emphasis on landscape features such as irrigation channels, 
levees, and sites—we can begin to analyze the complex landscape of southern 
Mesopotamia and subsequently understand the sociohistorical context of settlement in the 
area. This methodology allows for a more inclusive and broader picture of the landscape 
as a whole, traces its successive changes, and produces a visually understandable catalog 
of those changes and their historical significance. 
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20  
Quantitative Methods in Archaeological 
Prediction: From Binary to Fuzzy Logic  

Eugenia G.Hatzinikolaou 

ABSTRACT Archaeological prediction has its origins in the late 1970s. 
Since then, this new and interesting field has evolved significantly. 
Technological achievements and the evolution of software have played a 
key role in this growth. Many models have been generated, some more 
empirical than others. This chapter discusses the quantitative methods that 
have been used to predict archaeological site locations. Beginning with 
the most traditional binary method, regression, and ending with the most 
extravagant, fuzzy logic, an evaluation of the methods is presented. 

20.1 Introduction 

Prediction of archaeological site locations has become very popular during the past 
decades. It started on an experimental basis and developed through  

the years as a new science. The interest of a variety of scientists—geologists, 
computer engineers, surveyor engineers, geographers—in this domain has contributed to 
its rapid expansion. In many countries, predictive modeling is used as a powerful tool in 
cultural-resource management. 

The basic assumption in predicting archaeological locations is that the choice of a 
site’s location can be explained by the presence of certain environmental parameters. 
Consequently, knowledge from sites that have already been excavated, or site survey, 
forms the basis for predicting where else those predefined patterns can be met within a 
region with certain geographical characteristics. 

Archaeological prediction consists of three main phases: 

1. Data collection, a difficult task, as data must be accurate and suitable for its intended 
purpose. Moreover, data sets in digitized format are not always available in all 
countries. In many applications, instead of making any decisions on data quality, the 
methodological frame is defined by what coverages are available. 

2. Data processing, suitable for integration into a predictive methodology. A geographic 
information system (GIS) is the ideal environment for this task, being a box of tools 
for inserting, handling, and mapping geographical data. 



3. Application of a methodological tool to predict site locations. 

The aim of this chapter is to discuss methodological issues of quantitative methods in 
archaeological prediction. The use of GIS is fundamental for this type of applications. 
The topic of interest in this chapter, however, is what comes next to GIS analysis: how 
the processed information can be transformed into a predictive output. 

After each method is presented, there is a reference to its use in archaeological 
prediction. A final evaluation of the methods at the end of the chapter attempts to group 
their common features or to point out their differences in an effort to set a methodological 
frame for future applications. 

20.2 Quantitative Methods and Their Applications in the Prediction 
of Archaeological Site Locations 

Quantitative methods are those that use a mathematical frame to collect, analyze, and 
classify data in a systematical manner. The most important quantitative methods used to 
solve geographical problems are: 

Regression analysis 
Multicriteria analysis  
Expert systems 
Supervised classification 
Unsupervised classification (or cluster analysis) 
Fuzzy logic 
Supervised and unsupervised classification can be based either on statistical logic, 

fuzzy logic, neural networks, or any combination of these (Hatzichristos 1999). 
Prediction of archaeological site locations could be considered as a geographical 

problem of classifying space in the landscape as sites or nonsites, or in specific site 
categories, according to certain characteristics (environmental, topographical, historical, 
social). Therefore, archaeological prediction could be considered as a geographical 
problem that can be “solved” using the previously mentioned methods. 

Logistic regression has been the most widely used method. The term “predictive 
modeling” has been generated through this method and has prevailed as a term used to 
describe archaeological prediction. Recently, other methods have been applied in an 
effort to predict site locations. In the following sections, the six quantitative methods 
identified here are presented along with a brief description of their application in 
archaeological prediction. 

20.2.1 Regression Analysis: Logistic Regression 

Logistic regression, or logit analysis, belongs to a family of statistical procedures called 
probability models. These models were developed for special regression problems in 
which the dependent variable is a categorical measure rather than an interval or ratio-
scale measure (Warren 1990). Logistic regression is similar to discriminant function 
analysis, but is less constrained by statistical assumptions. The basic concept of the 
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method is that it uses a sample area of sites and nonsites and environmental variables, and 
through a formula it is able to predict site-presence probabilities in unsampled areas. 

The standard logistic regression formula is: 

 

  

or, calibrated, is: 

 
  

where 

p(b) is the probability that case i is a member of group B 
exp is the function that raises e (Euler’s number) to a parenthetical 

value is a y-intercept constant 
β2,…,βn are regression coefficients for variables X1,…, Xn 
X1i,…,Xni are values of variables 1,…, n for the ith case 

Logistic regression is undoubtedly the most well-known and commonly applied method 
for the prediction of archaeological site locations. This method was initially applied by 
Kenneth L.Kvamme in several models in western and southeastern Colorado. Kvamme’s 
models are almost unparalleled in terms of their innovative definition of variables, their 
persistent methodological rigor, and their exposition of the vast research potential of 
predictive modeling (Warren 1990). The basic idea behind the methodology involves the 
examination of known archaeological sites or settlements for statistical associations in a 
region with various environmental conditions, such as ground steepness, elevation, 
aspect, soil, or distance-to-water preferences (Kvamme 1995). In the early 1980s, 
Scholtz-Parker and Hasenstab developed their own models (Kvamme 1995), similar to 
Kvamme’s models. 

Logistic regression has also been applied by Carmichael (1990) in central Montana; by 
Warren and Asch (2000) to predict prehistoric site locations in the Eastern Prairie 
Peninsula of central Illinois; and by Duncan and Beckman (2000), who formulated four 
predictive models to predict archaeological site locations in Pennsylvania and West 
Virginia. 

20.2.2 Multicriteria Analysis 

Multicriteria analysis is a multidimensional decision and evaluation tool. The basic 
characteristic of the method is that all possible and predictable impacts of any decisions 
to be taken are assessed. 

The fundamental part of the multicriteria analysis method is the construction of a 
matrix of effectiveness, which consists of the criteria (according to which the specific 
problem is evaluated) and the alternatives, which may be either discriminated solutions of 
the problem or steps before the final solution. 
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Suppose that matrix consists of k alternatives and; criteria; then the element describes 
the contribution of alternative k to the criterion/: 

 

  

Multicriteria analysis has recently been applied in the prediction of archaeological 
locations (see Krist’s and Verhagen’s chapters [Chapters 16 and 9, respectively], in this 
volume). 

20.2.3 Expert Systems 

The main principle in expert systems is that an expert (i.e., a person who has a deep and 
thorough understanding of a problem area) makes his knowledge available to a computer 
program (Burrough 1986). The user who wants to acquire this knowledge enters queries 
into a program called an “inference engine” 

The main drawback ofאthe method is the high level of knowledge that must be 
available in a specific field. Moreover, an expert system takes a significant amount of 
time to form its rules. Another characteristic of these systems is that if the problem to be 
resolved is even slightly different from the one expected, then the performance is 
reduced. It would be interesting to apply expert systems in archaeological prediction. 

20.2.4 Supervised Classification 

Classification is a procedure that classifies different objects or incidents in classes 
according to the specified criteria. Classification can be either supervised or 
unsupervised. 

Supervised classification is a classification in which one or more experts has a priori 
defined the groups in which an object and a training set belong. In supervised 
classification, there are two main phases: the training phase, during which the training set 
is used to define the weights of the parameters and their best combinations so that the 
classes can be discriminated effectively, and the realization phase, during which the 
defined weights are used to specify the classes in which the objects belong. Supervised 
classification can be realized with statistical logic, neural networks, or fuzzy logic. 

Supervised classification has been applied in archaeology with neural networks 
(Druhot 1993). Neural networks, or more accurately, artificial neural networks, represent 
the human brain at the most elementary level of process. Specifically, neural networks 
retain as primary features two characteristics of the brain: the ability to “learn” and the 
ability to generalize from limited information (Hewitson and Crane 1994). There are 
many types of neural networks, depending on their topology and the use of supervised or 
unsupervised learning. 
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In Druhot’s application, a back-propagation network was chosen. Back propagation is 
a feed-forward network, meaning that there are no direct feedbacks to previous 
processing elements. Unfortunately, Druhot’s attempt did not manage to train back-
propagation networks. This is due to a software restriction such that, when he combined 
grids, a limit of values forced him to reduce the number of variables. The predicted 
output was expected to be a value between 0.0 and 1.0, and every value equal or greater 
than 0.5 could be called a site or a site presence. However, for any attempt he made, the 
output values were less than 0.5. Druhot’s application may be considered as a challenge, 
as it has proved that the methodology works. 

20.2.5 Unsupervised Classification (Cluster Analysis) 

Unsupervised classification, or cluster analysis, is a classification method that tries to 
create “natural” data groups. It is a data-driven method in which the user need only 
specify the number of classes. Unsupervised classification can be realized with statistical 
logic, neural networks, or fuzzy logic (or any combination of these). 

In archaeology, this method has been applied recently with neural networks for the 
prediction of site locations in Brandenburg in northeastern Germany (Ducke 2003). 
Unsupervised classification overcomes the problem of determining “sites” and 
“nonsites,” since there is no need to define classes. According to Openshaw, there are 
four types of Unsupervised learning architectures that are of greatest relevance to 
neurospatial classification: the competitive learning nets, the self-organizing map, the 
adaptive resonance theory, and the associative memory nets (Openshaw 1994). Ducke’s 
application uses Kohonen’s self-organizing map, one of the most interesting of all the 
competitive neural nets. Among the more important advantages of the method, according 
to Ducke, is that information is processed more efficiently and economically, and a PC 
with 128 MB of main memory is completely sufficient. It would be interesting to see 
more results for this ongoing application in the future. 

20.2.6 Fuzzy Logic 

Fuzzy logic is a new science with a strong potential to simulate real-world conditions. In 
fuzzy logic, a proposition, apart from being true, may be anything from almost true to 
hardly true (Kosko 1994). Fuzziness is the modern term that stands for the scientific term 
“multivalence.” It means three, more, or infinite options instead of just two extremes. 
While classic Boolean logic is binary, meaning that a certain element is true or false or an 
object either belongs to a set or it does not, fuzzy logic permits the notion of nuance: an 
element can be true to a degree and false to a degree, while an object can, to a degree, 
belong in more than one set. 

Fuzzy logic was introduced by Zadeh in 1965. The key to Zadeh’s idea is to represent 
the similarity a point shares with each group with a function (membership function) 
whose values (called memberships) are between 0<m<1. Each point will have a 
membership in every group, with memberships close to unity signifying a high degree of 
similarity between the point and a group, while memberships close to zero imply little 
similarity between the point and that group. Additionally, the sum of the memberships for 
each point must be unity.  
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In Boolean logic the complement of A is notA and both A and notA are unique. In 
fuzzy logic the fuzzy complement applied to the fuzzy set A with the membership 
function µA(×) is 

µnotA(×)=1−µA(×)   

To solve a problem with a knowledge-based fuzzy system, there is a fourstep process that 
has to be followed: 

1. Fuzzification: the assignment of a membership function to every variable of the 
problem. During this process, crisp sets are transformed to linguistic subsets (for 
example, short or long distance). 

2. Knowledge base: the definition of the rules. Rules follow the format “if …, then…” 
and express logical assumptions. Experts with general knowledge on the specific field 
usually accomplish the task of rules definition. 

3. Processing of the rules: also called inference. All the Boolean algebra operations (like 
intersection, union, negation, etc.) can be easily extended to fuzzy-set operations 
(Kandel 1986), and they can be used in this stage. 

4. Defuzzification: the procedure of transforming the result of rules processing back into a 
crisp value. There are several methods to achieve defuzzification (Bezdek 1981). 

Fuzzy logic has been used in archaeology to predict prehistoric sites on the island of 
Melos in Greece (Hatzinikolaou et al. 2003). The most important advantage of the 
method is that it reflects realism through linguistic variables. The final output is gradual 
and consists of more alternatives, which are lost in statistical analysis. Moreover, in this 
application there was no need to have data for sites and nonsites. The final output 
consisted of two subsets: the existence of settlements and the existence of special-purpose 
sites (agricultural units, mining units, and observatories). Membership functions were 
specified for nine criteria, and 15 rules were generated by a group of four experts to 
obtain the predictive output. The final output was compared with the results of a site 
survey to prove its accuracy. 

20.3 An Evaluation of the Methods: From Binary to Fuzzy Logic 

Binary logic dominates our modern world. Most of our technological achievements are 
based on it, since computer technology is binary. On the other hand, fuzzy logic can 
describe real-world conditions, as most life events are not just black or white boxes, but a 
gray-scale fluctuation. 

Applied in archaeology, binary logic seems to be an ideal choice because, 
theoretically, a location either is a site, or it is not. From the predictive point of view, 
however, there is a great degree of uncertainty: a location has a potential to be a site to 
some degree and not to be a site to another degree. Going even deeper, at the heart of the 
problem, a hypothetical site has a potential to be a settlement and, at the same time, a 
potential to be a cemetery according to a set of hypothetical rules. Only by excavating 
can one be sure of a site’s identity. 

The use of quantitative methods for the prediction of archaeological site locations is a 
powerful tool with a potential for future development. To date, most predictive models 
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have been constructed based on the logistic regression method. Those models are binary, 
and the final predictive output is a probability map showing a certain area’s classification 
according to the probability (high, medium, low) of the existence of sites. 

The use of classification methods (supervised and unsupervised) has been limited in 
archaeological applications. Both classification methods use neural networks with 
supervised and unsupervised learning. 

Druhot’s application with supervised learning did not work out as expected due to a 
software restriction. However, the method has potential and may be a stronger predictor 
than regression due to the great abilities of neural networks. In both regression and 
supervised classification with neural networks, a sample area of “sites” and “nonsites” is 
required. The output is consequently binary, 1 or 0, i.e., sites or nonsites. 

Unsupervised classification overcomes the restriction of the training sample. This can 
be quite important because data on site absence are not always available. This method 
takes an “unbiased” look at the archaeological record by determining data structure 
exclusively from the data itself (Ducke 2003). 

The above-mentioned methods are binary. Fuzzy logic presents a totally different 
approach to the prediction problem. 

Using fuzzy logic, the final output is a predictive map for each of the sites’ categories 
specified in the survey, showing the potential of each unity of the study area to belong in 
the specified category. For example, if the output is settlements, mines, ancient ports, and 
observatories, the final output will consist of four maps showing in color scale the 
potential of each pixel of the study area to belong in any of the specified groups. Areas 
not likely to be of archaeological interest will appear in the lowest category of the chosen 
color scale. 

Fuzzy logic has a great potential to be applied in countries with a rich archaeological 
background, especially in areas that have not yet been excavated. The fact that the output 
result is not based in any training site-survey sample gives the method the freedom to be 
applied in any area with similar geographical characteristics. The generation of rules by 
an ideal group of experts might seem to be vague, but it should actually be considered 
stronger than the statistical analysis of dense artifact locations. The human mind is a most 
powerful tool when it comes to making decisions, and prediction with fuzzy logic is 
based on the same capacity. 

In conclusion, it is important to mention that all of the methods described in this 
chapter are scientifically accurate, and because their use is substantiated, there must not 
be any doubt as to their validity. Classifications with neural networks are a tempting 
alternative to traditional regression methods. On the other hand, fuzzy logic is a new 
perspective: it has the potential to specify a site’s origin; it is realistic; and it uses the 
abilities of human expertise in combination with a strong scientific theory. 

It would be interesting to see additional archaeological applications using the 
quantitative methods described here. Prediction in archaeological survey is a new 
scientific field, and it deserves to be supported by all methodological tools. 
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21 
The Use of Predictive Modeling for Guiding 
the Archaeological Survey of Roman Pottery 
Kilns in the Argonne Region (Northeastern 

France) 
Philip Verhagen and Michiel Gazenbeek 

ABSTRACT The Argonne survey project (carried out from 1996 to 1998 
in the northeast of France) was aimed at obtaining a reliable overview of 
the occurrence of Roman pottery kilns in the area. Many pottery kiln sites 
in the area are under threat of erosion by changing land use, and as the 
area is an important center of Roman pottery production in northwestern 
Europe, a protection program was to be developed. The survey project 
used a combination of techniques to make an inventory that was as 
complete as possible (field walking, geophysical survey, and augering), 
and it relied heavily on predictive mapping as a tool to guide the survey. 
This chapter focuses on the predictive model developed and the 
consequences of using such a model as the basis for surveying the area. 

21.1 Introduction 

The Argonne region, situated in the northeast of France (Figure 21.1), was an important 
center of Roman pottery production in northwestern Europe. Today it is a quiet area with 
abundant forest (covering about 50% of the region), but during the First World War it 
was the stage for fierce frontline fighting between the German and French forces. 
Numerous trenches are still present in the area, and the remains of ammunition, barbed 
wire, and weapons can be found on many fields. 

The area is currently experiencing rapid land-use changes that are potentially 
damaging to the archaeological remains. The most important of these is the conversion of 
grassland to agricultural land, a development that will increase erosion of the topsoil. 
Furthermore, new infrastructure in the area is being developed by the French government 
as part of a revitalization campaign in the area. One of the aims of this campaign is to 
draw tourists to visit the World War I relics. Also, the new TGV Est high-speed railway, 
connecting Strasbourg to Paris in 2005–2006, will be running straight through the area. 



Given these developments, the Service Regional d’Archéologie (SRA) of the Lorraine 
region decided in 1996 to launch a project (Gazenbeek et al. 1996) to make an inventory 
of the distribution and state of conservation of pottery kiln sites. The SRA of the region 
Champagne-Ardennes decided to join the project in 1997, which brought the total study 
area to 725.62 km2 in 51 municipalities.  

 

FIGURE 21.1 Location of the study 
area in France. 

The aims of the project, as expressed by the SRA Lorraine, were to: 

1. Establish survey methods appropriate to the region (field walking, geophysical survey, 
and augering) 

2. Decide which sites were to be excavated 
3. Acquire land and establish archaeological reserves 
4. Elaborate protection measures in negotiation with land owners and users 

The survey was to focus on both the known sites as well as sites still undiscovered. As it 
was clear from the beginning that not all the area could be surveyed, it was necessary to 
start the project by preparing a predictive map. The survey was carried out in three 
consecutive years (1996–1998), and before the start of the campaigns a predictive map 
was prepared to guide the survey; a revised map was produced before the last field 
campaign, after which a final map was produced and presented to the SRA. The survey 
consisted of field walking to discover kiln sites, augering to establish their extent and 
precise location, and in selected cases, geophysical survey to obtain an impression of the 
remains still present underground. The fieldwalking survey and excavations were carried 
out by students and staff from the Université de Paris I Panthéon-Sorbonne; the 
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geophysical survey, augering, and predictive mapping were performed by RAAP 
Archeologisch Adviesbureau. 

21.2 Archaeological Context 

The Argonne area has exported industrial quantities of ceramics all over northwestern 
Europe during nearly all of the Antiquity, from the 1st century AD until at least the 5th 
century. These products, especially the fine slip ware, are very important for the dating of 
consumer sites. However, of the production centers themselves, their range of products, 
their production techniques, and their life span, little was known, even though research 
had been going on for more than a century. The data collected in the Argonne project 
helped significantly to better understand the economical and environmental background 
that ensured the success of the Argonne pottery production, and to understand its place in 
the regional occupation network. 

The Roman settlement pattern of the Argonne area appears as a patchwork of villages 
surrounded by extensive workshop areas (including pottery kilns), of isolated ceramic 
and glass production centers (that often mask the associated dwellings), and of villages 
and modest farms spread out over the countryside. Except for some large production 
centers that were active during the whole period, the workshops were mostly short lived, 
and moved rapidly from one place to another. This model is evident as early as the 1st 
century AD when the initial Belgian wares were produced. From this period onward, the 
geographical expansion of the pottery kilns shows only minor changes until well into the 
4th century, even though the products themselves changed completely, moving from 
Belgian wares to red slip wares and covering a whole range of black slip beakers and 
common coarse wares as well. 

The success of the Argonne wares has often been explained by the privileged position 
of the region close to several major Roman roads that connected it to the main 
communication network of this part of the Roman Empire, putting it at a relatively short 
distance of several of the larger cities of northern Gaul, such as Reims and Metz, and 
providing many markets and redistribution centers for its products. Export over the 
Marne and Meuse rivers certainly also was very important for the spread of the ceramics, 
and the nearby town of Verdun on the Meuse probably played a key role in the river 
transport. However, the importance of production for the regional domestic market has 
long been underestimated. The fact that the slip wares, the main export product, have 
been studied in more detail, means that the local markets and the associated potteries 
have been neglected in research. As it is, coarse wares and roof tiles were produced in 
large quantities by the various workshops simultaneously with the rest. Our fieldwork 
also demonstrated the importance of glass and iron workshops in the area. Especially the 
3rd and 4th centuries appear to be an important period for the local glass industry, with 
rows of deep shafts dug into the sandstone that was used as raw material. Its products, 
such as glass cubes for mosaics, were strongly oriented towards export. 

These activities show that the ceramics were far from being the only product 
manufactured in the region. All together, they testify to a flourishing economy during 
most of the Antiquity, with a very active industry maintaining itself over a long period of 
time. The importance in this of the natural factors that are characteristic of the Argonne, 
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cannot be underestimated: the geological context is responsible for the environmental 
conditions that could supply at the same time the basic raw materials needed for different 
products, and the fuel (wood) necessary to produce the (semi-)finished products. The 
large area covered by the geological formations involved guaranteed the long life span 
and the profitability of these industries on such a large scale. The road network that 
crosses the region, allowing access to the markets, is therefore only a factor that made 
this particular economical development easier, but it did not command it. 

21.3 Area Description 

The Argonne region is an area of undulating hills that form part of the French Ardennes. 
The area has a general slope toward the northwest, and is dis-sected by several 
watercourses. Elevation generally ranges between 175 and 300 m above sea level. The 
Aire River divides the area into two distinct parts: the Forêt d’Argonne to the west, and 
the Forêt de Hesse to the east. The World War I front line runs from west to east through 
the area (Figure 21.2). 

The geology of the area consists mainly of Jurassic and Cretaceous sedimentary rocks. 
The oldest formations are found in the east, the youngest in the west of the area. The 
most important rock types to be found in the area, from old to young, are: 

Kimmeridgian clays and marls 
Portlandian limestones (Calcaires du Barrois) 
Lower Albian greenish clayey sands (sables verts) 
Upper Albian yellowish-brown sandy clays (Argiles du Gault) 
Cenomanian calcaric sandstones (Gaize) 

It is assumed that the pottery in the area was produced using both the sables verts and 
Argiles du Gault; however, no definite answer to that question has been found. 

Apart from the Jurassic/Cretaceous deposits, colluvial and alluvial deposits are found 
in the valleys. Along the valleys of the larger watercourses (Aire, Biesme, and Aisne), 
older alluvial deposits can be found in terraces located 10 to 15 m above the current 
valley bottom (Figure 21.3). 

The geomorphology of the Forêt d’Argonne is dominated by the Gaize sandstones and 
consists of a strongly dissected plateau with numerous springs where the Gaize rests on 
the Argiles du Gault. The Forêt de Hesse is more varied, with Calcaires du Barrois in the 
valleys, followed by sables verts and Argiles du Gault uphill, and often capped by a 
Gaize sandstone butte. Slopes are more gentle in this area. Springs are not as numerous 
and can also be found on the transition between sables verts and Calcaires du Barrois. To 
the south of the river Vadelaincourt, this geomorphology is replaced by a plateau of 
Calcaires du Barrois. This means that the area where pottery clay can be found is 
primarily concentrated in the Forêt de Hesse. 

Soils in the area are not very well developed. The sables verts will weather to a 
yellowish-brown sandy clay that is sometimes difficult to distinguish from the Argiles du 
Gault. The Calcaires du Barrois weathers to a brown clay, but it may be strongly eroded 
on steep slopes. Weathered Gaize has not been found in the area; the sandstones are 
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usually covered by a shallow, dark brown, sandy topsoil. Soil erosion is an important 
phenomenon in the area. The augering campaigns revealed downhill accumulations of 
colluvial deposits in many places, and often these could be dated to post-Roman age. 
Especially the sables verts and Argiles du Gault are highly susceptible to erosion. 
Currently, however, the rate of erosion is not very high, as most of the area is protected 
by a vegetative cover of grassland and forest (Timmerman et al. 1998). 

 

FIGURE 21.2 Topographical map of 
the Argonne study areas. Source: 
Institut Géographique National. 
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FIGURE 21.3 Geological map of the 
Argonne study area. Source: Bureau 
des Recherches Géoloques et Miniéres. 
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21.4 The First Predictive Model 

When confronted with the question of where pottery kiln sites might be located, it is not 
difficult to understand that the selection of sites for pottery production must have 
depended on four principal factors: 

1. Proximity to pottery clay 
2. Proximity to water 
3. Proximity to firewood 
4. Proximity to transport routes 

The source materials needed (clay, wood, and water) could, in theory, be transported to a 
different place, but it is not difficult to understand that the pottery is more readily 
transportable. It is therefore assumed that the proximity to existing transport routes is not 
a major limiting factor for site placement, whereas the availability of the source materials 
is. Of these source materials, the location of wood in the Roman period cannot be 
reconstructed with any accuracy, whereas it can be assumed that the position of 
watercourses has not changed very much, and the geological formations will still be in 
the same place. A deductive model of kiln site location will therefore have to start from 
the assumption that distance to water and pottery clay are the primary site-placement 
parameters that can be operationalized. 

The first results of the fieldwork seemed to confirm this assumption. The kiln sites 
found were usually located near valley bottoms or springs where sables verts and Argiles 
du Gault were available. 

From a scientific point of view, the model building should probably have started by 
preparing a deductive model. The first model built, however, was an inferential one 
(Gazenbeek et al. 1996). As in many inferential modeling exercises before, the available 
environmental information (elevation, slope, aspect, geology, and distances to 
watercourses and springs) was subjected to a χ2 test on the basis of a small and biased 
data set. However, the χ2 test was not used to select the significant variables; all available 
map layers were reclassified according to site density and then averaged. Even though the 
reliability of this model was questionable, it did serve to highlight the weaknesses of the 
existing archaeological data set. 

Until the start of the Argonne Project, the knowledge of the distribution and state of 
pottery kiln sites in the region was scant. A total of 30 kiln sites had been reported to the 
French national archaeological database DRACAR, almost exclusively found in the Forêt 
de Hesse area. These sites were used to construct the first model. Even with this small 
number of sites, it was clear that the sables verts were very important for kiln site 
location. It also suggested that the known data set was biased, as very few sites were 
reported in forested areas. This provided two strong objectives for the survey campaigns: 
to increase the number of known kiln sites to a level where  
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FIGURE 21.4 The final predictive 
map. The dots indicate kiln sites. 

statistical analysis could be done in a meaningful way, and to improve the 
representativeness of the known site sample. 
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21.5 The Second Predictive Model 

The three field campaigns carried out in 1996–1997 resulted in a dramatic increase of 
known kiln site locations (Table 21.1). Furthermore, the previously reported 30 sites were 
revisited and checked. In most cases, the registered coordinates were wrong, and some 
sites were withdrawn from the database, either because no traces of the site could be 
found, or because the site had erroneously been interpreted as a Roman pottery kiln. In 
September 1997, the number of sites inside the surveyed area had become large enough 
to justify the construction of a new inferential model of kiln site location. As it was 
assumed that kiln site location is related to the proximity of key geological formations 
(notably the sables verts), distances to these formations were calculated and subjected to 
a χ2 test. The distances were calculated as distances to the geological formation boundary, 
both outside and inside the geological formation. Distances inside the formation were 
given a negative value. Furthermore, distances to permanent watercourses and springs 
were used. 

Because of the limitations of the χ2 test, it was necessary to reduce the number of 
distance categories in such a manner that the number of expected sites per map category 
should not fall below 5 (see, e.g., Thomas 1976). With a total of 56 sites available inside 
the surveyed area, this meant that preferably no single map category should be smaller 
than 8.9% of the area. Therefore, the distance categories used are not equal-interval 
zones, but equal-area zones that can be produced in Arc/Info Grid by using the Slice 
command. The resulting distance maps were analyzed for autocorrelation. It turned out 
that distance to Argiles du Gault is rather strongly correlated to distance to sables verts 
and to Gaize (r=0.59 and r=0.56, respectively). This can be explained by the fact that 
Argiles du Gault are usually found as a narrow band between  

TABLE 21.1. Area surveyed during the four 
consecutive field campaigns. Before the start of the 
survey, only 30 kiln sites were known in the area. 

survey period area surveyed inside study region # kiln sites in surveyed area 

Nov 96 1037.42 1037.42 42 15 

Feb 97 1349.03 1308.34 70 47 

Sep 97 1381.00 1114.39 74 56 

Mar 98 2750.59 1991.19 91 83 

TOTAL (ha): 6518.04 5451.34    

Gaize and sables verts. Furthermore, the distance to Calcaires du Barrois is negatively 
correlated to the distance to Gaize (r=−0.51). This is due to the fact that the Gaize is 
predominantly found in the west, and Calcaires du Barrois in the east of the area. Other, 
weaker correlations were found between springs and permanent watercourses (r=0.49) 
and between permanent watercourses and recent alluvial deposits (r=0.44). 

After χ2 analysis of all variables, the model was based on those variables that were 
statistically significant at the 95% probability level and not strongly autocorrelated: slope, 
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distance to sables verts, distance to Gaize, and distance to recent alluvial deposits. 
Although the initial intention was to use only the data from inside the surveyed area, it 
turned out that the “kiln hunt” had been successful in the number of sites found, but 
biased in terms of the area visited. For example, the mainly forested Gaize and steep 
slopes had been avoided by the field walkers, for understandable reasons. To compensate 
for this effect, the full data set was used, which meant using a possibly biased data set 
instead of a certainly biased one. The resulting model showed high probabilities for kiln 
site location in the Forêt de Hesse and along the valley of the Aire, whereas low 
probabilities were found in the Forêt d’Argonne. However, some outliers were found 
close to the major rivers and the presumed location of Roman roads, possibly indicating a 
preference for location close to transport routes instead of close to the source materials 
needed. 

21.6 The Final Model 

Although the second map was useful in indicating the important zones for kiln site 
location, it was less well-suited to predict low-probability zones. A large area was still 
designated medium probability, and this was primarily a consequence of the survey bias. 
The last field campaign in 1998 was therefore dedicated to extending the surveyed area 
into the Gaize and steepsloped zones. The last campaign included over 50% of Gaize. 
This made it possible to produce a model with optimal reliability, from a statistical point 
of view. 

Apart from that, it was decided to perform a field check to see if the geological maps 
used were accurate enough for the predictive modeling. The field check (Timmerman et 
al. 1998) confirmed that the quality of the geological maps is adequate for most of the 
area, with two notable exceptions. Firstly, where outcrops of geological formations have 
a limited extent, they are not always mapped. In one particular case, a kiln site was found 
close to a pocket of sables verts that was not depicted on the map, and it can be expected 
that similar locations exist in the area, especially near valley bottoms. Secondly, south of 
the Forêt d’Argonne, a relatively large area of sables verts shown on the geological map 
was not found at the surface, but only at considerable depth. The high probability 
assigned to this area on the predictive map is therefore incorrect. 

The final model (Figure 21.4) was satisfying from the point of view of cultural 
resource management: the area of medium probability had been substantially reduced, 
and the high-probability zone showed a gain of 55.5%, (Table 21.2). It should, however, 
be noted that the model can be this specific because the location of kiln sites considered 
is primarily linked to a very specific location factor, the availability of pottery clay. 
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21.7 Conclusions 

The Argonne project succeeded in producing a predictive map that is useful for locating 
the principal areas of pottery kiln sites with high accuracy. Given the lack of information 
at the start of the project, this is an impressive achievement. 

Nevertheless, it seems that the model can only be this successful because the site type 
aimed at is highly predictable from a deductive point of view. The availability of pottery 
clay is the most important location factor to be taken into account, and therefore highly 
limits the area were kiln sites can be found. In general, this means that predictive models 
will be most successful when they aim at predicting specific functional site types. This in 
turn implies that the site sample used for the modeling should be analyzed on specific site 
types, and the variables used should reflect the possible limiting and attracting factors for 
locating these sites. This is not a very surprising conclusion, it seems, but one that is 
frequently overlooked in “commercial” predictive modeling. 

Furthermore, the project made eminently clear that field testing of the predictive maps, 
both archaeologically as well as geologically, was very useful and, in fact, necessary to 
obtain a reliable model. It is also clear that the amount of field testing done should be 
substantial, and it should be guided by the questions that arise from the predictive 
mapping itself. In practice, this may be a very difficult point to get across to contractors, 
as  

TABLE 21.2. Comparison of the three predictive 
models made. In the third model, the gain of the 
high probability zone is 55.5 %, and the area of 
intermediate probability is considerably smaller 
than for the previous models. 

  1996 1997 1998 

probability %area %sites %area %sites %area %sites 

low 27.5 2.8 29.9 0.0 63.2 6.6 

intermediate 58.6 61.1 52.9 32.4 22.0 23.1 

high 13.9 36.1 16.0 67.6 14.8 70.3 

predictive modeling is often seen as a means to prevent costly field campaigns. The costs 
for arriving at the Argonne predictive map were high: a total of 7.5% (54.5 km2) of the 
area had to be surveyed to obtain the representative site sample needed for the final 
predictive model. Even with a field campaign primarily looking for sites as easily 
detectable as pottery kilns, this represents a considerable amount of work to be done. In 
the case of the Argonne project, four months of field walking were done, using 20 
students. However, when commercial prices have to be paid, this would represent an 
investment (at current rates) of approximately 600,000 euros or dollars. In the context of 
European public archaeology, this is a very high price for a field-survey project. 
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defining preferences, 198–199 
establishment of decision rules, 199–200 
multicriteria decision making and relevance to predictive modeling, 193–194 
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notes, 213 
selection of evaluation criteria, 195–197 
site density, 207–209 
site-preservation potential, 209–211 

Multicriteria/multiobjective predictive models, 335 
Multispectral data, 92 
Multivalence, 442 
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NAD, see North American datum 
Narcotic plant, 127 
National Archaeological Database ARKAS, 406  
National Elevation Dataset (NED), 327 
National Environmental Policy Act, 64 
National Historic Preservation Act (NHPA), 64, 76, 83, 266, 273, 280 
National Imagery and Mapping Agency (NIMA) products, 245 
Nationally designated properties, attributes of, 257 
National Map Accuracy Standards, 78 
National Park Service, 269, 275 
National Register of Historic Places, 81 
Natural environment 

inventory of, 99 
oversimplification of, 79 
patterns in, 124 
potential offered by, 395 
reconstruction of, 102 

Natural monument 
appearance of as polygon, 256 
data, 257 

Natural resources, management of cultural versus, 280 
Naval Weapons Station (NWS), 356 

probabilistic modeling at, 365 
probability zones, 386, 387 

NCDOT, see North Carolina Department of Transportation 
NCGIA, see North Carolina Center for Geographic Information and Analysis 
Neanderthals, subsistence strategies of, 99 
Nearest-neighbor hierarchical spatial clustering (NNHSC), 180, 181 

burials, 183 
clustering maps, 182 
example of, 181 
features, 184 
iterations of, 181 

Nebraska-phase ceramics, 82 
NED, see National Elevation Dataset 
Negative spatial autocorrelation, 170–171, 172 
Neural network(s), 439, 441 

algorithms, 23 
applications, 398 
classification, 88, 445 

New Archaeology, 8 

Index       442



NHPA, see National Historic Preservation Act 
Niche 

human, 14, 15 
-space, 24 
species, 14 

NIMA products, see National Imagery and Mapping Agency products  
NNHSC, see Nearest-neighbor hierarchical spatial clustering 
Nonregulatory archaeology, 266 
Nonsite 

areas, 357 
site misrepresented as, 129 

North American datum (NAD), 267 
North Carolina Center for Geographic Information and Analysis (NCGIA), 325 
North Carolina Department of Transportation (NCDOT), 317, 330 
North Carolina Department of Transportation, GIS-based archeological predictive model for, 317–
334 

example of Mn/model, 320 
existing NC archaeology data, 322–326 

GIS data, 324–325 
task 2 work, 325–326 

modeling research design, 329–330 
model validation, 330–333 
project benefits, 319–320 
project predictive modeling, 326–329 
project structure, 320–322 

initial project area, 321 
task 1 work, 322 

recommendations, 334 
North Carolina Office of State Archaeology, 318 
Notes 

Ancient roads and field systems, notes, 315 
geographic information system, test case using statewide, 237 
hunting and gathering, regional dynamics of, 140 
IEDROK, 263 
multicriteria methods and Bayesian statistics, 213 

Not so in Bongo-bongo, 5 
NRICP database, 257 
Null hypothesis, 228 
NWS, see Naval Weapons Station 

 
O 
Objective probability, 197 
Objectives, 194 
Objective weights, 200 
Office of State Archaeology (OSA), 322 

archaeological site maps, 324 
database, 330 
master maps, 325  

Off the shelf data, 78 
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Off-site archaeology, 51 
On the fly sampling program, 69 
Open campsites, model of location of, 128 
Open lithic scatters, 124 
Ordered weighted averaging (OWA), 349, 350 
OSA, see Office of State Archaeology 
OWA, see Ordered weighted averaging 

 
P 
Paircorrelation functions, 150, 151, 160 
Pairwise comparison matrix, 341, 342, 344 
Paleoenvironments, reconstruction of, 19, 372 
PaleoGIS, 45, 52 
Paleo-Indian-Early Woodland settlement, 374 
Paleolandscape analysis, 292 
Paleolithic land evaluation, problems in, 97–122 

Agro Pontino survey project, 101–102 
discussion, 115–117 
inductive predictive modeling, 114–115 
land evaluation, 99–100 
land evaluation and archaeology, 102–114 

basic surveys, 102–105 
land use, 109–114 
models, 105–106 
qualitative classification, 106 
quantitative classification, 106–109 

Paleolithic land use, 117 
Partitioning of large project, 25 
PDF, see Probability density function 
Photomontage, 284 
Pleistocene, area dating from, 117 
Plume software, 69 
Point model, 229 

decision rule for, 230 
extra, 234 
initial, 233 

Point pattern, 152, 164 
Point process 

characteristics of, 149, 150 
parameters of, 165 

Poisson distribution, 179 
Poisson point process, 149 
Polygon(s) 

differences between points and, 222 
model(s), 227 

decision rule for, 230 
gain statistic for, 236 
noncontinuous variables in, 228 

reference-map, 221 
training data set, sampling of environmental data for, 227  
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use of to manage archaeological sites, 220 
Pomurje case study, 406, 407 
Population 

data, 159 
inferred, 168 

Positive spatial autocorrelation, 170, 171 
Posterior belief, 200 
Posterior probabilities, 208 
Postprocessualism, 51 
Pottery kiln sites, 454 
Prediction 

maps, early archaeological, 9 
modeling and, 395 
use of, 394 

Predictive archaeological modeling, enhancement of, 41–62 
another West Virginia predictive model, 49–50 
challenge, 59 
humanizing of landscape, 51–52 
identifying tensions, 42–45 
increasing of envirocultural complexity, 55–59 
moving from data points to cultural entities, 53–55 
West Virginia predictive model, 45–49 

Predictive idea, basic, 418 
Predictive map(s) 

Argonne project, 458 
Ede, 204, 205, 206, 209 
surveys and, 204 

Predictive mapping 
Bayesian statistics and, 200 
expert judgment in, 192 

Predictive model(s) 
accuracy of, 124 
branches of, 395 
correlating variables in, 82 
current use of, 64 
definition of, 270 
generation of, 272 
highway corridor selection and, 408 
level of confidence in results of, 72 
linear regression technique and, 402 
maps, access to, 286 
multicriteria/multiobjective, 335 
pottery kiln sites, 454 
refinement of, 67 
resolution of, 271 
result map, 397 
settlement patterns and, 413 
testing, 66, 272 
use of at intrasite scale, 91 
verification, 396 
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West Virginia, 45, 48  
Predictive modeling, 268 
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approaches to, 100 
attempt to incorporate social into, 54–55 
criticism of, 98 
deductive, 199 
definition of, 4 
inductive, 100, 114 
McArchaeo site of, 49 
preconceived notions about validity of, 277 
project, 326 
qualitative methods for, 197 
reasons for application of, 98 
strength of, 408 
techniques, 398 
theoretical issues, 82 
variables employed in, 124 

Predictive utility, 235–236 
Preferences, numerical representation of, 198 
Prehistoric site(s), 41 

locations, modeling of, 334 
probability, 379 

Probabilistic formula(s) 
best-fit, 384 
categorizing of by time period, 374, 382 
deductive approach to creating, 355 
evaluation, 377 
results, 379 

Probabilistic modeling, 357 
deductive, 357 
goal of, 367 
inductive, 357 
NWS, 365 

Probabilistic models, empiric-correlative type, 358 
Probability(ies) 

assumption of uniform, 202 
class, potential for finding cultural remains by, 385 
conditional, 208 
density function (PDF), 14, 16 
distribution, prior, 208 
historic site, 383 
models, 439 
objective, 197 
posterior, 201, 208 
prehistoric site, 379 
subjective, 197 
surface(s) 

creation of, 371 
effectiveness of, 231 
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hand-drafted, 9 
value(s) 

categories, 380, 381  
historic archaeological sites and, 383 
scale, 378 

zonation, development of appropriate, 384 
zones, NWS, 386, 387 

Processual archaeology, 109–110 
Processualist school, 4 
Project predictive modeling, 326 
Proximity-to-art-sites variable, 133, 134, 136 

 
Q 
Quantitative methods in archaeological prediction, 437–446 

evaluation of methods, 443–445 
quantitative methods and applications in prediction of archaeological site locations, 438–443 

expert systems, 441 
fuzzy logic, 442–443 
multicriteria analysis, 440–441 
regression analysis, 439–440 
supervised classification, 441–442 
unsupervised classification, 442 

Queensland, Australia 
Aboriginal occupation in, 126 
project conducted in, 125, 126 

Quickbird satellite data, 32 
 

R 
Radar data, time-sliced, 88 
Rank-order information, 202 
Realization of process, 149 
Redundant variables, 328 
Reference-map polygon, 221 
Regression analysis, 439 
Regression technique 

Dempster-Shafer method and, 404 
transparency of, 403 

Regulatory archaeology, 266 
Relational database, photographs described in, 298 
Remote sensing 

data, models based on, 33 
subsurface, 87 

Republic of Korea, see IEDROK 
Research-oriented modeling, 75 
Residential settlements, sites assumed to be, 82 
Residual plot, 177, 178 
Residuals, model, spatial patterning of, 131 
Resource(s) 

cultural, 76  
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identification of, 77 
management, proactive approach to, 76 
visibility, prediction of, 80 

Ridgeway ancient trackway, 56 
Ridgeway Project, 57 
Ripley’s K statistic, 179 
Risk minimization, modeling of, 349 
River shifts, 419 
Rock art 

sites, 126–127, 132 
social behavior and, 138 

Rock shelters, 18 
Roman land division, 292 
Roman landscape, see Ancient roads and field systems 
Roman pottery kiln, 456 
Roman road(s) 

excavation of, 302 
irregularity of, 301 

Roman settlement 
patterns, 399, 449 
sites, subtypes of, 404 

Roving window procedure, 331 
Rule-based statements, 11 

 
S 
SAA, see Society for American Archaeology 
Sampling 

biases, 20 
cluster, 20 
designs, ideal, 20 
multiparcel, 237 
program 

goal of, 71 
on the fly, 69 

strategies, development of, 272 
Sandy Flanders, 294, 301, 305 
Satellite imagery, 76 
Satisfier theory, 336 
Scale 

feature, 87 
intrasite, 91 
site, 85 

Scaled-distance algorithm, 179 
Scattergram, 178 
SCIAA, see South Carolina Institute of Archaeology and Anthropology 
Second Age of Modeling, 4 
Self-organizing map, 442 
Semiarid landscapes, importance of water in, 128 
Semiquantitative land classification, 100 
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Sensitivity analysis, 77  
Sensuous geographies, 52 
Settlement 

assessments, temporalized, 82 
behavior, determinants influencing, 395 
Central Plains Tradition, 82 
choice 

immediate, 31 
scale and, 31 

location, models of, 18 
pattern(s), 130 

analysis, use of GIS in, 168 
historic, 373 
prediction of irrigation systems from, 414 
rise of interest in, 168 
Roman, 399 
shift in, 413 
statistical treatments of, 168 
study of, 396 
use of survey to recover, 415 

rules, 396 
sites, Roman, 401 
structure, medieval, 155 

basic assumptions, 155 
data, 156 
distribution of distances, 160 
model, 155 
trend phenomena, 160 

systems, prediction of, 410 
topographic units of, 420 

Shatt al-Hawa, 429, 430 
Shovel-testing regime, 385 
SHPO, see State Historic Preservation Office 
Significance tests, 29, 375 
Simple Inhibition Process, 152 
Simplified logics, 362 
Site(s) 

application of APM to, 124 
Archaic period, 223 
area, aerial photography of, 91 
boundaries, 361 
catchment analysis, 177 
concept of, 51 
density, 207, 211 
destruction, 277 
distances between, 148 
distribution patterns, Archaic, 237 
-disturbance data, 211 
diversity, art-site proximity variable and, 135 
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-erosion threat assessment and ranking, 88 
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mean probability value of, 378 
minimum observed value at any, 383  

location(s) 
digitizing of, 220 
factors influencing, 52 
most commonly applied method for prediction of, 440 
range of probability for, 332 

loss of, 152 
low-probability areas, 83 
misrepresentation of as nonsite, 129 
placement 

cognitive nature of, 388 
potential patterns of, 371 

population, estimated, 176 
potential, homogeneous environment and, 364 
presence, 70, 442 
-preservation potential, 209 

combined weighting of land units for, 210 
factors influencing, 207 

probability, map displaying areas of, 48 
rock-art, 126–127, 132 
Roman settlement, 401 
sample size of, 361 
scale, 85 
-selection behavior, 23, 356 
-to-soil-type relationship, 365 
treatment of as cultural entities, 53 
types, definition of, 18 
use of polygons to manage, 220 

SLF, see Standard linear format 
Slope 

model, 86 
rescaled, 84 
use of DEM to compute degree of, 84 

Social environment, 17 
Social forces, hunter-gatherer behavior and, 138 
Social variables, 22 
Society for American Archaeology (SAA), 10, 276 
Socioeconomic models, construction of, 100 
SOFA, see Status of Forces Agreement 
Soft data, 68 
Soft knowledge, 192 
Soft site data, 69 
Soil 

code rankings, 370 
-drainage 

groups, 371 
variability, 367 
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erosion, Argonne, 451 
South Carolina Institute of Archaeology and Anthropology (SCIAA), 368 
Spatial autocorrelation  

statistics, 168 
test of, 171 
types of, 170 

Spatial connectivity matrix, 179 
Spatial cross-correlation indices, calculation of, 196 
Spatial point process, 149 
Spatial process 

definitions, 149 
edge correction, 150 
K-functions, 151 
L-functions, 151 
model validation, 152 
point process characteristics, 150 
properties of pattern, 152 
Thompson statistics, 151 
trend removal, 151 

Spatial processes, estimating parameters of, 147–166 
case study, 155–164 

abandoned villages, 162–163 
basic assumptions, causative elements, direction of analysis, 155–156 
data, 156–162 
model, 155 
trend or local intensity function, 163–164 

discussion, 165 
general model, 148–153 

characterizing of point process, 150 
edge correction, 150–151 
K-functions, L-functions, Thompson statistics, 151 
properties of pattern, local intensity function, 152 
some definitions, 149–150 
trend removal, 151 
validation of model, 152–153 

model for archaeological landscape, 153–155 
Spatial statistical models, 174 
Spatial statistical tests, 167 
Spatial statistics, integration of into archaeological data modeling, 167–189 

applications, 183–185 
discussion, 185–187 
nearest-neighbor hierarchical spatial clustering, 180–183 
Ripley’s K statistic, 179–180 
spatial statistical models, 174–179 
tests of spatial autocorrelation, 171–174 
theory and method of spatial statistics, 169–171  

Spaulding-Ford debate, 168 
Species 

ideal habitat of, 14 
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niche, 14, 24 
-probability surface, 25 

Spectral library, 92 
S-Plus SpaceStat, 169, 183 
Spot image, 417, 420, 423, 428 
S-R model of explanation, see Statistical-relevance) model of explanation 
SSURGO soils, 334 
Standard linear format (SLF), 252 
State GIs coordinators, 274 
State Historic Preservation Office (SHPO), 266, 269, 272, 280, 320 

cultural resources data managed by, 281 
funding and staffing issues at, 283 
listing of National and State Register Sites from, 285 

Statistical assumptions, violations of, 196 
Statistical independence, 170 
Statistical models, 12 
Statistical-relevance (S-R) model of explanation, 359 
STATSGO soil data, 328 
Status of Forces Agreement (SOFA), 242 
StatView 5.0.1 software, 327 
Stewardship responsibility, 76 
Streamline proximity, 128, 129, 134 
Subjective probability, 197 
Subjective weighting, 199 
Subsistence-related behavior, 130 
Subsurface remote sensing, 87 
Supervised classification, 88, 94, 441 
Survey(s) 

coverage, bias in, 137 
intensity, 275–276 
predictive maps and, 204 
results, models based on, 361 

Sycamore tree model, 49, 50 
Symbolism, cultural meaning through, 51 
Systemic context, modeling of, 13 

 
T 
Tactical terrain analysis data bases (TTADB), 252 
Technological environments, 394 
Territorial symbol, burial mound as, 53 
TGV Est high-speed railway, 448 
Thematic mapper (TM), 84, 399 
Theory, distinction between data and, 13 
Thompson statistics, 150, 151, 160, 161 
THPO, see Tribal Historic Preservation Offices  
Three-dimensional visualization, 299 
Threshold conditions, 406 
Time-series statistics, 170 
Time-sliced radar data, 88 
TM, see Thematic mapper 
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Topographic variation, calculation of, 328 
Tracing methods, 397 
Training data set, 225 
Transformed vegetation index (TVI), 84, 85 
Tree rings, paleoclimatic data from, 19 
Tribal Historic Preservation Offices (THPO), 320 
TTADB, see Tactical terrain analysis data bases 
TVI, see Transformed vegetation index 

 
U 
Unburned-adobe problem, 88 
Uncertainty, quantifying of, 67 
United States Army Corps of Engineers, 319 
United States Geological Survey (USGS), 78 

corona image, 425, 426 
North American data provided by, 225 
quadrangle maps, 220, 322 
STDS format, DEMs in, 226 
topographic maps, 267 

Universal transverse Mercator (UTM) coordinates, 79, 420, 422 
UniVerse database, 322 
Unsupervised classification, 442, 444 
Unsurveyed areas, confidence in, 67 
Upper Paleolithic 

archaeological hypothesis for, 115 
Moderns, 117, 118 

Urban-planning facilities, 267 
U.S. Bureau of Land Management (BLM), 8 
U.S. Department of Defense (DoD), 243 

Legacy Resource Management Program, 243, 244 
standard National Imagery and Mapping Agency products, 245 

U.S. Department of Energy, sampling approach developed for, 68  
U.S. Fish and Wildlife Service, 280, 285 
USFK, see U.S. Forces Korea 
U.S. Forces Korea (USFK), 242, 243 
USGS, see United States Geological Survey 
UTM coordinates, see Universal transverse Mercator coordinates 

 
V 
Vandalism, 76 
Vector Map Level 1 (VMap1), 249, 253, 258 
Vector Product Interim Terrain Data (VITD), 249, 252 
Vegetation 

indices, 22 
reconstruction, Agro Pontino, 105 
sparseness of, 126 
toxicity of, 106 

Visibility index, 56 
VITD, see Vector Product Interim Terrain Data 
VMap1, see Vector Map Level 1 
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W 
WADCM, see Weighted Additive Decision Criteria Model 
Warping, 298 
Weather glass problem, 359 
Web-based graphical user interface, 325 
Web-site search, SHPO, 273 
Weighted Additive Decision Criteria Model (WADCM), 200 
Weighted linear combination (WLC), 347 
West Virginia predictive model, 45, 48 
Wetland 

inventory maps, 286 
values, 370 

WLC, see Weighted linear combination 
World Geodetic System, 259 
World War I frontline fighting, 448 

 
Z 
Zone-to-zone autocorrelation, 173  
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