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Preface

This is a text for a two-term course in introductory real analysis for junior or senior math-
ematics majors and science students with a serious interest in mathematics. Prospective
educators or mathematically gifted high school students can also benefit from the mathe-
matical maturity that can be gained from an introductory real analysis course.

The book is designed to fill the gaps left in the development of calculus as it is usually
presented in an elementary course, and to provide the background required for insight into
more advanced courses in pure and applied mathematics. The standard elementary calcu-
lus sequence is the only specific prerequisite for Chapters 1-5, which deal with real-valued
functions. (However, other analysis oriented courses, such as elementary differential equa-
tion, also provide useful preparatory experience.) Chapters 6 and 7 require a working
knowledge of determinants, matrices and linear transformations, typically available from a
first course in linear algebra. Chapter 8 is accessible after completion of Chapters 1-5.

Without taking a position for or against the current reforms in mathematics teaching, I
think it is fair to say that the transition from elementary courses such as calculus, linear
algebra, and differential equations to a rigorous real analysis course is a bigger step to-
day than it was just a few years ago. To make this step today’s students need more help
than their predecessors did, and must be coached and encouraged more. Therefore, while
striving throughout to maintain a high level of rigor, I have tried to write as clearly and in-
formally as possible. In this connection I find it useful to address the student in the second
person. I have included 295 completely worked out examples to illustrate and clarify all
major theorems and definitions.

I have emphasized careful statements of definitions and theorems and have tried to be
complete and detailed in proofs, except for omissions left to exercises. I give a thorough
treatment of real-valued functions before considering vector-valued functions. In making
the transition from one to several variables and from real-valued to vector-valued functions,
I have left to the student some proofs that are essentially repetitions of earlier theorems. I
believe that working through the details of straightforward generalizations of more elemen-
tary results is good practice for the student.

vi



Preface vii

Great care has gone into the preparation of the 760 numbered exercises, many with
multiple parts. They range from routine to very difficult. Hints are provided for the more
difficult parts of the exercises.

Organization

Chapter 1 is concerned with the real number system. Section 1.1 begins with a brief dis-
cussion of the axioms for a complete ordered field, but no attempt is made to develop the
reals from them; rather, it is assumed that the student is familiar with the consequences of
these axioms, except for one: completeness. Since the difference between a rigorous and
nonrigorous treatment of calculus can be described largely in terms of the attitude taken
toward completeness, I have devoted considerable effort to developing its consequences.
Section 1.2 is about induction. Although this may seem out of place in a real analysis
course, I have found that the typical beginning real analysis student simply cannot do an
induction proof without reviewing the method. Section 1.3 is devoted to elementary set the-
ory and the topology of the real line, ending with the Heine-Borel and Bolzano-Weierstrass
theorems.

Chapter 2 covers the differential calculus of functions of one variable: limits, continu-
ity, differentiablility, L’Hospital’s rule, and Taylor’s theorem. The emphasis is on rigorous
presentation of principles; no attempt is made to develop the properties of specific ele-
mentary functions. Even though this may not be done rigorously in most contemporary
calculus courses, I believe that the student’s time is better spent on principles rather than
on reestablishing familiar formulas and relationships.

Chapter 3 is to devoted to the Riemann integral of functions of one variable. In Sec-
tion 3.1 the integral is defined in the standard way in terms of Riemann sums. Upper and
lower integrals are also defined there and used in Section 3.2 to study the existence of the
integral. Section 3.3 is devoted to properties of the integral. Improper integrals are studied
in Section 3.4. I believe that my treatment of improper integrals is more detailed than in
most comparable textbooks. A more advanced look at the existence of the proper Riemann
integral is given in Section 3.5, which concludes with Lebesgue’s existence criterion. This
section can be omitted without compromising the student’s preparedness for subsequent
sections.

Chapter 4 treats sequences and series. Sequences of constant are discussed in Sec-
tion 4.1. I have chosen to make the concepts of limit inferior and limit superior parts
of this development, mainly because this permits greater flexibility and generality, with
little extra effort, in the study of infinite series. Section 4.2 provides a brief introduction
to the way in which continuity and differentiability can be studied by means of sequences.
Sections 4.3—4.5 treat infinite series of constant, sequences and infinite series of functions,
and power series, again in greater detail than in most comparable textbooks. The instruc-
tor who chooses not to cover these sections completely can omit the less standard topics
without loss in subsequent sections.

Chapter 5 is devoted to real-valued functions of several variables. It begins with a dis-
cussion of the toplogy of R” in Section 5.1. Continuity and differentiability are discussed
in Sections 5.2 and 5.3. The chain rule and Taylor’s theorem are discussed in Section 5.4.
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Chapter 6 covers the differential calculus of vector-valued functions of several variables.
Section 6.1 reviews matrices, determinants, and linear transformations, which are integral
parts of the differential calculus as presented here. In Section 6.2 the differential of a
vector-valued function is defined as a linear transformation, and the chain rule is discussed
in terms of composition of such functions. The inverse function theorem is the subject of
Section 6.3, where the notion of branches of an inverse is introduced. In Section 6.4 the
implicit function theorem is motivated by first considering linear transformations and then
stated and proved in general.

Chapter 7 covers the integral calculus of real-valued functions of several variables. Mul-
tiple integrals are defined in Section 7.1, first over rectangular parallelepipeds and then
over more general sets. The discussion deals with the multiple integral of a function whose
discontinuities form a set of Jordan content zero. Section 7.2 deals with the evaluation by
iterated integrals. Section 7.3 begins with the definition of Jordan measurability, followed
by a derivation of the rule for change of content under a linear transformation, an intuitive
formulation of the rule for change of variables in multiple integrals, and finally a careful
statement and proof of the rule. The proof is complicated, but this is unavoidable.

Chapter 8 deals with metric spaces. The concept and properties of a metric space are
introduced in Section 8.1. Section 8.2 discusses compactness in a metric space, and Sec-
tion 8.3 discusses continuous functions on metric spaces.

Although this book has been published previously in hard copy, this electronic edition
should be regarded as a first edition, since producing it involved the nontrivial task of
combining ISTEX files that were originally submitted to the publisher separately, and intro-
ducing new fonts. Hence, there are undoubtedly errors—mathematical and typographical-in
this edition. Corrections are welcome and will be incorporated when received.

William F. Trench

wtrench @trinity.edu

Home: 659 Hopkinton Road
Hopkinton, NH 03229



CHAPTER 1
The Real Numbers

IN THIS CHAPTER we begin the study of the real number system. The concepts discussed
here will be used throughout the book.

SECTION 1.1 deals with the axioms that define the real numbers, definitions based on
them, and some basic properties that follow from them.

SECTION 1.2 emphasizes the principle of mathematical induction.

SECTION 1.3 introduces basic ideas of set theory in the context of sets of real num-
bers. In this section we prove two fundamental theorems: the Heine-Borel and Bolzano—
Weierstrass theorems.

1.1 THE REAL NUMBER SYSTEM

Having taken calculus, you know a lot about the real number system; however, you
probably do not know that all its properties follow from a few basic ones. Although we
will not carry out the development of the real number system from these basic properties,
it is useful to state them as a starting point for the study of real analysis and also to focus
on one property, completeness, that is probably new to you.

Field Properties

The real number system (which we will often call simply the reals) is first of all a set
{a,b,c,...} on which the operations of addition and multiplication are defined so that
every pair of real numbers has a unique sum and product, both real numbers, with the
following properties.

(A) a+b=0>b+aandab = ba (commutative laws).

(B) (@a+b)+c=a+ (b+c)and (ab)c = a(bc) (associative laws).

(C) a(b +c) = ab + ac (distributive law).

(D) There are distinct real numbers 0 and 1 such thata + 0 = @ and al = a for all a.

(E) For each a there is a real number —a such that a + (—a) = 0, and if a # 0, there is
a real number 1/a such thata(1/a) = 1.
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The manipulative properties of the real numbers, such as the relations

(a + b)? = a? + 2ab + b2,
(3a + 2b)(4c + 2d) = 12ac + 6ad + 8bc + 4bd,
(-a) = (=Da, a(=b) = (—a)b = —ab,

and

a ¢ ad+bc
E+E_T (b,d #0),

all follow from (A)—(E). We assume that you are familiar with these properties.

A set on which two operations are defined so as to have properties (A )—(E) is called a
field. The real number system is by no means the only field. The rational numbers (which
are the real numbers that can be writtenas r = p/q, where p and g are integers and ¢ # 0)
also form a field under addition and multiplication. The simplest possible field consists of
two elements, which we denote by 0 and 1, with addition defined by

0+0=14+1=0, 1+40=0+1=1, 1)
and multiplication defined by
0-0=0-1=1-0=0, 1-1=1 2)

(Exercise 2).

The Order Relation

The real number system is ordered by the relation <, which has the following properties.

(F) For each pair of real numbers a and b, exactly one of the following is true:

a=b, a<b, or b<a.

(G) Ifa <bandb < c,thena < c. (The relation < is transitive.)
(H) Ifa <b,thena + ¢ <b + ¢ forany ¢, and if 0 < ¢, then ac < bc.

A field with an order relation satisfying (F')—(H) is an ordered field. Thus, the real
numbers form an ordered field. The rational numbers also form an ordered field, but it is
impossible to define an order on the field with two elements defined by (1) and (2) so as to
make it into an ordered field (Exercise 2).

We assume that you are familiar with other standard notation connected with the order
relation: thus, a > b means that b < a; a > b means that eithera = bora > b;a <b
means that either a = b or a < b; the absolute value of a, denoted by |a|, equals a if
a > 0or —aif a < 0. (Sometimes we call |a| the magnitude of a.)

You probably know the following theorem from calculus, but we include the proof for
your convenience.
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Theorem 1.1.1 (The Triangle Inequality) Ifa and b are any two real numbers,
then

la + b| < |a| + |b]. 3)
Proof There are four possibilities:
(a) Ifa>0andb >0,thena+b > 0,50|a+b|=a+b = |a| + |b|.
(b) Ifa<0andb <0,thena+b <0,s0|a+b|=—a+ (=b) = |a| + |b|.
(c) Ifa<Oandb > 0,thena +b = —|a|+ |b|,s0 |a +b| = |—|a|+|b|| <|a|+ |b|.
(d) Ifa>0andb <0, thena + b = |a| — |b|,s0 |a + b| = ||a| — |b]|| < |a| + |b|. O

The triangle inequality appears in various forms in many contexts. It is the most impor-
tant inequality in mathematics. We will use it often.

Corollary 1.1.2 Ifa and b are any two real numbers, then
la = b = [la] = [b]] @)

and

la + b = [la| - [b|. 5)
Proof Replacing a by a — b in (3) yields
la| < |a —b| + |b].

o)
la —b| = |a| — |b]. (6)
Interchanging a and b here yield
|b—al = |b| —lal,
which is equivalent to
la —b] = |b| —|al. @)
since |b — a| = |a — b|. Since
la| —1b] if |a| > |b],
|la| — Ib]] = .
b —la| if |b| > |al,
(6) and (7) imply (4). Replacing b by —b in (4) yields (5), since | — b| = |b|. 0

Supremum of a Set

A set S of real numbers is bounded above if there is a real number b such that x < b
whenever x € S. In this case, b is an upper bound of S. If b is an upper bound of S,
then so is any larger number, because of property (G). If B is an upper bound of S, but no
number less than f is, then 8 is a supremum of S, and we write

B =supS.
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With the real numbers associated in the usual way with the points on a line, these defini-
tions can be interpreted geometrically as follows: b is an upper bound of S if no point of S
is to the right of b; B = sup S if no point of S is to the right of 8, but there is at least one
point of S to the right of any number less than 8 (Figure 1.1.1).

(S = dark line segments)

Figure 1.1.1

Example 1.1.1 If S is the set of negative numbers, then any nonnegative number is an
upper bound of S, and sup S = 0. If S is the set of negative integers, then any number a
such that a > —1 is an upper bound of Sy, and sup S; = —1. |

This example shows that a supremum of a set may or may not be in the set, since S;
contains its supremum, but S does not.

A nonempty set is a set that has at least one member. The empty set, denoted by @, is the
set that has no members. Although it may seem foolish to speak of such a set, we will see
that it is a useful idea.

The Completeness Axiom

It is one thing to define an object and another to show that there really is an object that
satisfies the definition. (For example, does it make sense to define the smallest positive
real number?) This observation is particularly appropriate in connection with the definition
of the supremum of a set. For example, the empty set is bounded above by every real
number, so it has no supremum. (Think about this.) More importantly, we will see in
Example 1.1.2 that properties (A)—(H) do not guarantee that every nonempty set that
is bounded above has a supremum. Since this property is indispensable to the rigorous
development of calculus, we take it as an axiom for the real numbers.

(I) If a nonempty set of real numbers is bounded above, then it has a supremum.

Property (I) is called completeness, and we say that the real number system is a complete
ordered field. It can be shown that the real number system is essentially the only complete
ordered field; that is, if an alien from another planet were to construct a mathematical
system with properties (A)—(I), the alien’s system would differ from the real number
system only in that the alien might use different symbols for the real numbers and +, -,
and <.

Theorem 1.1.3 If a nonempty set S of real numbers is bounded above, then sup S is
the unique real number B such that

(a) x <Bforallxins§;

(b) if € > 0 (no matter how small), there is an xo in S such that xo > f§ — €.
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Proof We first show that 8 = sup S has properties (a) and (b). Since f is an upper
bound of S, it must satisfy (a). Since any real number a less than 8 can be written as 8 —¢
withe = B —a > 0, (b) is just another way of saying that no number less than 8 is an
upper bound of S. Hence, B = sup S satisfies (a) and (b).

Now we show that there cannot be more than one real number with properties (a) and
(b). Suppose that 8; < B> and B, has property (b); thus, if € > 0, there is an xo in S
such that xo > 2 — €. Then, by taking € = 8, — B, we see that there is an x¢ in S such
that

xo > B2 — (B2 — f1) = B,
so B1 cannot have property (a). Therefore, there cannot be more than one real number
that satisfies both (a) and (b). a

Some Notation

We will often define a set S by writing S = {x | }, which means that S consists of all
x that satisfy the conditions to the right of the vertical bar; thus, in Example 1.1.1,

S ={x|x <0} ®)
and
S = {x | X is a negative integer} .

We will sometimes abbreviate “x is a member of S” by x € S, and “x is not a member of
S” by x ¢ S. For example, if S is defined by (8), then

—1€S but 0¢S.

A nonempty set is a set that has at least one member. The empty set , denoted by @, is the
set that has no members. Although it may seem foolish to speak of such a set, we will see
that it is a useful concept.

The Archimedean Property

The property of the real numbers described in the next theorem is called the Archimedean
property. Intuitively, it states that it is possible to exceed any positive number, no matter
how large, by adding an arbitrary positive number, no matter how small, to itself sufficiently
many times.

Theorem 1.1.4 (The Archimedean Property) If p and € are positive, then
ne > p for some integer n.

Proof The proof is by contradiction. If the statement is false, p is an upper bound of
the set
S = {x |x = ne,nisan integer} .

Therefore, S has a supremum f, by property (I). Therefore,

ne < B forall integers n. C)
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Since n + 1 is an integer whenever 7 is, (9) implies that
m+De<p
and therefore
ne<f—e

for all integers n. Hence, 8 — € is an upper bound of S. Since 8 — € < B, this contradicts
the definition of S. 0

Density of the Rationals and Irrationals

Definition 1.1.5 A set D is dense in the reals if every open interval (a, b) contains a
member of D. [ ]

Theorem 1.1.6 The rational numbers are dense in the reals; that is, if a and b are
real numbers with a < b, there is a rational number p/q such thata < p/q < b.

Proof From Theorem 1.1.4 with p = 1 and € = b —a, there is a positive integer ¢ such
that g(b — a) > 1. There is also an integer j such that j > ga. This is obviousif a < 0,
and it follows from Theorem 1.1.4 withe = 1 and p = ga if a > 0. Let p be the smallest
integer such that p > ga. Then p — 1 < ga, so

ga <p<qa+1.
Since 1 < g(b — a), this implies that
ga < p <qga+qb—a)=qgb,
soga < p < gb. Therefore,a < p/q < b. 0

Example 1.1.2 The rational number system is not complete; that is, a set of rational
numbers may be bounded above (by rationals), but not have a rational upper bound less
than any other rational upper bound. To see this, let

S = {r | r is rational and r? < 2} .

Ifr € S,thenr < /2. Theorem 1.1.6 implies that if € > 0 there is a rational number rg
such that v2 — € < ro < «/5, so Theorem 1.1.3 implies that V2 = sup S. However, V2
is irrational; that is, it cannot be written as the ratio of integers (Exercise 3). Therefore, if
r1 is any rational upper bound of S, then /2 < r;. By Theorem 1.1.6, there is a rational
number 75, such that V2 < rp < ry. Since r, is also a rational upper bound of S, this shows
that S has no rational supremum. [ ]

Since the rational numbers have properties (A.)—(H), but not (I), this example shows
that (I) does not follow from (A)-(H).

Theorem 1.1.7 The set of irrational numbers is dense in the reals ; that is, if a and b
are real numbers with a < b, there is an irrational number t such thata <t < b.
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Proof From Theorem 1.1.6, there are rational numbers r; and r, such that

a<ry<ry<h. (10)
Let |
t=r+ E(rz —rl).
Then ¢ is irrational (why?) and r{ <t < rz,s0a <t < b, from (10). a

Infimum of a Set

A set S of real numbers is bounded below if there is a real number a such that x > a
whenever x € S. In this case, a is a lower bound of S. If a is a lower bound of S, so is
any smaller number, because of property (G). If « is a lower bound of S, but no number
greater than « is, then « is an infimum of S, and we write

o = inf S.

Geometrically, this means that there are no points of S to the left of «, but there is at least
one point of S to the left of any number greater than «.

Theorem 1.1.8 If a nonempty set S of real numbers is bounded below, then inf S is
the unique real number o such that

(a) x>aforallxinsS;
(b) ife > 0 (no matter how small), there is an xo in S such that xo < & + €.

Proof (Exercise 6)

A set S is bounded if there are numbers a and b such thata < x < b forall x in S. A
bounded nonempty set has a unique supremum and a unique infimum, and

infS <supS (1
(Exercise 7). a

The Extended Real Number System

A nonempty set S of real numbers is unbounded above if it has no upper bound, or un-
bounded below if it has no lower bound. It is convenient to adjoin to the real number
system two fictitious points, 400 (which we usually write more simply as co) and —oo,
and to define the order relationships between them and any real number x by

—00 < X < 00. (12)
We call co and —oo points at infinity. If S is a nonempty set of reals, we write
sup S = o0 (13)
to indicate that S is unbounded above, and
infS = —o0 (14)

to indicate that S is unbounded below.
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Example 1.1.3 If

S ={x|x<2},
then sup S = 2 and inf S = —oo. If

S ={x|x>=-2},
then supS = oo and infS = —2. If S is the set of all integers, then sup S = oo and
infS = —oo0. [ ]

The real number system with co and —oo adjoined is called the extended real number
system, or simply the extended reals. A member of the extended reals differing from —oo
and oo is finite; that is, an ordinary real number is finite. However, the word “finite” in
“finite real number” is redundant and used only for emphasis, since we would never refer
to 0o or —oo as real numbers.

The arithmetic relationships among oo, —oo, and the real numbers are defined as follows.

(a) Ifaisany real number, then

a+o0o= o0o+a= o0,
a—o00=—-00+a=—00,
a a
—=—=0.
0o —00
(b) Ifa > 0,then
aco = ooa = o9,
a(—o0) = (—o0)a = —oo.
(c) Ifa <0, then
aco = ooa = —09,
a(-00) = (~)a = oo.
We also define
00 + 00 = 0000 = (—00)(—00) = 0o
and
—00 — 00 = 00(—00) = (—00)o0 = —00.
Finally, we define
|oo| = | — 00| = oo.

The introduction of co and —oo, along with the arithmetic and order relationships defined
above, leads to simplifications in the statements of theorems. For example, the inequality
(11), first stated only for bounded sets, holds for any nonempty set S if it is interpreted
properly in accordance with (12) and the definitions of (13) and (14). Exercises 10(b)
and 11(b) illustrate the convenience afforded by some of the arithmetic relationships with
extended reals, and other examples will illustrate this further in subsequent sections.
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It is not useful to define co — 0o, 0 - 00, 00/ 00, and 0/0. They are called indeterminate
forms, and left undefined. You probably studied indeterminate forms in calculus; we will
look at them more carefully in Section 2.4.

1.1 Exercises

1. Write the following expressions in equivalent forms not involving absolute values.
(a)a+b+|a—0b| (b)a+b—l|a—b|
(c)a+b+2c+la—bl+|a+b—2c+|a—Db|
(d)a+b+2c—la—bl—|a+b—2c—|a—0b|

2. Verify that the set consisting of two members, 0 and 1, with operations defined by
Eqns. (1) and (2), is a field. Then show that it is impossible to define an order < on
this field that has properties (F'), (G), and (H).

3. Show that /2 is irrational. HINT: Show that if /2 = m/n, where m and n are
integers, then both m and n must be even. Obtain a contradiction from this.

4. Show that ,/p is irrational if p is prime.
5. Find the supremum and infimum of each S. State whether they are in S.
(a) S={x[x=-1/n)+ 1+ (D"In%n=>1}
(b) §=1{x|x*<9)
(¢) S={x|x2=<7}
(d) S={x|]2x+1] <5}
(e) S={x[x2+D7'>1}
(f) S = {x]|x = rational and x> < 7}
6. Prove Theorem 1.1.8. HINT: The set T = {x | —x € S} is bounded above if S is
bounded below. Apply property (1) and Theorem 1.1.3 to T.

7. (a) Show that
inf S <sup S (A)

for any nonempty set S of real numbers, and give necessary and sufficient
conditions for equality.

(b) Show that if S is unbounded then (A) holds if it is interpreted according to
Eqn. (12) and the definitions of Eqns. (13) and (14).

8. Let S and T be nonempty sets of real numbers such that every real number is in S
orT andifs € S andt € T, then s < t. Prove that there is a unique real number j
such that every real number less than § is in S and every real number greater than
B isin T. (A decomposition of the reals into two sets with these properties is a
Dedekind cut. This is known as Dedekind’s theorem.)
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9.

10.

11.

12.

Using properties (A)—(H) of the real numbers and taking Dedekind’s theorem
(Exercise 8) as given, show that every nonempty set U of real numbers that is
bounded above has a supremum. HINT: Let T be the set of upper bounds of U
and S be the set of real numbers that are not upper bounds of U.

Let S and T be nonempty sets of real numbers and define
S+T:{s+t|s€S,t€T}.
(a) Show that

sup(S +T)=supS +supT (A)
if S and T are bounded above and
inf(S + T) =infS 4+ infT B)

if S and T are bounded below.
(b) Show that if they are properly interpreted in the extended reals, then (A) and
(B) hold if S and T are arbitrary nonempty sets of real numbers.

Let S and T be nonempty sets of real numbers and define
S—-T = {s—t|s€S,t€T}.
(a) Show thatif S and T are bounded, then
sup(S —T) =supS —infT (A)
and
inf(S—T) =infS —supT. B)

(b) Show that if they are properly interpreted in the extended reals, then (A) and
(B) hold if S and T are arbitrary nonempty sets of real numbers.

Let S be a bounded nonempty set of real numbers, and let ¢ and b be fixed real
numbers. Define T = {as +b | seS } Find formulas for sup 7" and inf T in terms
of sup S and inf S. Prove your formulas.

1.2 MATHEMATICAL INDUCTION

If a flight of stairs is designed so that falling off any step inevitably leads to falling off the
next, then falling off the first step is a sure way to end up at the bottom. Crudely expressed,
this is the essence of the principle of mathematical induction: If the truth of a statement
depending on a given integer n implies the truth of the corresponding statement with n
replaced by n + 1, then the statement is true for all positive integers n if it is true forn = 1.
Although you have probably studied this principle before, it is so important that it merits
careful review here.

Peano’s Postulates and Induction

The rigorous construction of the real number system starts with a set N of undefined ele-
ments called natural numbers, with the following properties.



Section 1.2 Mathematical Induction 11

(A) Nisnonempty.

(B) Associated with each natural number 7 there is a unique natural number n’ called
the successor of n.

(C) There is a natural number 7 that is not the successor of any natural number.

(D) Distinct natural numbers have distinct successors; that is, if n # m, then n’ # m’.

(E) The only subset of N that contains 77 and the successors of all its elements is N
itself.

These axioms are known as Peano’s postulates. The real numbers can be constructed
from the natural numbers by definitions and arguments based on them. This is a formidable
task that we will not undertake. We mention it to show how little you need to start with to
construct the reals and, more important, to draw attention to postulate (E), which is the
basis for the principle of mathematical induction.

It can be shown that the positive integers form a subset of the reals that satisfies Peano’s
postulates (with7 = 1 and n’ = n + 1), and it is customary to regard the positive integers
and the natural numbers as identical. From this point of view, the principle of mathematical
induction is basically a restatement of postulate (E).

Theorem 1.2.1 (Principle of Mathematical Induction) Let Py, Ps,...,
Pna
... be propositions, one for each positive integer, such that

(a) Py is true;
(b) for each positive integer n, Py, implies Ppy1.

Then P, is true for each positive integer n.

Proof Let
M = {n|n € Nand P, istrue}.

From (a), 1 € M, and from (b), n + 1 € M whenever n € M. Therefore, Ml = N, by
postulate (E). a

Example 1.2.1 Let P, be the proposition that

nn+1
1+2+---+n:¥, 1)
Then P; is the proposition that 1 = 1, which is certainly true. If P, is true, then adding
n + 1 to both sides of (1) yields
n(n+1)
2

n
:(n+1)(§+1)
_(n+ DM +2)
=

A+2+-+m)+m+1)= + @ +1)

or
n+Dn+2)

1+24+@m+1)= 3 :
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which is P, 41, since it has the form of (1), with n replaced by n 4+ 1. Hence, P, implies
P, 41, s0 (1) is true for all n, by Theorem 1.2.1. ]

A proof based on Theorem 1.2.1 is an induction proof, or proof by induction. The
assumption that P, is true is the induction assumption. (Theorem 1.2.3 permits a kind of
induction proof in which the induction assumption takes a different form.)

Induction, by definition, can be used only to verify results conjectured by other means.
Thus, in Example 1.2.1 we did not use induction to find the sum

Sp=14+2+---+n; 2)
rather, we verified that
nn+1)
Sw = —S—E———. 3)

How you guess what to prove by induction depends on the problem and your approach to
it. For example, (3) might be conjectured after observing that
_ 23 4.3

1.2
Sl:l:T’ S2=3 T, S3=6=T.
However, this requires sufficient insight to recognize that these results are of the form (3)
forn = 1, 2, and 3. Although it is easy to prove (3) by induction once it has been conjec-
tured, induction is not the most efficient way to find s,, which can be obtained quickly by
rewriting (2) as
Sp=n+m—-1)+---+1

and adding this to (2) to obtain
2sp =+ 1]+[m—1)+2]+---+[1+n]

There are n bracketed expressions on the right, and the terms in each add up to n + 1;
hence,

25, =nn + 1),
which yields (3).

The next two examples deal with problems for which induction is a natural and efficient
method of solution.

Example 1.2.2 Leta; = 1 and

1

—a,, >1 4
n+1an n> 4

p+1 =
(we say that a,, is defined inductively), and suppose that we wish to find an explicit formula
for a,. By considering n = 1, 2, and 3, we find that
1 1 1

= — = d =
M eTry M BTy
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and therefore we conjecture that

1
an = &)

_n—!.

This is given for n = 1. If we assume it is true for some n, substituting it into (4) yields

1 1 1

:n+1n_!_(n+l)!’

an+1

which is (5) with n replaced by n 4 1. Therefore, (5) is true for every positive integer n, by
Theorem 1.2.1. [ ]

Example 1.2.3 For each nonnegative integer n, let x, be a real number and suppose
that
|Xnt1 — Xn| < 7|xn — Xp—1], n>1, (6)

where r is a fixed positive number. By considering (6) for n = 1, 2, and 3, we find that

lx2 — x1| < r|x1 — Xol.
|x3 — x2| < rlxz — x1| < r?|x1 — xol,
|xa — x3| < 7lxs — x2| < 7r3|x1 — x0l.

Therefore, we conjecture that
| = xn—1] < 7" Mg —xo| if n =1 (7)
This is trivial for n = 1. If it is true for some #n, then (6) and (7) imply that
|Xnt1 = xal < 7" Hxr = Xol). S0 |Xny1 — Xn| < r"|x1— xol,

which is proposition (7) with n replaced by n + 1. Hence, (7) is true for every positive
integer n, by Theorem 1.2.1. [ ]

The major effort in an induction proof (after Py, P5, ..., Py, ... have been formulated)
is usually directed toward showing that P, implies P,;. However, it is important to verify
Py, since P, may imply P, even if some or all of the propositions Py, Pa, ..., Py, ...
are false.

Example 1.2.4 Let P, be the proposition that 21 — 1 is divisible by 2. If P, is true
then P, is also, since
2n+1=02n—-1)+ 2.

However, we cannot conclude that Py, is true for n > 1. In fact, P, is false for every n. B

The following formulation of the principle of mathematical induction permits us to start
induction proofs with an arbitrary integer, rather than 1, as required in Theorem 1.2.1.
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Theorem 1.2.2 Let ng be any integer (positive, negative, or zero). Let Py, Pno+1,
.., P, ... be propositions, one for each integer n > ngy, such that

(a) Py, is true;
(b) for each integer n > ng, P, implies Ppy1.

Then P, is true for every integer n > ny.

Proof Form > 1,let Q,, be the proposition defined by Q, = Ppno—1. Then Q1 =
Py, istrue by (). If m > 1 and Qs = Pptng—1 is true, then Qi1 = Prgn, is true by
(b) with n replaced by m + no — 1. Therefore, Q,, is true for all m > 1 by Theorem 1.2.1
with P replaced by Q and n replaced by m. This is equivalent to the statement that P, is
true for all n > ny. a

Example 1.2.5 Consider the proposition P, that
3n+16 > 0.
If P, is true, then so is P41, since

3n+1)+16=3n+3+16
= (3n + 16) + 3 > 0 + 3 (by the induction assumption)
> 0.

The smallest no for which Py, is true is no = —5. Hence, P, is true for n > —5, by
Theorem 1.2.2. |

Example 1.2.6 Let P, be the proposition that
n!—3">0.
If P, is true, then
(n+ D) =3"" =pi(n + 1) — 3" *!
> 3"(n + 1) —3"t!  (by the induction assumption)
=3"(n—2).
Therefore, P, implies P,y if n > 2. By trial and error, no = 7 is the smallest integer
such that Py, is true; hence, P, is true forn > 7, by Theorem 1.2.2. |

The next theorem is a useful consequence of the principle of mathematical induction.

Theorem 1.2.3 Let ng be any integer (positive, negative, or zero). Let Pny, Pno+1-- - - »
P, ... be propositions, one for each integer n > ny, such that

(a) Py, is true;
(b) forn > no, Ppyy is true if Ppy, Png+1...., Py are all true.

Then P, is true for n > ny.
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Proof Forn > ng, let Q, be the proposition that Pny, Pug+1, ..., Py are all true. Then
Oy, is true by (a). Since Q, implies P,y by (b), and Q41 is true if Q, and P, are
both true, Theorem 1.2.2 implies that Q,, is true for all # > ny. Therefore, P, is true for
alln > ny. a

Example 1.2.7 Aninteger p > 11is a prime if it cannot be factored as p = rs where
r and s are integersand 1 < r, s < p. Thus, 2,3, 5,7, and 11 are primes, and, although 4,
6, 8,9, and 10 are not, they are products of primes:

4=2.2, 6=2-3, 8§=2-2-2, 9=3.3, 10=2-5.

These observations suggest that each integer n > 2 is a prime or a product of primes. Let
this proposition be P,. Then P, is true, but neither Theorem 1.2.1 nor Theorem 1.2.2
apply, since P, does not imply P,4; in any obvious way. (For example, it is not evident
from24 =2 -2 -2 - 3 that 25 is a product of primes.) However, Theorem 1.2.3 yields the
stated result, as follows. Suppose that n > 2 and P,, ..., P, are true. Eithern + 1is a
prime or

n+1=rs, (8)

where r and s are integers and 1 < r, s < n, so P, and Py are true by assumption. Hence,
r and s are primes or products of primes and (8) implies that n + 1 is a product of primes.
We have now proved Py (thatn + 1 is a prime or a product of primes). Therefore, Py, is
true for all n > 2, by Theorem 1.2.3. |

1.2 Exercises

Prove the assertions in Exercises 1-6 by induction.

1. The sum of the first n odd integers is n?.

D2 1

6
4n? — 1
243244 Qn—1)? = %
Ifay,as, ..., a, are arbitrary real numbers, then

a1 +az + -+ an| < |ai] + |az| + -+ + |an|-
5. Ifa; >0,i > 1, then
(I+a)(d+a2)---(I+ay) 21+ar+ax+---+an.

6. If0<ag; <1,i >1,then

(I—a)(—az)--(1—an) >1—ay—az---—a.
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10.

11.

12.

13.

14.

Suppose that so > Oand s, =1 —e™»~1 n > 1. Showthat0 < s, < 1,n > 1.

Suppose that R > 0, xo > 0, and

> (5,4 )
Xpt1=\—+xn), n=0.
2 \ xy

Prove: Forn > 1, x, > xp4+1 > ~/ R and

b VR < LG VR?

- on X0

Find and prove by induction an explicit formula for a, if a; = 1 and, forn > 1,

an _ 3ay
@) @t = C G (b)antr = & S an %)
2n + 1 "
(c) ant1 = PR (d) ant1 = (1 + ;) dn

Leta; = 0 and a,4+1 = (n + 1)a, forn > 1, and let P, be the proposition that
a, = n!

(a) Show that P, implies Py41.

(b) Is there an integer n for which P, is true?

Let P, be the proposition that

2 —1
L4242 030D

(a) Show that P, implies Py41.
(b) Is there an integer n for which P, is true?

For what integers 7 is

1 8"
— > ?
n!  (2n)!

Prove your answer by induction.

Let a be an integer > 2.

(a) Show by induction that if 7 is a nonnegative integer, then n = aq + r, where
q (quotient) and r (remainder) are integers and 0 < r < a.

(b) Show that the result of () is true if » is an arbitrary integer (not necessarily
nonnegative).

(c) Show that there is only one way to write a given integer n in the form n =
aq + r,where g and r are integers and 0 < r < q.

Take the following statement as given: If p is a prime and a and b are integers such
that p divides the product ab, then p divides a or b.



15.

16.

17.

18.

19.
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(a) Prove: If p, p1,..., px are positive primes and p divides the product p; - - - pg,
then p = p; forsome i in {1, ..., k}.

(b) Let n be an integer > 1. Show that the prime factorization of n found in
Example 1.2.7 is unique in the following sense: If

n=pi---pr and n=dqiqz---4qs,

where p1, ..., pr, 41, ..., ¢s are positive primes, then r = s and {q1,...,¢r}
is a permutation of {py, ..., pr}.

Let a; = a; = 5 and
Apy1 = ap + 6ap—1, n>2.

Show by induction that @, = 3" — (—2)" if n > 1.

Leta; =2,a, =0,a3 = —14, and

any+1 = 9a, —23ay—1 + 15a,—2, n > 3.

Show by induction that a,, = 3”71 —5"71 4+ 2 n > 1.

The Fibonacci numbers {F,}3° | are defined by F; = F, = 1 and
Fop1r=Fp+ Fper, n>=2.

Prove by induction that

(=1

F,
n 2”«/5

Prove by induction that
n!

1
/(; Y —=y)dy= r+ 0 +2)-(r+n+1)

if n is a nonnegative integer and r > —1.

. . . . . n
Suppose that m and n are integers, with 0 < m < n. The binomial coefficient ( )
m

is the coefficient of #" in the expansion of (1 + ¢)"; that is,

A+0"=>" (;)#”.

m=0

From this definition it follows immediately that

n n

( ) - ( ) - 1’ " 2 O‘
0 n

For convenience we define

(1)=(,2) =0 »=o
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20.
21.

22,

(a) Show that

() =(0) () ommee

and use this to show by induction on 7 that

n n!
=———— 0<m<n.
(m) m!(n —m)!

(b) Show that
n ofn) n AN
mE=0(—l) (m) =0 and E (m) =2".

(c) Show that

n

n __ n m_n—m

x+y) —Z(m>xy .
m=0

(This is the binomial theorem.)

Use induction to find an nth antiderivative of log x, the natural logarithm of x.

Let f1(x1) = g1(x1) = x1. Forn > 2, let

f"(xl’xz"“’x”):fn—l(xl,xz,...,xn_l)+2n_2xn+

| fum1 (X1, %20 oy Xp1) — 2772

and

gn(X1,X2, .o\ Xn) = gno1 (X1, X2, o, Xp—1) + 272X —

|gn—1(x1. %2, ..., Xp—1) — 2" 2xn].

Find explicit formulas for f,(x1, x2,...,X,) and g,(x1, X2, ..., X,). HINT: See

Exercise l.l.l(a) and (b)

Prove by induction that

. . . 1 —cos2nx
sinx +sin3x 4+---4+sin2n—1)x = ——, n>1.
2sinx

HINT: You will need trigonometric identities that you can derive from the identities

cos(A — B) = cos Acos B + sin Asin B,
cos(A + B) = cos Acos B — sin Asin B.

Take these two identities as given.
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23. Supposethata; <a; <---<ayandb; <by <---<b,. Let{{y,{s,... £y} bea
permutation of {1, 2, ...,n}, and define

Q(el,ez, ,6,,) = Z(al. _bei)Z‘

i=1
Show that
01,45,...,4,) > 0(1,2,...,n).

1.3 THE REAL LINE

One of our objectives is to develop rigorously the concepts of limit, continuity, differen-
tiability, and integrability, which you have seen in calculus. To do this requires a better
understanding of the real numbers than is provided in calculus. The purpose of this section
is to develop this understanding. Since the utility of the concepts introduced here will not
become apparent until we are well into the study of limits and continuity, you should re-
serve judgment on their value until they are applied. As this occurs, you should reread the
applicable parts of this section. This applies especially to the concept of an open covering
and to the Heine—Borel and Bolzano—Weierstrass theorems, which will seem mysterious at
first.

We assume that you are familiar with the geometric interpretation of the real numbers as
points on a line. We will not prove that this interpretation is legitimate, for two reasons: (1)
the proof requires an excursion into the foundations of Euclidean geometry, which is not
the purpose of this book; (2) although we will use geometric terminology and intuition in
discussing the reals, we will base all proofs on properties (A )—(I) (Section 1.1) and their
consequences, not on geometric arguments.

Henceforth, we will use the terms real number system and real line synonymously and
denote both by the symbol R; also, we will often refer to a real number as a point (on the
real line).

Some Set Theory

In this section we are interested in sets of points on the real line; however, we will consider
other kinds of sets in subsequent sections. The following definition applies to arbitrary
sets, with the understanding that the members of all sets under consideration in any given
context come from a specific collection of elements, called the universal set. In this section
the universal set is the real numbers.

Definition 1.3.1 Let S and T be sets.

(a) S contains T, and we write S D T or T C S, if every member of T is also in S. In
this case, T is a subset of S.

(b) S — T is the set of elements that are in S butnot in 7.

(c) S equals T, and we write S = T, if S contains T and T contains S; thus, S = T if
and only if S and 7 have the same members.
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(d) S strictly contains T if S contains T but T does not contain S; that is, if every
member of 7 is also in .S, but at least one member of S is notin 7" (Figure 1.3.1).

(e) The complement of S, denoted by S¢, is the set of elements in the universal set that
are notin §.

(f) The union of S and T, denoted by S U T, is the set of elements in at least one of S
and T (Figure 1.3.1(b)).

(g) The intersectionof S and T, denoted by S N T, is the set of elements in both S and
T (Figure 1.3.1(c)). If S N T = @ (the empty set), then S and T are disjoint sets
(Figure 1.3.1(d)).

(h) A set with only one member xy is a singleton set, denoted by {xo}.

© @D

S U T = shaded region
(a) (b)

Co D OO

S N T = shaded region SNT=0
(©) ()
Figure 1.3.1

Example 1.3.1 Let

S:{x|0<x<l}, T:{x|0<x<1andxisrationa1},

and
U= {x |O <x < 1landxis irrational}.

Then S D T and S D U, and the inclusion is strict in both cases. The unions of pairs of
these sets are

SuT =S8, SUuU=S, and TUU =S,

and their intersections are

SNT=T, SNU=U, and TNU =40.
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Also,
S—U=T and S-T=U. [ |

Every set S contains the empty set @, for to say that @ is not contained in S is to say that
some member of @ is not in S, which is absurd since @ has no members. If S is any set,
then

8§ =8 and SNS°=40.

If S is a set of real numbers, then S U §¢ =R

The definitions of union and intersection have generalizations: If F is an arbitrary col-
lection of sets, then U {S | SeF } is the set of all elements that are members of at least
one of the sets in F', and N {S | SeF } is the set of all elements that are members of every
set in F. The union and intersection of finitely many sets Sy, ..., S, are also written as
Ux=1 Sk and (=, Sk. The union and intersection of an infinite sequence {Sx }32_, of sets

. 0o 00 -
are written as | Jg—; Sk and (= Sk-

Example 1.3.2 If F is the collection of sets
Sp={x|p<x=<1+p}. 0<p=1/2,
then
\J{So|Spe Fy ={x]|0<x<3/2} and [\{S,|S, € F}={x|1/2<x <1},

Example 1.3.3 If, for each positive integer k, the set Sy is the set of real numbers
that can be written as x = m/k for some integer m, then | J;—, Sk is the set of rational
numbers and ()7—; Sk is the set of integers. ]

Open and Closed Sets
If a and b are in the extended reals and a < b, then the open interval (a, b) is defined by
(a,b) = {x|a <x <b}.

The open intervals (a, 00) and (—oo, b) are semi-infinite if a and b are finite, and (—o0, 00)
is the entire real line.

Definition 1.3.2 If xq is areal number and € > 0, then the open interval (xo—¢, xo+¢€)
is an e-neighborhood of x¢. If a set S contains an e-neighborhood of x¢, then S is a
neighborhood of x, and x¢ is an interior point of S (Figure 1.3.2). The set of interior
points of S is the interior of S, denoted by S°. If every point of S is an interior point (that
is, SO = S), then S is open. A set S is closed if S¢ is open. [ ]
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S = four line segments
x, = interior point of §

Figure 1.3.2

The idea of neighborhood is fundamental and occurs in many other contexts, some of
which we will see later in this book. Whatever the context, the idea is the same: some defi-
nition of “closeness” is given (for example, two real numbers are “close” if their difference
is “small”), and a neighborhood of a point xg is a set that contains all points sufficiently
close to xg.

Example 1.3.4 An open interval (a,b) is an open set, because if xo € (a,b) and
€ <min{xg —a,b — x¢}, then

(xo—€,x0+¢€) C (a,b).

The entire line R = (—o00, 00) is open, and therefore @ (= R€) is closed. However, @ is
also open, for to deny this is to say that @ contains a point that is not an interior point, which
is absurd because @ contains no points. Since @ is open, R (= @) is closed. Thus, R and ¢
are both open and closed. They are the only subsets of R with this property (Exercise 18).

|

A deleted neighborhood of a point x¢ is a set that contains every point of some neigh-
borhood of x¢ except for xy itself. For example,

S = {x|0< |x — xo| <e}
is a deleted neighborhood of x¢. We also say that it is a deleted e-neighborhood of xy.

Theorem 1.3.3
(a) The union of open sets is open.
(b) The intersection of closed sets is closed.

These statements apply to arbitrary collections, finite or infinite, of open and closed sets.

Proof (a) Let G be a collection of open sets and
S=U{G|GeG}.

If xo € S, then xo € Gy for some Gy in G, and since Gy is open, it contains some e-
neighborhood of xg. Since Gy C S, this e-neighborhood is in S, which is consequently a
neighborhood of xo. Thus, S is a neighborhood of each of its points, and therefore open,
by definition.

(b) Let F be a collection of closed sets and T = N{F|F € F}. Then T¢ =
U {F ¢ | FeF } (Exercise 7) and, since each F¢ is open, 7€ is open, from (a). Therefore,
T is closed, by definition. a
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Example 1.3.5 If —co <a < b < oo, the set
[a,b] = {x|a fxfb}

is closed, since its complement is the union of the open sets (—oo, a) and (b, 00). We say
that [a, b] is a closed interval. The set

[a.b) = {x|a < x < b}
is a half-closed or half-open interval if —oo < a < b < 00, as is
(a.b] = {x]a < x <b};

however, neither of these sets is open or closed. (Why not?) Semi-infinite closed intervals
are sets of the form

[a,oo)z{x|a§x} and (—o0,d] = {x|x§a},

where a is finite. They are closed sets, since their complements are the open intervals
(—00,a) and (a, 00), respectively. [ |

Example 1.3.4 shows that a set may be both open and closed, and Example 1.3.5 shows
that a set may be neither. Thus, open and closed are not opposites in this context, as they
are in everyday speech.

Example 1.3.6 From Theorem 1.3.3 and Example 1.3.4, the union of any collection of
open intervals is an open set. (In fact, it can be shown that every nonempty open subset of
R is the union of open intervals.) From Theorem 1.3.3 and Example 1.3.5, the intersection
of any collection of closed intervals is closed. [ ]

It can be shown that the intersection of finitely many open sets is open, and that the
union of finitely many closed sets is closed. However, the intersection of infinitely many
open sets need not be open, and the union of infinitely many closed sets need not be closed
(Exercises 8 and 9).

Definition 1.3.4 Let S be a subset of R. Then
(a) xo is a limit point of S if every deleted neighborhood of x¢ contains a point of S.

(b) xo is a boundary point of S if every neighborhood of xo contains at least one point
in § and one not in S. The set of boundary points of S is the boundary of S, denoted
by 0S. The closure of S, denoted by S,is S = S U 9S.

(c) X is an isolated point of S if xo € S and there is a neighborhood of x¢ that contains
no other point of S.

(d) xo is exterior to S if x is in the interior of S¢. The collection of such points is the
exterior of S. ]

Example 1.3.7 Let S = (—oo0, —1] U (1,2) U {3}. Then
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(a) The set of limit points of S is (—oo, —1] U [1,2].

(b) S ={-1,1,2,3}and S = (—o0, —1] U [1,2] U {3}.

(c) 3is the only isolated point of S.

(d) The exterior of S is (—1,1) U (2,3) U (3, 00). [

Example 1.3.8 Forn > 1, let

I ! ! d S GI
= —_— an = .
" 2n+ 1" 2n ~ "

Then

(a) The set of limit points of S is S U {0}.

(b) 38 ={x|x=0o0rx=1/n(n>2)}and S =S U{0}.
(c) S hasno isolated points.

(d) The exterior of S is

o 1 1 1
(_OO’O)U[nL;Jl(Zn+2’2n+l)i|U(§’oo)‘ "

Example 1.3.9 Let S be the set of rational numbers. Since every interval contains a
rational number (Theorem 1.1.6), every real number is a limit point of .S; thus, S =R
Since every interval also contains an irrational number (Theorem 1.1.7), every real number
is a boundary point of S; thus S = R. The interior and exterior of S are both empty, and
S has no isolated points. S is neither open nor closed. [ ]

The next theorem says that S is closed if and only if S = S (Exercise 14).
Theorem 1.3.5 A ser S is closed if and only if no point of S€ is a limit point of S.

Proof Supposethat S is closed and xo € S°. Since S¢ is open, there is a neighborhood
of xg that is contained in S¢ and therefore contains no points of S. Hence, x( cannot be a
limit point of S. For the converse, if no point of S€ is a limit point of S then every point in
S¢ must have a neighborhood contained in S¢. Therefore, S€ is open and S is closed. 0O

Theorem 1.3.5 is usually stated as follows.
Corollary 1.3.6 A set is closed if and only if it contains all its limit points.

Theorem 1.3.5 and Corollary 1.3.6 are equivalent. However, we stated the theorem as
we did because students sometimes incorrectly conclude from the corollary that a closed
set must have limit points. The corollary does not say this. If S has no limit points, then the
set of limit points is empty and therefore contained in S. Hence, a set with no limit points
is closed according to the corollary, in agreement with Theorem 1.3.5. For example, any
finite set is closed and so is an infinite set comprised entirely of isolated points, such as the
set of integers.



Section 1.3 The Real Line 25

Open Coverings

A collection H of open sets is an open covering of a set S if every pointin S is contained
in a set H belonging to H; thatis, if S C U {H | H e H}.

Example 1.3.10 The sets

Sl = [0, 1], 522{1,2,...,11,...},

1 1
S3 = {1,—,...,—,...}, and Ss=(0,1)
2 n

are covered by the families of open intervals
H, = ! + ! O0<x<l1 (N = positive integer)
1= -y ity x , = positive integer),

" Lol
= n——’n —
2 4 4

n:l,Z,...},

1 1
H3= 1° 1 n=1,2,... B
and
respectively. [ ]

Theorem 1.3.7 (Heine-Borel Theorem) If H is an open covering of a closed
and bounded subset S of the real line, then S has an open covering H consisting of finitely
many open sets belonging to H .

Proof Since S is bounded, it has an infimum « and a supremum B, and, since S is
closed, @ and B belong to S (Exercise 17). Define

Sy =SN[a,t] for t>a,

and let
F = {t |oz <t < B and finitely many sets from H cover S,} .

Since Sg = S, the theorem will be proved if we can show that 8 € F. To do this, we use
the completeness of the reals.

Since o € S, Sy is the singleton set {&}, which is contained in some open set H, from
H because H covers S; therefore, « € F. Since F is nonempty and bounded above by B,
it has a supremum y. First, we wish to show that y = f. Since y < f by definition of F,
it suffices to rule out the possibility that y < 8. We consider two cases.
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CASE 1. Suppose that y < B and y € S. Then, since S is closed, y is not a limit point
of S (Theorem 1.3.5). Consequently, there is an € > 0 such that

[y—€,y+elnS =0,

s0 Sy—e = Sy+e. However, the definition of y implies that S, _ has a finite subcovering
from H, while Sy 4 does not. This is a contradiction.

CASE 2. Suppose that y < B and y € S. Then there is an open set H, in H that
contains y and, along with y, an interval [y — €, y + €] for some positive €. Since S, _¢ has
a finite covering {H1, ..., Hy} of sets from H, it follows that S, has the finite covering
{H,..., H,, H,}. This contradicts the definition of y.

Now we know that y = 8, which is in S. Therefore, there is an open set Hg in H that
contains § and along with 8, an interval of the form [8 — €, B + €], for some positive €.
Since Sg_. is covered by a finite collection of sets {H1, ..., Hr}, Sg is covered by the
finite collection {Hy, ..., Hy, Hg}. Since Sg = S, we are finished. a

Henceforth, we will say that a closed and bounded set is compact. The Heine—Borel
theorem says that any open covering of a compact set S contains a finite collection that
also covers S. This theorem and its converse (Exercise 21) show that we could just as well
define a set S of reals to be compact if it has the Heine—Borel property; that is, if every
open covering of S contains a finite subcovering. The same is true of R”, which we study in
Section 5.1. This definition generalizes to more abstract spaces (called fopological spaces)
for which the concept of boundedness need not be defined.

Example 1.3.11 Since S; in Example 1.3.10 is compact, the Heine-Borel theorem
implies that S; can be covered by a finite number of intervals from H ;. This is easily veri-
fied, since, for example, the 2N intervals from H ; centered at the points x; = k/2N (0 <
k <2N — 1) cover S;.

The Heine-Borel theorem does not apply to the other sets in Example 1.3.10 since they
are not compact: S, is unbounded and S3 and Sy are not closed, since they do not contain
all their limit points (Corollary 1.3.6). The conclusion of the Heine—Borel theorem does
not hold for these sets and the open coverings that we have given for them. Each point in
S is contained in exactly one set from H;, so removing even one of these sets leaves a
point of S, uncovered. If H 3 is any finite collection of sets from H 3, then

%¢U{H|Heﬁ3}

for n sufficiently large. Any finite collection {(0, p1), ..., (0, py)} from H4 covers only
the interval (0, pmax), Where

Pmax = mMax{py,...,pn} < 1. [ ]

The Bolzano—Weierstrass Theorem

As an application of the Heine—Borel theorem, we prove the following theorem of Bolzano
and Weierstrass.
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Theorem 1.3.8 (Bolzano—Weierstrass Theorem) Every bounded infinite set
of real numbers has at least one limit point.

Proof We will show that a bounded nonempty set without a limit point can contain only
a finite number of points. If S has no limit points, then S is closed (Theorem 1.3.5) and
every point x of S has an open neighborhood N, that contains no point of S other than x.
The collection

H={N;|xeS}

is an open covering for S. Since S is also bounded, Theorem 1.3.7 implies that S can be
covered by a finite collection of sets from H, say Ny, ..., Ny,. Since these sets contain
only x1, ..., X, from S, it follows that S = {x1,..., x,}. a

1.3 Exercises

1. FindSNT,(SNT),S°NT,SUT,(SUT),and S UT*.
(a) $=(0.1),T=[3.2] (b)S={x|x?>4},T ={x|x*><9}
(c) S =(-00,00), T=0 (d) S = (—00,—1), T = (1,00)

2. LetSy=0-1/k,2+1/k],k > 1. Find
o0 o0 o0 o0
@Us ® s ©@Usi @0
k=1 k=1 k=1 k=1

3. Prove: If A and B are sets and there is a set X such that A U X = B U X and
AN X =BNX,then A = B.

4. Find the largest € such that S contains an e-neighborhood of xy.
@w=25=[L1) ()r=25=[L1]
(c)xo=5S=(-1,00 (d)xo=1,5=1(0,2)

5. Describe the following sets as open, closed, or neither, and find S 0 (S ‘)O, and
(89)°.

(a) S =(-1,2) U[3,00) (b) S = (—o0, 1)U (2,0)
(c) S =[-3.-2]U[7.8] (d) S = {x|x = integer}
6. Provethat (SNT) =S°UT and (SUT)* =S°NTe.
7. Let F be a collection of sets and define
I=n{F|FeF} and U=U{F|FeF}.

Prove that (a) I¢ = U{F¢| F € F} and (b) U¢ = {nF°|F € F}.

8. (@) Show that the intersection of finitely many open sets is open.
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10.

11.

12.
13.
14.

15.

16.

17.
18.
19.

20.

(b) Give an example showing that the intersection of infinitely many open sets
may fail to be open.

(a) Show that the union of finitely many closed sets is closed.

(b) Give an example showing that the union of infinitely many closed sets may
fail to be closed.

Prove:

(a) If U is aneighborhood of xo and U C V, then V is a neighborhood of xo.
(b) IfUy,..., Uy, are neighborhoods of xg, sois (7, Ui.

Find the set of limit points of S, 95, S, the set of isolated points of S, and the
exterior of S.

(a) S = (—00,—2)U(2,3)U {4} U(7, 00)

(b) S = {all integers}

(¢) S=uU{(n.n+1)|n = integer}

(d) S={x|x=1/n,n=12.3,...}

Prove: A limit point of a set S is either an interior point or a boundary point of S.
Prove: An isolated point of S is a boundary point of S€.

Prove:
(a) A boundary point of a set S is either a limit point or an isolated point of S.
(b) AsetS isclosed if and only if S = S.

Prove or disprove: A set has no limit points if and only if each of its points is
isolated.

(a) Prove: If S is bounded above and B = sup S, then 8 € 3S.

(b) State the analogous result for a set bounded below.

Prove: If S is closed and bounded, then inf S and sup S are bothin S.

If a nonempty subset S of R is both open and closed, then S = R.

Let S be an arbitrary set. Prove: (a) S is closed. (b) S°is open. (c¢) The exterior
of S is open. (d) The limit points of S form a closed set. (e) @ =5.

Give counterexamples to the following false statements.

(a) The isolated points of a set form a closed set.

(b) Every open set contains at least two points.

(c) If S; and S, are arbitrary sets, then 3(S; U S3) = 351 U 9S,.

(d) If S; and S, are arbitrary sets, then 3(S; N S2) = 3S; N 3S>.

(€) The supremum of a bounded nonempty set is the greatest of its limit points.
(f) If S isany set, then 3(3S) = 35S

(g) If S isany set, then 3S = 3S.

(h) 1If Sy and S, are arbitrary sets, then (S; U S,)° = S? U S9.



21.

22,

23.

24.
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Let S be a nonempty subset of R such that if H is any open covering of S, then §
has an open covering H comprised of finitely many open sets from H . Show that S
is compact.

Aset S isdenseinaset Tif S C T C S.
(a) Prove: If S and T are sets of real numbers and S C 7', then S is dense in T
if and only if every neighborhood of each pointin 7" contains a point from S.

(b) State how (a) shows that the definition given here is consistent with the re-
stricted definition of a dense subset of the reals given in Section 1.1.

Prove:

() (S1N S0 = S? n Sg (b) S? ) Sg C(S1USy)°
Prove:

(a) 9(S1 U S2) CaS1 UDS, (b) 3(S1 N S2) C3S; UIS,
(c) 39S C 08 (d) as = as¢

(€) (S —T) C dSUIT



CHAPTER 2

Differential Calculus of

Functions of One Variable

IN THIS CHAPTER we study the differential calculus of functions of one variable.

SECTION 2.1 introduces the concept of function and discusses arithmetic operations on
functions, limits, one-sided limits, limits at =00, and monotonic functions.

SECTION 2.2 defines continuity and discusses removable discontinuities, composite func-
tions, bounded functions, the intermediate value theorem, uniform continuity, and addi-
tional properties of monotonic functions.

SECTION 2.3 introduces the derivative and its geometric interpretation. Topics covered in-
clude the interchange of differentiation and arithmetic operations, the chain rule, one-sided
derivatives, extreme values of a differentiable function, Rolle’s theorem, the intermediate
value theorem for derivatives, and the mean value theorem and its consequences.

SECTION 2.4 presents a comprehensive discussion of L’Hospital’s rule.

SECTION 2.5 discusses the approximation of a function f by the Taylor polynomials of
f and applies this result to locating local extrema of f. The section concludes with the
extended mean value theorem, which implies Taylor’s theorem.

2.1 FUNCTIONS AND LIMITS

In this section we study limits of real-valued functions of a real variable. You studied
limits in calculus. However, we will look more carefully at the definition of limit and prove
theorems usually not proved in calculus.

A rule f that assigns to each member of a nonempty set D a unique member of a set Y’
is a function from D to Y. We write the relationship between a member x of D and the
member y of Y that f assigns to x as

y = f(x).

The set D is the domain of f, denoted by D . The members of Y are the possible values
of f.If yo € Y and there is an x¢ in D such that f(x¢) = yo, we say that f

30
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attains or assumes the value yg. The set of values attained by f is the range of f. A real-
valued function of a real variable is a function whose domain and range are both subsets
of the reals. Although we are concerned only with real-valued functions of a real variable
in this section, our definitions are not restricted to this situation. In later sections we will
consider situations where the range or domain, or both, are subsets of vector spaces.

Example 2.1.1 The functions f, g, and & defined on (—o0, 00) by
f(x)=x2 g(x)=sinx, and h(x)=e"
have ranges [0, 00), [—1, 1], and (0, 00), respectively. ]
Example 2.1.2 The equation
[f ()] = x (1)

does not define a function except on the singleton set {0}. If x < 0, no real number satisfies
(1), while if x > 0, two real numbers satisfy (1). However, the conditions

[f()F =x and f(x)=0
define a function f on D s = [0, co) with values f(x) = /x. Similarly, the conditions
[gW))* =x and  g(x) <0

define a function g on Dz = [0, 0o) with values g(x) = —./x. The ranges of f and g are
[0, 00) and (—o0, 0], respectively. ]

It is important to understand that the definition of a function includes the specification
of its domain and that there is a difference between f, the name of the function, and f(x),
the value of f at x. However, strict observance of these points leads to annoying verbosity,
such as “the function f with domain (—o0, 00) and values f(x) = x.” We will avoid this
in two ways: (1) by agreeing that if a function f is introduced without explicitly defining
Dy, then Dy will be understood to consist of all points x for which the rule defining
f(x) makes sense, and (2) by bearing in mind the distinction between f and f(x), but not
emphasizing it when it would be a nuisance to do so. For example, we will write “consider
the function f(x) = ~/1 — x2,” rather than “consider the function f defined on [—1, 1]
by f(x) = 1 —x2 or “consider the function g(x) = 1/sinx,” rather than “consider
the function g defined for x # kx (k = integer) by g(x) = 1/sinx.” We will also write
f = c (constant) to denote the function f defined by f(x) = ¢ for all x.

Our definition of function is somewhat intuitive, but adequate for our purposes. More-
over, it is the working form of the definition, even if the idea is introduced more rigorously
to begin with. For a more precise definition, we first define the Cartesian product X x Y
of two nonempty sets X and Y to be the set of all ordered pairs (x, y) such that x € X and
y € Y; thus,

XxY = {(x,y)|x€X,er}.
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A nonempty subset f of X x Y is a function if no x in X occurs more than once as a first
member among the elements of f. Put another way, if (x, y) and (x, y1) are in f, then
¥ = y1. The set of x’s that occur as first members of f is the domain of f. If x is in the
domain of f, then the unique y in Y such that (x, y) € f is the value of f at x, and we
write y = f(x). The set of all such values, a subset of Y, is the range of f.

Arithmetic Operations on Functions

Definition 2.1.1If Dy N D, # @, then f +g, f —g, and fg are definedon D y N D,
by

(f +9)(x) = f(x) + g(x),

(f —&)x) = f(x) — gx),

and

(f&)(x) = f(x)g(x).
The quotient f/g is defined by
ATREC)
(g ) g(x)
for x in D y N Dg such that g(x) # 0. ]

Example 2.1.3 If f(x) = v/4—x2 and g(x) = v/x — 1, then Dy = [-2,2] and
Dg =[1,00),50 f + g, f —g,and fg are defined on Dy N Dy = [1,2] by

(f +2)(x) =vV4—x2+Vx—1,
(f —g)(x) =vVa—x2—Jx—1,

and

(/o) = (V4= x)(Vx—1) = V@ —x2)(x - 1). 2
The quotient f/g is defined on (1, 2] by

(-
g x—1

Although the last expression in (2) is also defined for —oo < x < —2, it does not represent
fg for such x, since f and g are not defined on (—oo, —2]. ]

Example 2.1.4 If ¢ is a real number, the function ¢ f/ defined by (¢ f)(x) = ¢f(x) can
be regarded as the product of f* and a constant function. Its domain is D . The sum and
product of n (> 2) functions f1, ..., f, are defined by

i+ ot X)) = filx) + f2(x) + -+ falx)
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and

(Srfae- f)(X) = f1(x) fa(x) -+ fu(x) 3)
on D = (/_, Dy, provided that D is nonempty. If f; = f> =--+ = f;, then (3) defines
the nth power of f:

(f"Mx) = (f ()"

From these definitions, we can build the set of all polynomials
p(x)=ao+aix + -+ apx",

starting from the constant functions and f(x) = x. The quotient of two polynomials is a
rational function

aop +arx + -+ apx”
= bm # 0).
r(x) bo 4 bix & ook By (bm #0)

The domain of r is the set of points where the denominator is nonzero. [ ]

Limits

The essence of the concept of limit for real-valued functions of a real variable is this: If L
is a real number, then limy_, x, f(x) = L means that the value f(x) can be made as close
to L as we wish by taking x sufficiently close to x¢. This is made precise in the following
definition.

Figure 2.1.1
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Definition 2.1.2 We say that f(x) approaches the limit L as x approaches xy, and
write

lim f(x)=1L,
X—>X0

if f is defined on some deleted neighborhood of x¢ and, for every € > 0, thereisa § > 0
such that

|f(x)—L|<e )
if

0 < |x —xo| <. (%)
Figure 2.1.1 (page 33) depicts the graph of a function for which limy_,, f(x) exists. W

Example 2.1.5 If ¢ and x are arbitrary real numbers and f(x) = cx, then

lim f(x) = cxp.

X—>X0
To prove this, we write
| f(x) = cxol = [cx — exo| = |c|x — xol.
If ¢ # 0, this yields
| f(x) = cxol <€ (6)
if
|x — xo| <8,

where § is any number such that 0 < § < ¢/|c|. If ¢ = 0, then f(x) — cxo = 0 for all x,
so (6) holds for all x. |

We emphasize that Definition 2.1.2 does not involve f(x¢), or even require that it be
defined, since (5) excludes the case where x = Xxy.

Example 2.1.6 If
1
f(x)=xsin—, x #0,
x
then
lim f(x) =0
x—0
even though f is not defined at xo = 0, because if
0<|x| <8 =cF,
then
<|x| <e.

1
X sin —
X

|f(x) = 0] =

On the other hand, the function

1
gx) =sin—, x #0,
X

has no limit as x approaches 0, since it assumes all values between —1 and 1 in every
neighborhood of the origin (Exercise 26). |
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The next theorem says that a function cannot have more than one limit at a point.
Theorem 2.1.3 Iflimy_x, f(x) exists, then it is unique ; that is, if
lim f(x) =Ly and 1lim f(x)= L,, @)
X—>X0 X—>X0
then L1 = L.

Proof Suppose that (7) holds and let € > 0. From Definition 2.1.2, there are positive
numbers 81 and §, such that

|f(x)—Li|<e if O0<|x—x0| <6, i=12.
If § = min(8y, 63), then

|L1 — La| = |L1 — f(x) + f(x) — L2|
<|Li— f(x)|+|f(x)—Lz| <2 if 0<]|x—xq| <3$.

We have now established an inequality that does not depend on x; that is,
|L1 — L2| < 2e.

Since this holds for any positive e, L1 = L. a
Definition 2.1.2 is not changed by replacing (4) with

| f(x) — L| < Ke, ®)

where K is a positive constant, because if either of (4) or (8) can be made to hold for any
€ > 0 by making |x — x| sufficiently small and positive, then so can the other (Exercise 5).
This may seem to be a minor point, but it is often convenient to work with (8) rather than
(4), as we will see in the proof of the following theorem.

A Useful Theorem about Limits

Theorem 2.1.4 If

Jim f(x) =Ly and  lim g(x) = Lo, ©))
then
Jm (f +8)(x) = L1 + Lo, (10)
Jim (f —g)(x) = L1 — La. an
xligclo(fg)(x) = L1 Lo, (12)
and, if Ly # 0, (13)

lim (i) ) = &1, (14)
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Proof From (9) and Definition 2.1.2, if € > 0, there is a §; > 0 such that
|f(x) = Li| <€ 5)
if 0 < |x — xo| < 81, and a §, > 0 such that
|g(x) — La| <€ (16)
if 0 < |x — xo| < 82. Suppose that
0 < |x — xo| < 8 = min(dy, 6>), 17
so that (15) and (16) both hold. Then

|(f £8)(x) = (L1 £ L2)| = [(f(x) — L1) & (g(x) — L2)|
< |f(x) = L + 1g(x) — La| < 2e,
which proves (10) and (11).

To prove (12), we assume (17) and write

|(f8)(x) — LiLa| = | f(x)g(x) — L1Lx]
= [f(x)(g(x) — L2) + L2(f(x) — L1)|
< |f)Ilgx) = La| + [L2|| f(x) — L]
< (If ()| + [L2])e (from (15)and (16))
< (If(x) = L1l + |L1| + [L2])e
< (e 4+ |L1| + |L2])e from (15)
< (1 + |L1] + |L2])e

if € < 1 and x satisfies (17). This proves (12).
To prove (14), we first observe that if L, # 0, there is a §3 > 0 such that
|L>|
lg(x) — La| < -

SO
|L|

lg(x)| > - (18)
if
0< |X—X()| < 83.

To see this, let L = L, and € = |L3|/2 in (4). Now suppose that
0 < |x — xo| < min(3y, 82, 83),

so that (15), (16), and (18) all hold. Then
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glx) La
_ [Ls f(x) — L1g(x)]
lg(x)L2|

[Ls f(x) — L1g(x)]

‘(f) Li| _|fx) L
=)x)——|=
g Ly

2
|L2?
2
|L2?

2
S R
|L2?

2
|L2?
This proves (14). a

Successive applications of the various parts of Theorem 2.1.4 permit us to find limits
without the e—§ arguments required by Definition 2.1.2.

=

|La[f(x) — Li] + Li[L2 — g(x)]| (from (18))

(L2l f(x) = L] + [L1]|L2 — g(x)]]

=

(|L2] 4+ |L1])e (from (15) and (16)).

Example 2.1.7 Use Theorem 2.1.4 to find
9 — x2

1m
x=2 x + 1

and  lim(9 — x?)(x + 1).
x—>2

Solution If ¢ is a constant, then limy_,x, ¢ = ¢, and, from Example 2.1.5, limy_x, x =
Xxo. Therefore, from Theorem 2.1.4,

lim (9 — x?) = lim 9 — lim x
x—>2 x—2 x—2

2

lim 9 — (li 2
im0 = (im0

=9-22=35,
and
lim(x+1)=limx+ liml=241=3.
x—>2 x—>2 x—>2
Therefore,
9 x2 lir%(9—x2) 5
lim = x.—> = —
x—2 x +1 lim(x + 1) 3
x—>2
and

lim (9 — x?)(x + 1) = lim(9 — x?) lim(x + 1) = 5-3 = 15. [ ]
x—>2 x—2 x—2
One-Sided Limits

The function

f(x) = 2x sin/x
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satisfies the inequality

|f(0)] <€

if 0 < x < § = €/2. However, this does not mean that limy_.o f(x) = 0, since f is
not defined for negative x, as it must be to satisfy the conditions of Definition 2.1.2 with
xo = 0 and L = 0. The function

g(x)=x+'i—', x A0,

can be rewritten as
x+1, x>0,
x—1, x<0;

gx) =

hence, every open interval containing xo = 0 also contains points x; and x» such that
|g(x1) — g(x2)] is as close to 2 as we please. Therefore, lim,_.x, g(x) does not exist
(Exercise 26).

Although f(x) and g(x) do not approach limits as x approaches zero, they each exhibit
a definite sort of limiting behavior for small positive values of x, as does g(x) for small
negative values of x. The kind of behavior we have in mind is defined precisely as follows.

lim f(x)=A lim fx)=pn

X—'XO— X—'X0+

Figure 2.1.2

Definition 2.1.5

(a) We say that f(x) approaches the left-hand limit L as x approaches xo from the left,
and write
lim f(x) =L,
X—>x0—
if f is defined on some open interval (a, xo) and, for each € > 0, thereisa é > 0
such that
|f(x)—Ll<e if xo—68<x <Xxop.



Section 2.1 Functions and Limits 39

(b) We say that f(x) approaches the right-hand limit L as x approaches xq from the
right, and write
lim f(x)=1L,

xX—=>x0+

if f is defined on some open interval (x¢, ) and, for each € > 0, thereisa é > 0
such that
|f(x)— Ll <e if x¢9<x<x0+8. [ ]

Figure 2.1.2 shows the graph of a function that has distinct left- and right-hand limits at
a point xo.

Example 2.1.8 Let
X
f('x) = T X # 0.
|x|
If x <0, then f(x) =—x/x =—1,s0
lir(r)l f(x)=-1.
If x > 0, then f(x) =x/x =1,s0

xl_l)r(r)1+ fx)=1. ]

Example 2.1.9 Let

x+x|1+x) . 1
— S1n

g(x) = -, x #0.
X
If x <0, then
1
g(x) = —xsin —,
X
o)
lim g(x) =0,
x—0—
since .
lg(x) — 0] = |xsin—| < |x| <€
X

if —e < x < 0; that is, Definition 2.1.5(a) is satisfied with § = €. If x > 0, then

g(x) = (2 + x)sin l,
X

which takes on every value between —2 and 2 in every interval (0, ). Hence, g(x) does not
approach a right-hand limit at x approaches O from the right. This shows that a function
may have a limit from one side at a point but fail to have a limit from the other side. [ ]
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Example 2.1.10 We leave it to you to verify that
()
Iim [ —+x])= 1,
x—>0+ X

. |x| _
Iim | —+x)=-1,
x—>0— X

lim xsin/x = 0,
x—>0+

and limy_,o— sin 4/x does not exist. |

Left- and right-hand limits are also called one-sided limits. We will often simplify the
notation by writing

L im f(x) = f(xo—) and xlifc%+ f(x) = fxo+).

The following theorem states the connection between limits and one-sided limits. We
leave the proof to you (Exercise 12).

Theorem 2.1.6 A function f has a limit at xg if and only if it has left- and right-hand
limits at xo, and they are equal. More specifically,

A, S0 =1
if and only if
Sf(xo+) = f(xo—) = L.

With only minor modifications of their proofs (replacing the inequality 0 < |x —xo| < §
by xog —8 < X < xgorxg < x < Xg + §), it can be shown that the assertions of Theo-
rems 2.1.3 and 2.1.4 remain valid if “limy_x,” is replaced by “limy_, x,—” or “limy_ x,+”
throughout (Exercise 13).

Limits at o0

Limits and one-sided limits have to do with the behavior of a function f near a limit point
of D r. Itis equally reasonable to study f* for large positive values of x if D ¢ is unbounded
above or for large negative values of x if D s is unbounded below.

Definition 2.1.7 We say that f(x) approaches the limit L as x approaches oo, and
write

lim f(x) =L,
X—>00
if f is defined on an interval (a, o) and, for each € > 0, there is a number t such that

|f(x)—L|<e¢ if x>t ]
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Figure 2.1.3 provides an illustration of the situation described in Definition 2.1.7.

y
L+e
L /\ P
/ \_/ ~
L-¢
I
I
I lim  f()=L
| X 00
I
I
| X
p

Figure 2.1.3

We leave it to you to define the statement “limy_,_», f(x) = L” (Exercise 14) and to
show that Theorems 2.1.3 and 2.1.4 remain valid if x¢ is replaced throughoutby oo or —oo
(Exercise 16).

Example 2.1.11 Let

1 2
fx)=1- ol gx) = 1-|’__x|x’ and h(x) =sinx.
Then
lim f(x) =1,
X—>00
since
f 1= <e if x>
x)—1ll=—=<e if x>—,
x2 Je
and
lim g(x) =2,
X—>00
since

2x 2 2 2
g —2] = I I

—2=—<—-<e€e if x> -.
14+ x 1+x x €
However, lim,_, o /(x) does not exist, since & assumes all values between —1 and 1 in any
semi-infinite interval (z, 00).
We leave it to you to show that limy_,_o f(x) = 1, limy_,_o g(x) = —2, and
limy, oo 1(x) does not exist (Exercise 17). [ |



42 Chapter 2 Differential Calculus of Functions of One Variable

We will sometimes denote limy_,oo f(x) and limy—,—oo f(x) by f(c0) and f(—00),
respectively.

Infinite Limits

The functions | | |
f(x): > g(x): 20 p(x):sin—,
X X X
and

1
q(x) = —sin—
X X

do not have limits, or even one-sided limits, at xo = 0. They fail to have limits in different
ways:

e f(x) increases beyond bound as x approaches 0 from the right and decreases beyond
bound as x approaches 0 from the left;

e g(x) increases beyond bound as x approaches zero;
e p(x) oscillates with ever-increasing frequency as x approaches zero;

e ¢(x) oscillates with ever-increasing amplitude and frequency as x approaches 0.

The kind of behavior exhibited by f and g near xo = 0 is sufficiently common and
simple to lead us to define infinite limits.

Definition 2.1.8 We say that f(x) approaches oo as x approaches xo from the left,
and write
lim f(x) =oc0 or f(xo—) = o0,
X—>Xx0—
if f is defined on an interval (a, xo) and, for each real number M, there is a § > 0 such
that
fx)>M if x9—08<x < Xxo. ]

Example 2.1.12 We leave it to you to define the other kinds of infinite limits (Exer-
cises 19 and 21) and show that

lim — = —o0, lim — = oc;

x—>0— X x—>0+ X
. 1 . 1 . 1

lim — = lim — = lim — = o0;

x—0— x2 x—04+ x2 x—0 x2
lim x> = lim x? = oo;

X—>00 X—>—00

and

lim x3 = 00, lim x3 = —o0. |

X—>00 X—>—00
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Throughout this book, “lim,_,x, f(x) exists” will mean that

lim f(x) =L, wherelL is finite.

X—>X0
To leave open the possibility that L = 00, we will say that

lim f(x) exists in the extended reals.
X—>X0

This convention also applies to one-sided limits and limits as x approaches $o0.

We mentioned earlier that Theorems 2.1.3 and 2.1.4 remain valid if “limy_,,” is re-
placed by “limy_,x,—" or “limy_sx,+.” They are also valid with x¢ replaced by *oo.
Moreover, the counterparts of (10), (11), and (12) in all these versions of Theorem 2.1.4
remain valid if either or both of L; and L, are infinite, provided that their right sides are
not indeterminate (Exercises 28 and 29). Equation (14) and its counterparts remain valid if
L1/ L, is not indeterminate and L, # 0 (Exercise 30).

Example 2.1.13 Results like Theorem 2.1.4 yield

L Loer—e™ 1,
lim sinhx = lim 7=—(11m e — lim e )
X—>00 X—>00 X—>00 X—>00

1
= — —O = s
2(oo ) = 00
X _omX 1
lim sinhx = lim —°  — —( lim e*— lim e_x)
X——00 X——00 2 2 \x—>—o00 X——00

1
5(0 — 00) = —00,

and
—X llm e_x O
. X—>00
lim —=———=—=0 m
xX—>00 X lim x oo}
X—>00

Example 2.1.14 If

flx) =e* —e*,
we cannot obtain limy .« f(x) by writing
lim f(x) = lim e** — lim e”,
X—>00 xX—>00 X—>00

because this produces the indeterminate form co — co. However, by writing
_ 2x —X
Jx) =eT(1—e),
we find that

Jim f(x) = (XILH;O eZX) ( lim 1— lim e_x) = o0o(1 — 0) = 0. m

X—>00 X—>00
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Example 2.1.15 Let
2x2—x+1

3x24+2x—1°
Trying to find lim,—oc g(x) by applying a version of Theorem 2.1.4 to this fraction as it is
written leads to an indeterminate form (try it!). However, by rewriting it as

gx) =

2—1/x+1/x?
X)=—""—"—"—, x#0,
s =3 i Y7
we find that
. Jim 2= Jim Vst Bm 1/ 5040 2
lim g(x) = = . > = =:. .

x—>00 lim 3+ lim 2/x — lim 1/x 3+40-0 3

X—>00 X—>00 X—>00

Monotonic Functions
A function f is nondecreasing on an interval [ if

f(x1) < f(x2) whenever x1 and x5 are in [ and x; < X, (19)
or nonincreasing on [ if

f(x1) > f(x2) whenever x; and x5 are in / and x; < Xx». (20)

In either case, f is monotonic on I. If < can be replaced by < in (19), f is increasing on
I. If > can be replaced by > in (20), f is decreasing on I. In either of these two cases, f
is strictly monotonic on I .

Example 2.1.16 The function

7 x, 0<x<l,
(x) =
2, 1<x<2,
is nondecreasing on / = [0, 2] (Figure 2.1.4), and — f is nonincreasing on I = [0, 2].
y
2 |-
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Figure 2.1.4
The function g(x) = x? is increasing on [0, oo) (Figure 2.1.5),

y
y=x
X
Figure 2.1.5
and h(x) = —x3 is decreasing on (—o0, 00) (Figure 2.1.6).

y=-x

Figure 2.1.6

45
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In the proof of the following theorem, we assume that you have formulated the definitions
called for in Exercise 19.

Theorem 2.1.9 Suppose that f is monotonic on (a, b) and define
o= inf f(x) and B = sup f(x).
a<x<b

a<x<b
(a) If f is nondecreasing, then f(a+) = a and f(b—) = B.

(b) If f is nonincreasing, then f(a+) = B and f(b—) = a.
(Here a+ = —o0 ifa = —o0 and b— = o0 if b = 00.)

(c) Ifa < xo < b, then f(xo+) and f(xo—) exist and are finite ; moreover,
S(xo—) = f(x0) = f(xo+)

if f is nondecreasing, and

Sf(xo—) = f(x0) = f(xo0+)

if f is nonincreasing.

Proof (a) We first show that f(a+) = a. If

M > «, there is an x in (a, b) such that f(xo) < M. Since f is nondecreasing,
f(x) < M ifa < x < xo. Therefore, if « = —o0, then f(a+) = —oo. If & > —o0, let
M = «a + €, where € > 0. Then @ < f(x) <« + ¢, so

|f(x)—a| <e if a<x<xp. 21)

If a = —oo, this implies that f(—oc0) = «. If a > —o0, let § = x¢9 —a. Then (21) is
equivalent to
|f(x)—a|<e if a<x<a+§,
which implies that f(a+) = «.
We now show that f(b—) = B. If M < 8, there is an x¢ in (a, b) such that f(xo) > M.

Since f is nondecreasing, f(x) > M if xo < x < b. Therefore, if § = o0, then
f(b—) =o00.If B <oo,let M = B — ¢, wheree > 0. Then 8 — e < f(x) < B,s0
|f(x)—Bl<e if x9<x<b. (22)

If b = oo, this implies that f(co) = B.1f b < 0o, let § = b — x¢. Then (22) is equivalent
to

|f(x)—Bl<e if b—8§<x<b,
which implies that f(b—) = B.
(b) The proof is similar to the proof of (a) (Exercise 34).
(c) Suppose that f is nondecreasing. Applying (a) to f on (a, xo) and (xo,b) sepa-
rately shows that

f(xo—)= sup f(x) and f(XO+)=xoi<r}Cf<bf(X).

a<x<xo
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However, if x; < xo < x5, then

S(x1) = fxo) = f(x2):
hence,

Sf(xo=) = f(x0) < f(xo+).

We leave the case where f is nonincreasing to you (Exercise 34). o

Limits Inferior and Superior

We now introduce some concepts related to limits. We leave the study of these concepts
mainly to the exercises.

We say that f is bounded on a set S if there is a constant M < oo such that | f(x)] < M
forall xin S.

Definition 2.1.10 Suppose that f is bounded on [, xg), Where xo may be finite or co.
Fora < x < xg, define

Sy(x:xo) = sup f(r)

X=<t<XxQ
and
Iy(xixo) = inf f(t).
Then the left limit superior of f at xo is defined to be

lim f(x)= lim Sy(x;xo),
X—>X0— X—>X0—

and the left limit inferior of f at xo is defined to be

lim f(x) = lim [77(x;xo).
X—>X0— X—>X0—

(If xg = oo, we define xg— = 00.) |

Theorem 2.1.11 If f is bounded on [a, xo), then B = mx_mo_ f(x) exists and is
the unique real number with the following properties :

(a) Ife >0, thereis an ay in [a, xo) such that
fx)<pB+e if ar <x <xo. (23)
(b) Ife > 0anday isin[a, xo), then
f(x)> B —€ forsomeX € [ay, xo).

Proof Since f is bounded on [a, xo), S #(x: x0) is nonincreasing and bounded on
[a, x0). By applying Theorem 2.1.9(b) to S s(x; xo), we conclude that f exists (finite).
Therefore, if € > 0, there is an @ in [a, x¢) such that

B—€/2<Sp(xix0) <B+¢€/2 if a=<x<uxo (24)
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Since S 7 (x; xo) is an upper bound of {f(t) | x<t< xo}, J(x) = S¢(x;x0). Therefore,
the second inequality in (24) implies (23) with a; = @. This proves (a). To prove (b), let
ai be given and define x; = max(a, @). Then the first inequality in (24) implies that

Sy (xiix0) > B —e/2. (25)

Since S r(x1; Xo) is the supremum of {f(t) | X1 <t< xo}, there is an X in [x1, Xo) such
that

f(x) > Sy(xiixe) —€/2.
This and (25) imply that f(X) > B — €. Since X is in [a1, Xo), this proves (b).

Now we show that there cannot be more than one real number with properties (a) and
(b). Suppose that B; < B2 and B, has property (b); thus, if € > 0 and a; is in [a, xo),
there is an X in [a1, x¢) such that f(X) > B, — €. Letting € = B, — 1, we see that there
isan X in [ay, b) such that

S&) > B2— (B2 — B1) = B,

so B1 cannot have property (a). Therefore, there cannot be more than one real number
that satisfies both (a) and (b). a

The proof of the following theorem is similar to this (Exercise 35).

Theorem 2.1.12 If f is bounded on [a, xo), then & = lim
the unique real number with the following properties:

xoxo— J (X) exists and is

(a) Ife >0, thereis an ay in [a, xo) such that
f(x)>a—€ if a; <x <X
(b) Ife >0anday isinla, xo), then

f(X) <a+e forsomeX € [ay, Xo).

2.1 Exercises

1. Each of the following conditions fails to define a function on any domain. State

why.
(a) sin f(x) = x (b) e/ = —|x|
(€) 1+ x>+ [f(x)*=0 (d) fLf(x) = 1] = x?
2. If i
flx) = x=3)x+2) and  g(x) = x"—16 29,
x—1 -7

find Df, Dfig, ng, and Df/g.
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Find D ;.
1
(a) f(x) =tanx (b) f(x) = T Tomxl
1 sin x
(C)f(x)zm (d) f(x) =

(e) VO =x f(x)=0

Find limy_, x, f(x), and justify your answers with an €—§ proof.

—8
(a) x2+2x+1, xo=1 (b)x . xo=2

1’ Xo =0 (d)ﬁ’ xo =4

3
x> =1
e) ——  + x, =1
R T TR
Prove that Definition 2.1.2 is unchanged if Eqn. (4) is replaced by

| f(x) — L| < Ke,
where K is any positive constant. (That is, limy_,, f(x) = L according to Defini-
tion 2.1.2 if and only if lim,_,x, f(x) = L according to the modified definition.)

Use Theorem 2.1.4 and the known limits limy_, x, X = xo, limx_x, ¢ = ¢ to find
the indicated limits.

x2+2x+3 1 1
lim ———— b) 1 -
(a)x—>2 2x3 4+ 1 ( )x1—>r%(x+l x—l)
x—1 x¥—1
() lim o (@) tim o

Find limy, x,— f(x) and lim,_,x,+ f(x), if they exist. Use €6 proofs, where ap-
plicable, to justify your answers.

x+|x| 1 1 1

(a) X0 ( )xzosx +sin — +sin o Xo
x—1| x24x-=2
5 X :1 d —_—, X :—2
()x2+x—2 0 (d) Jx +2 0

Prove: If h(x) > 0 fora < x < x¢ and limy_,x,— 7 (x) exists, then lim,_, x,— 7 (x)
> 0. Conclude from this that if f>(x) > fi(x) fora < x < xg, then

lim f5(x) > lim f1(x)
xX—X0 xX—X0

if both limits exist.
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9.

10.

11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

(a) Prove: If limy_,y, f(x) exists, there is a constant M and a p > 0 such that
|f(x)] < M if 0 < |x — xo| < p. (We say then that f is bounded on
{x|0 < |x —xo| < p}.)

(b) State similar results with “limy—, ,” replaced by “limy—_, x,—~

(c) State similar results with “limy_,,” replaced by “limy—x,+.”

i

Suppose that limy_, x, f(x) = L and n is a positive integer. Prove that lim,_, [ f(x)]" =
L" (&) by using Theorem 2.1.4 and induction; (b) directly from Definition 2.1.2.
HINT: You will find Exercise 9 useful for (b).

Prove: If lim,_,x, f(x) = L > 0, then limy_, », m = /L.

Prove Theorem 2.1.6.

(a) Using the hint stated after Theorem 2.1.6, prove that Theorem 2.1.3 remains
valid with “limy_, x,” replaced by “limy_ x,—.”

(b) Repeat (a) for Theorem 2.1.4.

Define the statement “limy_,_o f(x) = L

Find limy_, o, f(x) ifitexists, and justify your answer directly from Definition 2.1.7.

()

1 sin x sin x
b 0
A ®) e @0 @

(@ =0)

(d) e *sinx (e) tanx (£) e ¢2*
Theorems 2.1.3 and 2.1.4 remain valid with “limy_y,” replaced throughout by

“limy o0 (“limy——”"). How would their proofs have to be changed?

Using the definition you gave in Exercise 14, show that
2|x|

(@) lim (1_;—2) _ (b) lim B

X——00 x—>—o00 | + x

(c) 1lim sinx does not exist
X—>—00

Find limy_ oo f(x), if it exists, for each function in Exercise 15. Justify your
answers directly from the definition you gave in Exercise 14.

Define
(a) lim f(x)=-o00 (b) lim f(x)=0c0 (c) lim f(x)=-o0
X—=>Xx0— x—=>x0+ x—=>x0+
Find
(a) lim — (b) lim —
x—>0+ x3 x—>0— x3
(©) lim — (d) lim —
x—>0+ x6 x—>0— x6
. 1 o 1
(€) Jim o oF (B) Jim T

(k = positive integer)



21.

22,

23.

24.

25.

26.

27.
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Define

(a) lim f(x) =00 (b) lim f(x) =-o0
X—>X0 X—>X0

Find

(a) lim — (b) lim —

a) 3 +30 X6

(e) Jim ——— (d) Jim ———

¢ xlg}o (x _xO)zk xlg}o (x _ x0)2k+1

(k = positive integer)

Define
(a) lim f(x) = oo (b) lim f(x)=—o0
Find
. 2k . 2k
(@) i (5)
. 2k+1 . 2k+1
(© s (@ s
(k=positive integer)
. . : X
(e) Jim V/x sinx (f) Jim e

Suppose that f and g are defined on (a,00) and (c, c0) respectively, and that
g(x) > aif x > c. Suppose also that limy—, o f(x) = L, where —oo < L < oo,
and limy . g(x) = oco. Show that limy— f(g(x)) = L.

(a) Prove: limy_,x, f(x) does not exist (finite) if for some €y > 0, every deleted
neighborhood of x¢ contains points x; and x» such that

£ (x1) = f(x0)| = €o.
(b) Give analogous conditions for the nonexistence of

lim /(). lm f(o), lim f(), and  lim f(x).

xX—=>x0+

Prove: If —oo < x¢ < 00, then lim,_,x, f(x) exists in the extended reals if and
only if limy_,x,— f(x) and limy_, x,+ f(x) both exist in the extended reals and are
equal, in which case all three are equal.

In Exercises 28-30 consider only the case where at least one of L1 and L, is £o00.

28.

Prove: If limy,x, f(x) = L1, limy_x, g(x) = L2, and L + L is not indetermi-
nate, then

lim (f 4+ g)(x) =Ly + L».

X—>X0
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29. Prove: Iflimy_,oo f(x) = L1, limy_00 g(x) = Ly, and L1 L3 is not indeterminate,
then

xli{go(fg)(x) = LiL,.

30. (a) Prove: Iflimy_y, f(x) = L1, limy_y, g(x) = Ly # 0, and L/L5 is not
indeterminate, then
L
lim (i) (x) = =1
x—>x0 \ g L2

(b) Show thatitis necessary to assume that L, # 0in(a) by considering f(x) =
sinx, g(x) = cosx, and xo = 7/2.

31. Find

3 3

x°+2x+3 x°+2x+3

a X TaxT o b) lim ="~

(a) lim =23 (b) Jim 3212
2x* 4+ 3x2 42 2x* 4+ 3x2 42

lim =~ > T~ d) lim 7" T~
(c) lim 3+ ox+3 (d) lim X3+ 2x +3

. . x+ 4/xsinx
(e) 11Ile—>oo(€x2 —e) (f) xll>nolo h\'{'—ﬁ

32. Find limy_ & 7 (x) and limy_,_oo 7 (x) for the rational function
aop +arx + -+ apx”
r(x) = ,
bo + bix + - 4 byx™

where a, # 0 and b, # 0.

33. Suppose that lim,_,x, f(x) exists for every x¢ in (@, b) and g(x) = f(x) except
on a set S with no limit points in (a, b). What can be said about limy_, x, g(x) for
Xo in (a, b)? Justify your answer.

34. Prove Theorem 2.1.9(b), and complete the proof of Theorem 2.1.9(b) in the case
where f is nonincreasing.

35. Prove Theorem 2.1.12.
36. Show thatif f is bounded on [a, x¢), then

() lim fn = fm fe).

X—=>X0—

(b) lim (- =— Tm fex)and fm (—f)(x)=— lim f(x).

X—>Xx0— X—>x0—

(c) x%r(l)_ f(x) = xli_xmo_ f(x) if and only if limy_x,— f(x) exists, in which
case

lim ()= lim f()= Tm /).

X—=>X0— X—>x0—

37. Suppose that f and g are bounded on [a, xo).
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(a) Show that

dm (f+ (0 = Tm f(x)+ Tim_g(x).

(b) Show that

lim (f +¢)(x) = lim f(x)+ lim g(x).

X—>x0— X—>x0— X—>x0—
(c) State inequalities analogous to those in (a) and (b) for

lim (f =) and  Tim (f —g)(x).

X—=>X0—

38. Prove: limy_,x,— f(x) exists (finite) if and only if for each € > O thereisa § > 0
such that | f(x1) — f(x2)] < € if xg — 8 < x1, x2 < Xxo. HINT: For sufficiency,
show that f is bounded on some interval (a, x¢) and

Tm f) = lm f(x).

X—=>X0—

Then use Exercise 36(c).

39.  Suppose that f is bounded on an interval (xo, b]. Using Definition 2.1.10 as a guide,
define limy—x,+ f(x) (the right limit superior of f at xo) and lim, , . . f(x)
(the right limit inferior of f at x¢). Then prove that they exist. HINT: Use Theo-
rem 2.1.9.

40. Suppose that f is bounded on an interval (xo,b]. Show that lim,_,, . f(x) =
limy o+ f(x) if and only if limy_y,+ f(x) exists, in which case

lim f(x)= lim f(x)= E5+f@)

x—=>xo+ x—x0+

41. Supposethat f is bounded on an open interval containing x¢. Show that limy_, x, f(x)
exists if and only if

lim f@)=XE§+f@)= lim f(x)= lim f(x),

X—=>X0— X—>x0— x—>x0+

in which case limy_,, f(x) is the common value of these four expressions.

2.2 CONTINUITY

In this section we study continuous functions of a real variable. We will prove some impor-
tant theorems about continuous functions that, although intuitively plausible, are beyond
the scope of the elementary calculus course. They are accessible now because of our better
understanding of the real number system, especially of those properties that stem from the
completeness axiom.
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The definitions of
f(xo—) = lim f(x), f(xo+)= lim f(x), and lim f(x)
X—>Xx0— xX—>x0+ X—>X0

do not involve f(x¢) or even require that it be defined. However, the case where f(xo) is
defined and equal to one or more of these quantities is important.

Definition 2.2.1

(a) Wesay that f is continuous at xo if f is defined on an open interval (a, b) containing
xo and limyx, f(x) = f(xo).

(b) We say that f is continuous from the left at xo if f is defined on an open interval
(a, xo) and f(xo—) = f(xo).

(c) We say that f is continuous from the right at xo if f is defined on an open interval
(x0.b) and f(xo+) = f(xo). u

The following theorem provides a method for determining whether these definitions are
satisfied. The proof, which we leave to you (Exercise 1), rests on Definitions 2.1.2, 2.1.5,
and 2.2.1.

Theorem 2.2.2

(a) Afunction f is continuous at xo if and only if f is defined on an open interval (a,b)
containing xo and for each € > 0 there is a § > 0 such that

| f(x) = f(xo0)| <€ ey

whenever |x — xo| < 6.

(b) A function f is continuous from the right at xo if and only if f is defined on an
interval [x¢, b) and for each € > 0 there is a § > 0 such that (1) holds whenever
Xo < Xx < xo +96.

c) A function f is continuous from the left at x¢ if and only i is defined on an interval
Yy
(a, xo] andfor each € > 0

there is a § > 0 such that (1) holds whenever xo —§ < x < Xxy.

From Definition 2.2.1 and Theorem 2.2.2, f is continuous at xg if and only if
f(xo—) = f(xo+) = f(xo0)
or, equivalently, if and only if it is continuous from the right and left at xo (Exercise 2).
Example 2.2.1 Let f be defined on [0, 2] by

x2, 0<x<l,
x+1, 1<x<2

fx) =
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(Figure 2.2.1); then

f(O0+)=0= f(0).
fa-)=1#f1) =2,
fa+)=2=f().
f2-)=3=/1Q.

Therefore, f is continuous from the right at 0 and 1 and continuous from the left at 2, but
notat 1. If 0 < x, xog < 1, then

| f(x) = f(xo0)| = |x? = x| = |x — xo| |x + xo]
<2lx —xo| <€ if |x — x| <€/2.

Hence, f is continuous at each x¢ in (0, 1). If I < x, xo < 2, then

|f(x) = f(xo)| = |(x + 1) = (x0 + 1) = |x — Xo|

<e if |x—xo| <e.

Hence, f is continous at each x¢ in (1, 2). |

y=x+1, 1<x<2

Figure 2.2.1

Definition 2.2.3 A function f is continuous on an open interval (a, b) if it is continu-
ous at every point in (a, b). If, in addition,

fb=)=fb) 2

or

fla+t) = f(a) 3)
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then f is continuous on (a,b] or [a,b), respectively. If f is continuous on (a, b) and
(2) and (3) both hold, then f is continuous on [a, b]. More generally, if S is a subset of
D ¢ consisting of finitely or infinitely many disjoint intervals, then f is continuous on S if
f is continuous on every interval in S. (Henceforth, in connection with functions of one
variable, whenever we say “ f is continuous on S” we mean that S is a set of this kind.)
|

Example 2.2.2 Let f(x) = /x,0 < x < oo. Then
f()— fO)]=Vx<e if 0<x<é
so f(0+) = f(0). If xo > 0 and x > 0, then
|f(x) = f(xo)l = |vVx = /X0l =

|x—x0|

NS

|x — xo] .
< < f — < €.4/Xo,
=& € if  |x— x| <ex
so limyx_,x, f(x) = f(xo). Hence, f is continuous on [0, 00). ]
Example 2.2.3 The function
1
glx) = —
sin 7 x

is continuous on S = | J;2 __ (n,n + 1). However, g is not continuous at any xo = n

(integer), since it is not defined at such points. [ ]

The function f defined in Example 2.2.1 (see also Figure 2.2.1) is continuous on [0, 1)
and [1, 2], but not on any open interval containing 1. The discontinuity of f there is of the
simplest kind, described in the following definition.

Definition 2.2.4 A function f is piecewise continuous on [a, b] if

(a) f(xo+) exists for all xq in [a, b);

(b) f(xo—) exists for all x¢ in (a, b];

(c) f(xo+) = f(xo—) = f(xo) for all but finitely many points x¢ in (a, b).

If (c) fails to hold at some xq in (a,b), f has a jump discontinuity at xo. Also, f has a

Jump discontinuity at a if f(a+) # f(a) orat bif f(b—) # f(b). ]
Example 2.2.4 The function
1, x=0,
x, 0<x<l,
2, x=1,
JI=1 % 1<x<2
-1, 2<x<3,
0, x=23,

(Figure 2.2.2) is the graph of a piecewise continuous function on [0, 3], with jump discon-
tinuities at xo = 0, 1, 2, and 3. |
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Figure 2.2.2

The reason for the adjective “jump” can be seen in Figures 2.2.1 and 2.2.2, where the
graphs exhibit a definite jump at each point of discontinuity. The next example shows that
not all discontinuities are of this kind.

Example 2.2.5 The function

fx) = o
0, x =0,

is continuous at all xo except xo = 0. As x approaches 0 from either side, f(x) oscillates
between —1 and 1 with ever-increasing frequency, so neither f(0+) nor f(0—) exists.
Therefore, the discontinuity of f at 0 is not a jump discontinuity, and if p > 0, then f is
not piecewise continuous on any interval of the form [—p, 0], [—p, p], or [0, p]. ]

Theorems 2.1.4 and 2.2.2 imply the next theorem (Exercise 18).

Theorem 2.2.5 If f and g are continuous on a set S, thenso are f + g, f — g, and
fg. In addition, f/g is continuous at each x¢ in S such that g(xo) # 0.

Example 2.2.6 Since the constant functions and the function f(x) = x are continu-
ous for all x, successive applications of the various parts of Theorem 2.2.5 imply that the

function

9— x2

x+1

r(x) =
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is continuous for all x except x = —1 (see Example 2.1.7). More generally, by starting
from Theorem 2.2.5 and using induction, it can be shown that if fi, f5, ..., f, are contin-
uous on a set S, thenso are f; + f> + ---+ fn and f1 f>--- f,. Therefore, any rational

function
aop +aix + -+ apx”
r(x) =

= b 0
bo + b1x + -+ + bypx™ (bm #0)
is continuous for all values of x except those for which its denominator vanishes. [ ]

Removable Discontinuities

Let f be defined on a deleted neighborhood of x¢ and discontinuous (perhaps even unde-
fined) at xo. We say that f has a removable discontinuity at xg if limy_,, f(x) exists. In
this case, the function

f(x) ifx € Dy and x # xo,
g) = lim f(x) ifx = xo,
X—>X0

18 continuous at xg.

Example 2.2.7 The function

fx)= xsinl
X

is not defined at x¢o = 0, and therefore certainly not continuous there, but limy ¢ f(x) =0
(Example 2.1.6). Therefore, f has a removable discontinuity at 0.

The function |
fi(x) = sin —
X

is undefined at 0 and its discontinuity there is not removable, since limy_,¢ f1(x) does not
exist (Example 2.2.5). |

Composite Functions

We have seen that the investigation of limits and continuity can be simplified by regarding a
given function as the result of addition, subtraction, multiplication, and division of simpler
functions. Another operation useful in this connection is composition of functions; that is,
substitution of one function into another.

Definition 2.2.6 Suppose that f and g are functions with domains D s and Dg. If
D¢ has a nonempty subset 7" such that g(x) € Dy whenever x € T, then the composite
function f o g is defined on T by

(f 0 g)(x) = f(g(x)). u
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Example 2.2.8 If

1
f(x)=logx and g(x)=-——,
1—x2
then
Dy =(0,00) and Dy ={x|x# *l}.
Since g(x) > 0if x € T = (—1, 1), the composite function f o g is defined on (—1, 1) by

1
(f og)(x) = log T2

We leave it to you to verify that g o f is defined on (0, 1/e) U (1/e,e) U (e, 00) by
1
o X)) = ———. |
(g0 f)x) == Tog )2
The next theorem says that the composition of continuous functions is continuous.

Theorem 2.2.7 Suppose that g is continuous at xo, g(xo) is an interior point of D
and f is continuous at g(xo). Then f o g is continuous at xo.

Proof Suppose that € > 0. Since g(xo) is an interior point of D r and f is continuous
at g(xo), there is a §; > 0 such that f(¢) is defined and

|f(0) = f(g(xo))| <€ if [t —g(xo)l < 8. “4)
Since g is continuous at xo, there is a § > 0 such that g(x) is defined and
lg(x) — g(xo)| <81 if |x—xo| <. (%)
Now (4) and (5) imply that
| f(g(x) — f(g(xo))| <€ if [x—xol <8.

Therefore, f o g is continuous at xg. o

See Exercise 22 for a related result concerning limits.

Example 2.2.9 In Examples 2.2.2 and 2.2.6 we saw that the function
fx) = Vx

is continuous for x > 0, and the function

x+1

is continuous for x # —1. Since g(x) > 0if x < =3 or —1 < x < 3, Theorem 2.2.7
implies that the function

gx) =

—x2
x+1

is continuous on (—oo, —3) U (—1, 3). It is also continuous from the leftat —3and 3. W

(fog)x) =
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Bounded Functions
A function f is bounded below on a set S if there is a real number m such that
f(x)>mforallx € S.

In this case, the set
V={f(x)]|xesS}
has an infimum ¢, and we write
o = inf f(x).
xes

If there is a point x; in S such that f(x1) = «, we say that « is the minimum of f on S,
and write

o= ;n;rgl f(x).

Similarly, f is bounded above on S if there is a real number M such that f(x) < M for
all x in S. In this case, V has a supremum f, and we write

B = sup f(x).

x€eS

If there is a point x, in S such that f(x2) = B, we say that 8 is the maximum of f on S,
and write

B = max S (x).

If f is bounded above and below on a set S, we say that f is bounded on S.

Figure 2.2.3 illustrates the geometric meaning of these definitions for a function f
bounded on an interval S = [a,b]. The graph of f lies in the strip bounded by the
lines y = M and y = m, where M is any upper bound and m is any lower bound
for f on [a,b]. The narrowest strip containing the graph is the one bounded above by

y=8= SUP, <x<b f(x) and below by y = « = inf;<x<p f(x).

y
A

Figure 2.2.3
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Example 2.2.10 The function

%, x=0 or x=1,

glx) = +
1—x, 0<x<1,
(Figure 2.2.4(a)) is bounded on [0, 1], and

sup g(x) =1, inf g(x)=0.
0<x<l1

0<x<l1

61

Therefore, g has no maximum or minimum on [0, 1], since it does not assume either of the

values 0 and 1.

The function
hx)=1—x, 0<x<1,

which differs from g only at 0 and 1 (Figure 2.2.4(b)), has the same supremum and infi-

mum as g, but it attains these values at x = 0 and x = 1, respectively; therefore,

Orsn)?;clh(x) =1 and oin, h(x) =0.

y=1-x

(a) (b)
Figure 2.2.4

Example 2.2.11 The function

1

—, O0<x<1,
x(x—1) o

f(x) = e** Dgin

oscillates between +e**~1 infinitely often in every interval of the form (0, p) or (1—p, 1),

where 0 < p < 1, and

sup f(x) =1, inf f(x)=-L

0<x<1

However, f does not assume these values, so f has no maximum or minimum on (0, 1).
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Theorem 2.2.8 If f is continuous on a finite closed interval [a, b], then f is bounded
on [a,b].

Proof Suppose that¢ € [a,b]. Since f is continuous at ¢, there is an open interval I;
containing ¢ such that

If(x) = f@O) <1 if xel Nlab] (6)

(To see this, set € = 1 in (1), Theorem 2.2.2.) The collection H = {I, |a <t < b} is
an open covering of [a, b]. Since [a, b] is compact, the Heine—Borel theorem implies that
there are finitely many points t1, 5, ..., f, such that the intervals 1;,, I,, ..., I, cover
[a, b]. According to (6) witht = t;,

|f(x)— f@t) <1 if xel;Nla, bl

Therefore,
|fOOl = 1(f(x) = f(0)) + fu)] = [f(x) = f@)] + | f@)] o
<14+|f@t)| if xel;Nla, bl
Let
M =1+ max |f()].
Since [a,b] C \J—; (I; N [a, b]), (7) implies that | f(x)| < M if x € [a, b]. O

This proof illustrates the utility of the Heine—Borel theorem, which allows us to choose
M as the largest of a finite set of numbers.

Theorem 2.2.8 and the completeness of the reals imply that

if f is continuous on a finite closed interval [a, b], then f has an infimum and a supre-
mum on [a,b]. The next theorem shows that f actually assumes these values at some
points in [a, b].

Theorem 2.2.9 Suppose that f is continuous on a finite closed interval [a, b]. Let

a = infbf(x) and B = sup f(x).

a=x= a<x<b

Then o and B are respectively the minimum and maximum of f on [a, b]; that is, there are
points x1 and x in [a, b] such that

f(x1))=a and f(x2) =B.

Proof We show that x; exists and leave it to you to show that x; exists (Exercise 24).

Suppose that there is no x; in [a, b] such that f(x;) = «. Then f(x) > « for all
X € [a, b]. We will show that this leads to a contradiction.
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Suppose that ¢ € [a, b]. Then f(¢) > «, so

f(t)>@>a

Since f is continuous at ¢, there is an open interval /; about ¢ such that

)>f(t)+oc
2

f(x if xel;NJa,b] 8)

(Exercise 15). The collection H = {I, | a<t< b} is an open covering of [a, b]. Since
[a, b] is compact, the Heine—Borel theorem implies that there are finitely many points #1,
ta, ..., t, such that the intervals I;,, Iy,, ..., I, cover [a, b]. Define

. ft) +«
o1 = min ———.

1<i<n
Then, since [a, b] C J!_;(I;; N [a, b]), (8) implies that
f(x)>a1, a<t<h.

But o; > «, so this contradicts the definition of «. Therefore, f(x;) = « for some x; in

[a.b]. il

Example 2.2.12 We used the compactness of [a, b] in the proof of Theorem 2.2.9
when we invoked the Heine—Borel theorem. To see that compactness is essential to the
proof, consider the function

gx)y=1-01 —x)sinl,
X

which is continuous and has supremum 2 on the noncompact interval (0, 1], but does not
assume its supremum on (0, 1], since

1
gx) <14+ (1 —x)|sin—
X

<l4+(1-x)<2 if 0<x=<1.
As another example, consider the function
fx)=e",
which is continuous and has infimum 0, which it does not attain, on the noncompact interval

(0, 00). n

The next theorem shows that if f is continuous on a finite closed interval [a, b], then f
assumes every value between f(a) and f(b) as x varies from a to b (Figure 2.2.5, page 64).

Theorem 2.2.10 (Intermediate Value Theorem) Suppose that f is con-
tinuous on [a, b], f(a) # f(b), and p is between f(a) and f(b). Then f(c) = u for

some c in (a, b).
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A
y=f&)

Figure 2.2.5

Proof Supposethat f(a) < u < f(b). The set
S={x|a§x§b and f(x) < pu}

is bounded and nonempty. Let ¢ = sup S. We will show that f(c) = u. If f(¢) > pu,
then ¢ > a and, since f is continuous at ¢, there is an € > 0 such that f(x) > w if
¢ — € < x < ¢ (Exercise 15). Therefore, ¢ — € is an upper bound for S, which contradicts
the definition of ¢ as the supremum of S. If f(c¢) < u, then ¢ < b and there is an € > 0
such that f(x) < p forc < x < ¢ + €, so ¢ is not an upper bound for S. This is also a
contradiction. Therefore, f(c) = u.

The proof for the case where f(b) < u < f(a) can be obtained by applying this result
to—f. 0

Uniform Continuity

Theorem 2.2.2 and Definition 2.2.3 imply that a function f is continuous on a subset S
of its domain if for each € > 0 and each x¢ in S, there is a § > 0, which may depend upon
Xxo as well as €, such that

| f(x)— f(x0)] <€ if |x—xo| <8 and x € Dy.
The next definition introduces another kind of continuity on a set S.

Definition 2.2.11 A function f is uniformly continuous on a subset S of its domain
if, for every € > 0, there is a § > 0 such that

| f(x) — f(x")| < € whenever |x —x'| < §and x,x" € S. [ |

We emphasize that in this definition § depends only on € and S and not on the particular
choice of x and x’, provided that they are both in S.

Example 2.2.13 The function
flx) =2x
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is uniformly continuous on (—o0, 00), since
[f(x) = f(x) =2]x—x'| <e if |x—x'| <e€/2. [
Example 2.2.14 If 0 < r < oo, then the function
gx) = x?
is uniformly continuous on [—r, r]. To see this, note that
lg(x) — g(x') = |x® = (¢)?] = |x = x| |x + x'| < 2r|x — x|,

o)

lg(x) —g(x)| <€ if |x—x’|<8=2€—r and —r < x,x' <r. [ |

Often a concept is clarified by considering its negation: a function f is not uniformly
continuous on S if there is an €p > 0 such that if § is any positive number, there are points
x and x” in S such that

lx —x'| <8 but |f(x)— f(x)| > eo.

Example 2.2.15 The function g(x) = x? is uniformly continuous on [, r] for any

finite r (Example 2.2.14), but not on (—o0, 00). To see this, we will show that if § > 0
there are real numbers x and x’ such that

[x—x'| =48/2 and |g(x) —g(x)| = 1.
To this end, we write
lg(x) —g(¥)] = [x* = ()| = |x = x| |x + x|.
If [x —x'| = 8/2and x,x” > 1/§, then

8 (1 1
5! ’ el T
|x x||x+x|>2(8+8) 1. |

Example 2.2.16 The function
1
f(x) =cos—
X

is continuous on (0, 1] (Exercise 23(i)). However, f is not uniformly continuous on (0, 1],

1 1
‘f(g)_f(m)‘zl n=12,.... n

Examples 2.2.15 and 2.2.16 show that a function may be continuous but not uniformly
continuous on an interval. The next theorem shows that this cannot happen if the interval
is closed and bounded, and therefore compact.
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Theorem 2.2.12 If f is continuous on a closed and bounded interval [a, b], then f
is uniformly continuous on [a, b].

Proof Suppose that e > 0. Since f is continuous on [a, b], for each ¢ in [a, b] there is
a positive number &, such that

1 f(x) — £(t)] < % if |x—rt] <28 and x € la,b]. )
If I; = (t —&,t + &), the collection
H ={I|t €[a,b]}

is an open covering of [a, b]. Since [a, b] is compact, the Heine—Borel theorem implies that
there are finitely many points ¢y, f2, ..., t, in [a, b] such that I, I;,, ..., I, cover [a, b].
Now define

n

= min{&l,&z,...,&n}. (10)

We will show that if
x —x'| <8 and x,x" €]a,b], (1D)

then | f(x) — f(x')] <e.

From the triangle inequality,

@) = FOO = (f) = £@) + (1) = fG)| 1)
<|fG) = f)| + 1f () — f(XD].
Since Iy, It,, ..., 11, cover [a, b], x must be in one of these intervals. Suppose that x € Iy, ;
that is,
|x —t,| <6, (13)

From (9) witht = ¢,,
€
) = fanl < 5. (14)
From (11), (13), and the triangle inquality,
X =t =|(x =)+ (x =) < X — x|+ |x—1;] <8+ 8, <25,.

Therefore, (9) with z = ¢, and x replaced by x’ implies that
, €
&)= f@l < 5.

This, (12), and (14) imply that | f(x) — f(x')] < €. 0

This proof again shows the utility of the Heine—Borel theorem, which allowed us to
define § in (10) as the smallest of a finite set of positive numbers, so that § is sure to be
positive. (An infinite set of positive numbers may fail to have a smallest positive member;
for example, consider the open interval (0, 1).)

Corollary 2.2.13 If f is continuous on a set T, then f is uniformly continuous on
any finite closed interval contained in T.
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Applied to Example 2.2.16, Corollary 2.2.13 implies that the function g(x) = cos 1/x
is uniformly continuous on [p, 1]if0 < p < 1.

More About Monotonic Functions

Theorem 2.1.9 implies that if f is monotonic on an interval /, then f is either continuous
or has a jump discontinuity at each xo in /. This and Theorem 2.2.10 provide the key to
the proof of the following theorem.

Theorem 2.2.14 If f is monotonic and nonconstant on [a, b], then f is continuous on
[a, b]if and only if its range R y = {f(x) | X € [a, b]} is the closed interval with endpoints
f(a) and f(b).

Proof We assume that f is nondecreasing, and leave the case where f is nonincreasing
to you (Exercise 34). Theorem 2.1.9(a) implies that the set Ry = {f(x) | x € (a, b)} isa
subset of the open interval ( f(a+), f(b—)). Therefore,

Ry ={f@}U Ry U{f(B)} C{f@}U(fla+), fB=) ULfB)}.  (15)

Now suppose that f is continuous on [a, b]. Then f(a) = f(a+), f(b—) = f(b),so (15)
implies that Ry C [f(a), f(b)]. If f(a) < u < f(b), then Theorem 2.2.10 implies that
pu = f(x) for some x in (a, b). Hence, Ry = [ f(a), f(b)].

For the converse, suppose that Ry = [ f(a), f(b)]. Since f(a) < f(a+) and f(b—) <
f(®), (15) implies that f(a) = f(a+) and f(b—) = f(b). We know from Theo-
rem 2.1.9(c) thatif f is nondecreasing and @ < x¢ < b, then

Sf(xo—) = f(x0) < f(xo+).

If either of these inequalities is strict, R y cannot be an interval. Since this contradicts our
assumption, f(xo—) = f(xo) = f(xo+). Therefore, f is continuous at x¢ (Exercise 2).
We can now conclude that f* is continuous on [a, b]. 0

Theorem 2.2.14 implies the following theorem.

Theorem 2.2.15 Supposethat f isincreasing and continuous on [a, b, and let f(a) =
c and f(b) = d. Then there is a unique function g defined on [c, d] such that

g(f(x))=x, a<x<bh, (16)

and
fgy) =y, c=<y=d. (17)

Moreover, g is continuous and increasing on [c, d].

Proof We first show that there is a function g satisfying (16) and (17). Since f is
continuous, Theorem 2.2.14 implies that for each yg in [c, d] there is an x¢ in [a, b] such
that

f(x0) = o, (18)
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and, since f is increasing, there is only one such x¢. Define

g(yo) = xo. (19)

The definition of x is illustrated in Figure 2.2.6: with [c, d] drawn on the y-axis, find the
intersection of the line y = yo with the curve y = f(x) and drop a vertical from the
intersection to the x-axis to find xg.

Yo

Q==

Figure 2.2.6

Substituting (19) into (18) yields

f(&(0)) = yo.
and substituting (18) into (19) yields

g(f(xo0)) = xo.
Dropping the subscripts in these two equations yields (16) and (17).

The uniqueness of g follows from our assumption that f is increasing, and therefore
only one value of x¢ can satisfy (18) for each yy.

To see that g is increasing, suppose that y; < y, and let x; and x5 be the points in [a, b]
such that f(x1) = y1 and f(x2) = y». Since f is increasing, x; < x». Therefore,

gy) = x1 <x2 = g(2).

so g is increasing. Since R, = {g(y) | y € e, d]} is the interval [g(c), g(d)] = [a, b],
Theorem 2.2.14 with f and [a, b] replaced by g and [c, d] implies that g is continuous on
[c.d]. |
The function g of Theorem 2.2.15 is the inverse of f, denoted by f~!. Since (16) and
(17) are symmetric in f and g, we can also regard f as the inverse of g, and denote it by
-1
g .
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Example 2.2.17 If
f(x):xz, 0<x <R,

then
=g =y, 0=<y=R. m
Example 2.2.18 If
fx)=2x+4, 0<x<2,
then
f‘l(y)=g(y)=yT_4, 4<y<8. m

2.2 Exercises

1. Prove Theorem 2.2.2.

2. Prove that a function f is continuous at x¢ if and only if

lim f@) = lim f(x)=f(xo).

X—=>X0—

3. Determine whether f is continuous or discontinuous from the right or left at xo.
(a) f(x) = «l/f (xo=0) (b) f(x)=x (x0>0)
(c) f(x) = L (=0 (d) f(x) =x> (xo arbitrary)

@ s = {5 TEN =0

@ 1 =35 Y20 w=0
x+|x|1+x) . 1

) feo={"x Sy Y70 (4=0
1, x=0

4. Let f be defined on [0, 2] by
x2, 0

IA

x <1,

A

N

x+1, 1<x<

-]

On which of the following intervals is f continuous according to Definition 2.2.3:
[0, 1), (0, 1), (0, 1], [0, 1], [1,2), (1,2), (1,2], [1,2]?

5. Let ¥
X

g0 =

x—1

On which of the following intervals is g continuous according to Definition 2.2.3:
[0, 1), (0. 1), (0, 1], [1, 00), (1, 00)?
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6.

10.

11.

12.

13.

14.

15.

Let
-1 if x is irrational,

fx) =

1 if x is rational.
Show that f is not continuous anywhere.

Let f(x) = 0 if x is irrational and f(p/q) = 1/q if p and g are positive inte-
gers with no common factors. Show that f is discontinuous at every rational and
continuous at every irrational on (0, co).

Prove: If f assumes only finitely many values, then f is continuous at a point xg in

D} if and only if f is constant on some interval (xo — 8, xo + §).

The characteristic function Y1 of aset T is defined by

1, xeT,

Yr(x) = 0. xdT.

Show that 7 is continuous at a point xg if and only if xo € 7° U (7¢)°.

Prove: If f and g are continuous on (a, b) and f(x) = g(x) for every x in a dense
subset (Definition 1.1.5) of (a, b), then f(x) = g(x) for all x in (a, b).

Prove that the function g(x) = logx is continuous on (0, co). Take the following
properties as given.

(a) limy— g(x) =0.

(b) g(x1) +g(x2) = g(x1x2) if x1,x2 > 0.

Prove that the function f(x) = e* is continuous on (—oo, 0o0). Take the following
properties as given.

(a) limy—o f(x) = 1.

(b) f(x1+x2) = f(x1)f(x2), —00 <xy,x2 <o00.

(a) Prove that the functions sinh x and cosh x are continuous for all x.

(b) For what values of x are tanh x and coth x continuous?

Prove that the functions s (x) = sinx and c¢(x) = cos x are continuous on (—00, 00).

Take the following properties as given.

(a) limy—gc(x) = 1.

(b) c(x1 —x2) = c(xp)e(xz) + s(x1)s(x2), —0o0 < x1,Xx2 < 00.

() s2(x)+c*(x)=1, —oo<x <o0.

(a) Prove: If f is continuous at xo and f(x¢) > , then f(x) > u for all x in
some neighborhood of x.

(b) State a result analogous to (@) for the case where f(xg) < u.

(c) Prove: If f(x) < p forall x in S and xo is a limit point of S at which f is
continuous, then f(xg) < u.

(d) State results analogous to (a), (b), and (c) for the case where f is contin-
uous from the right or left at xy.



16.

17.

18.
19.

20.

21.

22,

23.

24.
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Let | f| be the function whose value at each x in Dy is | f(x)|. Prove: If f is
continuous at xo, then so is | f|. Is the converse true?

Prove: If f is monotonic on [a, b], then f is piecewise continuous on [a, b] if and
only if f has only finitely many discontinuities in [a, b].

Prove Theorem 2.2.5.
(a) Show thatif fi, f2, ..., fu are continuous on a set S then so are f; + f> +

+fn andfle"'fn-

(b) Use (a) to show that a rational function is continuous for all values of x
except the zeros of its denominator.

(a) Let f; and f> be continuous at x¢ and define

F(x) = max (f1(x), f2(x)).

Show that F' is continuous at xg.
(b) Let f1, f2, ..., [ be continuous at xo and define

F(x) = max (f1(x), 2(x)..... fa(x)).

Show that F' is continuous at xg.

Find the domains of f o gand g o f.
(a) f() = V¥ g)=1-22  (b) f(x) =logx. g(x)=sinx

() f(1) = ——. g)=cosx  (d) f(x) = V5. g(x) =sin2x

1—x2’
a) Suppose that yg = limy_x, g(x) exists and is an interior point of D r, and
pp y 08 p f
that f is continuous at yo. Show that

Jim (f 2 £)(x) = /(o).

(b) State an analogous result for limits from the right.
(c) State an analogous result for limits from the left.

Use Theorem 2.2.7 to find all points xq at which the following functions are contin-
uous.

(a) V1 —x2 (b) sine™ (c) log(1 + sinx)

1 . 1
(x—1)2 (£) sin (cosx)

(g) (1 —sin?x)~1/2 (h) cot(1 —e™%) (i) cos %

(d) e~1/0-2%) (e) sin

Complete the proof of Theorem 2.2.9 by showing that there is an x, such that

flx2) = B.
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25.

26.

27.

28.

29.

30.

31.

32.

33.
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Prove: If f is nonconstant and continuous on an interval /, then the set S =
{ y | y=f(x),xel } is an interval. Moreover, if  is a finite closed interval, then
sois S.

Suppose that f and g are defined on (—o0, 00), f is increasing, and f o g is con-
tinuous on (—o0, 00). Show that g is continuous on (—oo, 00).

Let f be continuouson [a, b), and define

F(x) = max f(), a<x<b.

(How do we know that F is well defined?) Show that F is continuous on [a, b).
Let f and g be uniformly continuous on an interval S.

(a) Show that f + g and f — g are uniformly continuous on S.
(b) Show that fg is uniformly continuous on S if S is compact.

C Show that is uniformly continuous on S if S is compact and has no
zeros in S.

(d) Give examples showing that the conclusion of (b) and (c) may fail to hold
if S is not compact.

(e) State additional conditions on f and g which guarantee that fg is uniformly
continuous on S even if S is not compact. Do the same for f/g.

Suppose that f is uniformly continuous on a set S, g is uniformly continuous on a

set T, and g(x) € S for every x in T'. Show that f o g is uniformly continuous on
T.

(a) Prove: If f is uniformly continuous on disjoint closed intervals Iy, I, ...,
I, then f is uniformly continuous on U7=1 I;.

(b) Is (a) valid without the word “closed”?

(a) Prove: If f is uniformly continuous on a bounded open interval (a, b), then
f(a+) and f(b—) exist and are finite. HINT: See Exercise 2.1.38.

(b) Show that the conclusion in (a) does not follow if (@, b) is unbounded.

Prove: If f is continuous on [a, 00) and f(o0) exists (finite), then f is uniformly
continuous on [a, 00).

Suppose that f is defined on (—oo, 00) and has the following properties.
i) lir% f(x)=1and (ii) f(x14+x2) = f(x1)f(x2), —00 < x1,X2 < 00.
xX—>

Prove:

(a) f(x) > Oforall x.
(b) f(rx) = [f(x)]" if r is rational.
(c) If f(1) = 1 then f is constant.
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(d) If f(1) = p > 1, then f is increasing,
lim f(x) =00, and lim f(x)=0.
X—>00 X—>—00

(Thus, f(x) = e** has these properties if @ > 0.)
HINT: See Exercises 10 and 12.

34. Prove Theorem 2.2.14 in the case where f is nonincreasing.

2.3 DIFFERENTIABLE FUNCTIONS OF ONE VARIABLE

In calculus you studied differentiation, emphasizing rules for calculating derivatives. Here
we consider the theoretical properties of differentiable functions. In doing this, we assume
that you know how to differentiate elementary functions such as x”, e*, and sin x, and we
will use such functions in examples.

Definition of the Derivative

Definition 2.3.1 A function f is differentiable at an interior point x¢ of its domain if
the difference quotient
S (x) = f(xo)

X — Xo

. X # Xo,

approaches a limit as x approaches x¢, in which case the limit is called the derivative of f
at xg, and is denoted by f”/(x¢); thus,

f/(xo) — lim f(x) - f(-xo)‘ (1)
X—>X0 X — Xo
It is sometimes convenient to let x = x¢ + /4 and write (1) as
h) —
f(x0) = }}im S0 + 1) f(x()). [

0 h

If f is defined on an open set S, we say that f is differentiable on S if f is differentiable
at every point of S. If f is differentiable on S, then f” is a function on S. We say that
[ is continuously differentiable on S if f' is continuous on S. If f is differentiable on a
neighborhood of xy, it is reasonable to ask if f is differentiable at xg. If so, we denote the
derivative of f’ at xo by f”(xo). This is the second derivative of [ at xo, and it is also
denoted by f®(x¢). Continuing inductively, if '~V is defined on a neighborhood of
X0, then the nth derivative of f at xo, denoted by f ™ (xo), is the derivative of £~V at
Xo. For convenience we define the zeroth derivative of f tobe f itself; thus

fO =

We assume that you are familiar with the other standard notations for derivatives; for
example,

f(z) — f//’ f(3) — f///’
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and so on, and
"f
dx"

f(").

Example 2.3.1 If n is a positive integer and

fx) =x",
then
e
Sx) = flxo)  x"—x5 x—xo S ket gk
= = 0
X X0 X X0 X X0 k=0
SO

n—1
l : n—k—1_ .k n—1
Xp) = lim X Xo =nxy .
f'(xo) = lim o = nxg
k=0
Since this holds for every xo, we drop the subscript and write

f'(x) =nx""1 or j—x(x”) =nx""1, [

To derive differentiation formulas for elementary functions such as sin x, cos x, and e*
directly from Definition 2.3.1 requires estimates based on the properties of these functions.
Since this is done in calculus, we will not repeat it here.

Interpretations of the Derivative

If f(x) is the position of a particle at time x # xo, the difference quotient

f(x) = f(x0)

X — Xo

is the average velocity of the particle between times xo and x. As x approaches xg, the
average applies to shorter and shorter intervals. Therefore, it makes sense to regard the
limit (1), if it exists, as the particle’s instantaneous velocity at time x¢. This interpretation
may be useful even if x is not time, so we often regard f’(x¢) as the instantaneous rate of
change of f(x) at xo, regardless of the specific nature of the variable x. The derivative also
has a geometric interpretation. The equation of the line through two points (xo, f(x0)) and
(x1, f(x1)) on the curve y = f(x) (Figure 2.3.1) is
y = fx) + LN ()
X1 — Xo

Varying x; generates lines through (xo, f(x0)) that rotate into the line

y = f(xo) + f'(x0)(x — x0) 2)
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as x1 approaches xo. This is the rangent to the curve y = f(x) at the point (xo, f(x0)).
Figure 2.3.2 depicts the situation for various values of xj.

y
A

y=5x

—_— = =

Figure 2.3.1

Figure 2.3.2

Here is a less intuitive definition of the tangent line: If the function

T'(x) = f(xo) + m(x — xo)
approximates f so well near x¢ that

p S =T
im ——~ =

X—>Xx0 X — Xo

Oa

we say that the line y = T'(x) is tangent to the curve y = f(x) at (xo, f(x0)).
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This tangent line exists if and only if f’(x¢) exists, in which case m is uniquely determined
by m = f’(xo) (Exercise 1). Thus, (2) is the equation of the tangent line.

We will use the following lemma to study differentiable functions.

Lemma 2.3.2 If f is differentiable at xg, then
f(x) = f(x0) + [f'(x0) + E(x)](x — xo), 3)
where E is defined on a neighborhood of xo and

lim E(x) = E(xo) = 0.
X—>X0

Proof Define

E(x) = m;:ii;(xo)—f’(xo), x € Dy and x # xo, @)

0, X = Xo.

Solving (4) for f(x) yields (3) if x # xo, and (3) is obvious if x = x¢. Definition 2.3.1
implies that lim,_,, £(x) = 0. We defined E(xo) = 0 to make E continuous at xo. a

Since the right side of (3) is continuous at xg, so is the left. This yields the following
theorem.

Theorem 2.3.3 If f is differentiable at xg, then f is continuous at xy.

The converse of this theorem is false, since a function may be continuous at a point
without being differentiable at the point.

Example 2.3.2 The function

S(x) =1x]|
can be written as
fx)= x, x>0, 5
or as
fx)=—x, x<O. (6)
From (5),
ffx)= x, x>0,
and from (6),

fl(x)=—x, x<O.

Neither (5) nor (6) holds throughout any neighborhood of 0, so neither can be used alone
to calculate f’(0). In fact, since the one-sided limits

lim M — lim X (7
x—0+ x—0 x—>0+ X
and
fim L0 =/O o =¥ )

x—>0— x—0 x—>0— X
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are different,
i Sx) = f(0)
im &¥/———=
x—0 x—0
does not exist (Theorem 2.1.6); thus, f is not differentiable at 0, even though it is continu-
ous at 0. |

Interchanging Differentiation and Arithmetic Operations
The following theorem should be familiar from calculus.

Theorem 2.3.4 If f and g are differentiable at xo, then so are f + g, f —g,and fg,
with
(@) (f +8)(x0) = f'(x0) + &' (x0):
(b) (f =) (x0) = f’(x0) — g(x0);
(c) (f2)(x0) = f'(x0)g(x0) + f(x0)&’ (x0).
The quotient f/g is differentiable at x¢ if g(xo) # 0, with
f)/ S (x0)g(x0) — f(x0)g’ (x0)

d) |= = :

@ (5) o (800l

Proof The proof is accomplished by forming the appropriate difference quotients and
applying Definition 2.3.1 and Theorem 2.1.4. We will prove (c) and leave the rest to you
(Exercises 9, 10, and 11).

The trick is to add and subtract the right quantity in the numerator of the difference
quotient for ( fg)’ (x¢); thus,
J()gx) — f(x0)g(x0) _ f(X)g(x) — f(x0)g(x) + f(x0)g(x) — f(x0)g(xo)
X —Xo B X — Xo
ST ) (g S =€)

X — Xo X — Xo

The difference quotients on the right approach f”(x¢) and g’(xo) as x approaches xg, and
limy—x, g(x) = g(xo) (Theorem 2.3.3). This proves (c). a

The Chain Rule

Here is the rule for differentiating a composite function.

Theorem 2.3.5 (The Chain Rule) Suppose that g is differentiable at xo and f
is differentiable at g(xo). Then the composite functionh = f o g, defined by

h(x) = f(g(x)),

is differentiable at xg, with

W' (x0) = f'(g(x0))g’ (x0).
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Proof Since f is differentiable at g(xo), Lemma 2.3.2 implies that

f(@) = f(g(x0)) = [f'(g(x0)) + E®][t — g(x0)].

where
lim )E(t) = E(g(x0)) =0.

t—>g(xo

Letting t = g(x) yields

fg(x)) = f(g(x0)) = [f'(g(x0)) + E(g(x))][g(x) — g(x0)]-

Since h(x) = f(g(x)), this implies that

h(x)—h —
MRG0 _ o) + B £ EX),
X — X0 X — X0

Since g is continuous at x¢ (Theorem 2.3.3), (9) and Theorem 2.2.7 imply that

lim E(g(x)) = E(g(xo)) = 0.
X—>X0
Therefore, (10) implies that

W) — fim M= AG)

X—>X( X — Xo

= f'(g(x0))g’ (x0),

as stated.

Example 2.3.3 If

f(x) =sinx and g(x)= %, x #0,
then |
h(x) = f(g(x)) = sin i # 0,

and
1

W) = f(g()g(x) = (cos %) (——) . x#0.

X2
It may seem reasonable to justify the chain rule by writing

h(x) — h(xo)
x—

= f(g(x)) — f(g(x0))x — xo

_ S(gX)) — f(g(x0)) g(x) —g(x0)
g(x) — g(xo) X —Xo

and arguing that
lim 8@ — f(g(xo))
im

AT e e B

©)

(10)
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(because limy—x, g(x) = g(xo)) and

y g(x) — g(xo)
m ———

X—>Xx0 X — Xo

= g'(xo).

However, this is not a valid proof (Exercise 13).

One-Sided Derivatives

One-sided limits of difference quotients such as (7) and (8) in Example 2.3.2 are called one-
sided or right- and left-hand derivatives. That is, if f is defined on [xo, b), the right-hand
derivative of f at xg is defined to be

Sy = tim TG
xX—>x0+ X — Xo
if the limit exists, while if f is defined on (a, x¢], the left-hand derivative of f at xq is
defined to be £ — f(x0)
x)— f(x
Fl) = gim L2000
X=>X0— X — X

if the limit exists. Theorem 2.1.6 implies that f" is differentiable at xo if and only if f7 (xo)
and f” (x¢) exist and are equal, in which case

f'(x0) = fi(x0) = fL(x0).
In Example 2.3.2, f1(0) = 1 and f/(0) = —1.

Example 2.3.4 If

x3, x <0,
fx) = 1 (1D
x%sin—, x>0,
then
3x2, x <0,
fx) = 1 1 (12)

2xsin— —cos —, x > 0.
X X

Since neither formula in (11) holds for all x in any neighborhood of 0, we cannot simply
differentiate either to obtain f”(0); instead, we calculate
xZsinlx — 0 1

1(0)= lim ——— = i in— =0,
0= lin g Tty

3

/ 1 X _O_ : 2 _ (-
1= lig *=g = iy =0

hence, f(0) = f1(0) = f/(0) = 0. [ |
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This example shows that there is a difference between a one-sided derivative and a one-
sided limit of a derivative, since f|(0) = 0, but, from (12), f'(04+) = limy—o+ f'(x)
does not exist. It also shows that a derivative may exist in a neighborhood of a point xq
(= 0 in this case), but be discontinuous at xg.

Exercise 4 justifies the method used in
Example 2.3.4 to compute f’(x) for x # 0.

Definition 2.3.6

(a) We say that f is differentiable on the closed interval [a,b] if f is differentiable on
the open interval (a, b) and f7 (a) and f’(b) both exist.

(b) We say that f is continuously differentiable on [a, b] if f is differentiable on [a, b],
f'1is continuous on (a, b), f (a) = f'(a+),and f'(b) = f'(b—). ]

Extreme Values

We say that f(xo) is a local extreme value of f if thereisa § > 0 such that f(x) — f(xo)
does not change sign on
(XO—(S,Xo-i-(S)ﬂDf. (13)

More specifically, f(xo) is a local maximum value of f if
J(x) = f(xo) (14)

or a local minimum value of f if

f(x) = f(xo) (15)

for all x in the set (13). The point xy is called a local extreme point of f, or, more specifi-
cally, a local maximum or local minimum point of f .

|
|
|-
N |-
(3]
<
N
Y
=

Figure 2.3.3
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Example 2.3.5 If

1, -l<x=<—3
fw={ MKooomz<xss
1 . 7wx L <4
—— sin > <X
ﬁ 2 9 2 —

(Figure 2.3.3), then 0, 3, and every x in (—1, —%) are local minimum points of f, while 1,
4, and every x in (—1, —%] are local maximum points. [ ]

It is geometrically plausible that if the curve y = f(x) has a tangent at a local extreme
point of £, then the tangent must be horizontal; that is, have zero slope. (For example, in
Figure 2.3.3, see x = 1, x = 3, and every x in (—1, —1/2).) The following theorem shows
that this must be so.

Theorem 2.3.7 If f is differentiable at a local extreme point xg, then f’(xq) = 0.

Proof We will show that x¢ is not a local extreme point of f if f'(x¢) # 0. From
Lemma 2.3.2,
S (x) = f(xo)
X — Xo
where limy_, x, E(x) = 0. Therefore, if f'(x¢) # 0, there is a § > 0 such that

= f'(x0) + E(x), (16)

|E()| < f/(xo0)| if |x —xo| <34,

and the right side of (16) must have the same sign as f'(x¢) for |x — xo| < 8. Since the
same is true of the left side, f(x) — f(xo) must change sign in every neighborhood of xg
(since x — x¢o does). Therefore, neither (14) nor (15) can hold for all x in any interval about
X0. a0

If f'(xo) = 0, we say that xg is a critical point of f. Theorem 2.3.7 says that every
local extreme point of f at which f is differentiable is a critical point of f. The converse
is false. For example, 0 is a critical point of f(x) = x3, but not a local extreme point.

Rolle’s Theorem

The use of Theorem 2.3.7 for finding local extreme points is covered in calculus, so we will
not pursue it here. However, we will use Theorem 2.3.7 to prove the following fundamental
theorem, which says that if a curve y = f(x) intersects a horizontal line at x = @ and
x = b and has a tangent at (x, f(x)) for every x in (a, b), then there is a point ¢ in (a, b)
such that the tangent to the curve at (c, f(c)) is horizontal (Figure 2.3.4, page 82).
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y
A

/a b\ =

Figure 2.3.4

Theorem 2.3.8 (Rolle’s Theorem) Suppose that f is continuous on the closed
interval [a, b] and differentiable on the open interval (a,b), and f(a) = f(b). Then
f'(c) = 0 for some c in the open interval (a, b).

Proof Since f is continuous on [a, b], f attains a maximum and a minimum value on
[a, b] (Theorem 2.2.9). If these two extreme values are the same, then f is constant on
(a,b),so f'(x) = 0forall x in (a, b). If the extreme values differ, then at least one must
be attained at some point ¢ in the open interval (@, b), and f'(c) = 0, by Theorem 2.3.7. 0

Intermediate Values of Derivatives

A derivative may exist on an interval [a, b] without being continuous on [a, b]. Neverthe-
less, an intermediate value theorem similar to Theorem 2.2.10 applies to derivatives.

Theorem 2.3.9 (Intermediate Value Theorem for Derivatives) Suppose
that f is differentiable on [a, b], f'(a) # f'(b), and w is between f'(a) and f’'(b). Then
f'(c) = wfor some cin (a,b).

Proof Suppose first that

fla) << f'(b) (17)
and define
g(x) = f(x) — px.
Then
gx)=f'x)—p, a<x=<b, (18)
and (17) implies that
g'(a) <0 and g'(b)>0. (19)

Since g is continuous on [a, b], g attains a minimum at some point ¢ in [a, b]. Lemma 2.3.2
and (19) imply that there is a § > 0 such that

gx) <ga), a<x<a+$8, and gx)<g®), b-5<x<b
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(Exercise 3), and therefore ¢ # a and ¢ # b. Hence, a < ¢ < b, and therefore g’(c¢) = 0,
by Theorem 2.3.7. From (18), f/(c) = u.

The proof for the case where f/(b) < u < f'(a) can be obtained by applying this result
to—f. 0

Mean Value Theorems

Theorem 2.3.10 (Generalized Mean Value Theorem) If f and g are con-
tinuous on the closed interval [a, b] and differentiable on the open interval (a, b), then

[g(®) —g@]f'(c) = [f(B) = fla)lg'(c) (20)
for some c in (a,b).
Proof The function

h(x) = [g(b) — g(@)]f(x) = [f (D) — f(a)lg(x)
is continuous on [a, b] and differentiable on (a, b), and
h(a) = h(b) = g(b) f(a) — f(b)g(a).
Therefore, Rolle’s theorem implies that 4’ (c) = 0 for some c¢ in (a, b). Since
h'(c) =[g) — g@]f'(c) = [f(b) — f(@)]g'(c).

this implies (20). a

The following special case of Theorem 2.3.10 is important enough to be stated separately.

Theorem 2.3.11 (Mean Value Theorem) If f is continuous on the closed
interval [a, b] and differentiable on the open interval (a, b), then

f) - f@)
b

—da

fle) =
for some c in (a,b).

Proof Apply Theorem 2.3.10 with g(x) = x.
a

Theorem 2.3.11 implies that the tangent to the curve y = f(x) at (¢, f(c)) is parallel to
the line connecting the points (@, f(a)) and (b, f (b)) on the curve (Figure 2.3.5, page 84).

Consequences of the Mean Value Theorem

If f is differentiable on («, b) and x;1, xo € (a,b) then f is continuous on the closed
interval with endpoints x; and x, and differentiable on its interior. Hence, the mean value
theorem implies that

flx2) = fx1) = f(e)(x2 — x1)
for some ¢ between x; and x,. (This is true whether x; < x5 or x, < x1.) The next three
theorems follow from this.
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Theorem 2.3.12 If f/(x) = 0forall x in (a,b), then f is constant on (a, b).

Theorem 2.3.13 If f” exists and does not change sign on (a, b), then f is monotonic
on (a, b) : increasing, nondecreasing, decreasing, or nonincreasing as

f'x) >0, flx)=0, f'(x)<0, or f'(x)=0,
respectively, for all x in (a, b).

Theorem 2.3.14 If
[f'(x)| <M, a<x<b,

then
|f(X)—f(X/)| §M|x_x/|’ x,x’e(a,b). (21)

A function that satisfies an inequality like (21) for all x and x’ in an interval is said to
satisfy a Lipschitz condition on the interval.

y
A

fb) y=r(x

f()

fla)

Figure 2.3.5

2.3 Exercises

1. Prove that a function f is differentiable at x¢ if and only if

i 00 = fGro) = mix —x0) _
m =

X—>Xx0 X — Xo

0

for some constant m. In this case, f'(xo) = m.
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Prove: If f is defined on a neighborhood of x¢, then f is differentiable at x, if and
only if the discontinuity of

f(x) = f(x0)

X — Xo

h(x) =

at xo is removable.

Use Lemma 2.3.2 to prove that if f’(x¢) > 0, there is a § > 0 such that

f(x) < flxo)if xo—8 <x <xgpand f(x) > f(xp)if xo <x < x0+ 8.

Suppose that p is continuous on (a, ¢] and differentiable on (a, ¢), while g is con-
tinuous on [c, b) and differentiable on (c, b). Let

p(x), a<x=<c,

-]

q(x), c¢<x<b.

(a) Show that
p(x), a<x<ec,

q' (x), c¢<x<b.

(b) Under what additional conditions on p and ¢ does f”(c) exist? Prove that
your stated conditions are necessary and sufficient.

Find all derivatives of f(x) = x"~!|x|, where n is a positive integer.

Suppose that f7(0) exists and f(x + y) = f(x) f(y) for all x and y. Prove that f”
exists for all x.

Suppose that ¢/(0) = a and s'(0) = b where a® + b? # 0, and

c(x +y) = c(x)e(y) = s(x)s(y)
s(x +y) =s()c(y) +c()s(y)

for all x and y.

(a) Show that ¢ and s are differentiable on (—00, 00), and find ¢’ and s’ in terms
ofc, s, a,and b.

(b) (For those who have studied differential equations.) Find ¢ and s explicitly.

(a) Suppose that f and g are differentiable at xo, f(xo) = g(xo) = 0, and
g’ (x0) # 0. Without using L’ Hospital’s rule, show that

f(x) _ f(xo)

%0 g(¥) | g'(xo)

(b) State the corresponding results for one-sided limits.
Prove Theorem 2.3.4(a).
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10. Prove Theorem 2.3.4(b).
11. Prove Theorem 2.3.4(d).

12. Proveby induction: Ifn > 1 and f ™ (x¢) and g™ (x¢) exist, then so does ( )™ (xo),

and
n

(/9" (o) = 3 (;)f<m)(xo)g<"‘m>(xo).

m=0
HINT: See Exercise 1.2.19. This is Leibniz’s rule for differentiating a product.

13. What is wrong with the “proof” of the chain rule suggested after Example 2.3.3?
Correct it.

14. Suppose that f is continuous and increasing on [a, b]. Let f be differentiable at a
point x¢ in (@, b), with f’(xo) # 0. If g is the inverse of f (Theorem 2.2.15), show
that g'(f(x0)) = 1/ f"(xo0).

15. (a) Show that f](a) = f’(a+) if both quantities exist.

(b) Example 2.3.4 shows that f1(a) may exist even if f’(a+) does not. Give an
example where f”(a+) exists but f7 (a) does not.

(c) Complete the following statement so it becomes a theorem, and prove the
theorem: “If f'(a+)existsand fis________ ata,then f](a) = f'(a+)”

16. Show that f(a+) and f(b—) exist (finite) if f” is bounded on (a, b). HINT: See
Exercise 2.1.38.

17.  Suppose that f is continuous on [a, b], f| (a) exists, and p is between f7 (a) and
(f(®) = f(a))/(b —a). Show that f(c) — f(a) = u(c — a) for some c in (a, b).

18.  Suppose that f is continuous on [a, b], f} (a) < u < f’(b), and

(f ) = f(@)/(b—a) # p.

Show that either f(c) — f(a) = u(c —a) or f(c) — f(b) = u(c — b) for some ¢
in (a, b).
19. Let ]
sin x

fx)= , x#0.

x
(a) Define f(0) so that f is continuous at x = 0. HINT: Use Exercise 8.
(b) Show that if X is a local extreme point of f, then

@] =1 +33)7V2

HINT: Express sinx and cos x in terms of f(x) and f'(x), and add their
squares to obtain a useful identity.

(c) Show that | f(x)| < 1 for all x. For what value of x is equality attained?



20.

21.

22,

23.

24.

25.
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Let n be a positive integer and

fx) = . ——, x # km (k = integer).

(a) Define f (k) so that f is continuous at k7r. HINT: Use Exercise 8.
(b) Show that if X is a local extreme point of f, then

@] =[1+ @2 - Dsinx] 2.
HINT: Express sinnx and cosnx in terms of f(x) and f'(x), and add their
squares to obtain a useful identity.
(c) Show that | f(x)| < I for all x. For what values of x is equality attained?

We say that f has at least n zeros, counting multiplicities, on an interval I if there
are distinct points X1, X2, ..., Xp in I such that

f(j)(xl.):()’ 0<j<nmn-1, 1<i<p,

and ny + --- +n, = n. Prove: If f is differentiable and has at least n zeros,
counting multiplicities, on an interval I, then f/ has at least n — 1 zeros, counting
multiplicities, on 7.

Give an example of a function f such that f’ exists on an interval (a, b) and has a
jump discontinuity at a point xg in (a, b), or show that there is no such function.

Let x1, X2, ..., X, and y1, V2, ..., Yy bein (a,b) and y; < x;, 1 < i < n. Show
that if f is differentiable on (a, b), then

Y )= fOl = 1)) (xi —yi)
i=1 i=1
for some ¢ in (a, b).

Prove or give a counterexample: If f is differentiable on a neighborhood of x¢, then
[ satisfies a Lipschitz condition on some neighborhood of x.

Let
f'(x)+ p(x)f(x) =0 and g"(x)+ p(x)g(x) =0, a<x <b.

(a) Show that W = f’g — fg’ is constant on (a, b).

(b) Prove: If W # 0 and f(x1) = f(x2) = 0 where a < x; < x < b, then
g(c) = 0 for some ¢ in (x1, X3). HINT: Consider f/g.
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26.

27.

28.

Suppose that we extend the definition of differentiability by saying that f is differ-
entiable at x¢ if

Fxo) = lim LW =0

X—>Xx( X — Xo

exists in the extended reals. Show that if

VX, x>0,

fy = —J/—x, x <0,

then f'(0) = oo.
Prove or give a counterexample: If f is differentiable at x¢ in the extended sense of
Exercise 26, then f is continuous at x.

Assume that f is differentiable on (—oo, 00) and Xy is a critical point of f.

()

(b)

(c)

(d)

(e)

Let h(x) = f(x)g(x), where g is differentiable on (—o0, co) and
f(x0)g'(x0) # 0.

Show that the tangent line to the curve y = h(x) at (xo, #(x0)) and the tangent
line to the curve y = g(x) at (xo, g(xo) intersect on the x-axis.

Suppose that f(xg) # 0. Let h(x) = f(x)(x — x1), where x; is arbitrary.
Show that the tangent line to the curve y = h(x) at (xo, (X)) intersects the
X-axis at X = xj.

Suppose that f(xg) # 0. Let 2(x) = f(x)(x — x1)?, where x; # xo. Show
that the tangent line to the curve y = h(x) at (xo, h(x¢)) intersects the x-axis
at the midpoint of the interval with endpoints x¢ and x;.

Let h(x) = (ax? 4+ bx + ¢)(x — x1), where a # 0 and b? — 4ac # 0. Let

X0 = ~3a" Show that the tangent line to the curve y = h(x) at (xo, h(x0))

a
intersects the x-axis at X = x.

Let & be a cubic polynomial with zeros «, 8, and y, where o and § are distinct

and y is real. Let xo = #. Show that the tangent line to the curve

¥y = h(x) at (xo, h(xo)) intersects the axis at X = y.

2.4 I’HOSPITAL’S RULE

The method of Theorem 2.1.4 for finding limits of the sum, difference, product, and quo-
tient of functions breaks down in connection with indeterminate forms. The generalized
mean value theorem (Theorem 2.3.10) leads to a method for evaluating limits of indetermi-

nate forms.

Theorem 2.4.1 (L’Hospital’s Rule) Suppose that f and g are differentiable
and g’ has no zeros on (a, b). Let

Jim f(x) = lim g(x) =0 (1
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or
lim f(x) =200 and lim g(x) = too, 2)
x—>b— x—>b—
and suppose that
/
im £ _ 1 (nite or +00). 3)
x—~b— g'(x)
Then
im L9 _ )
x—~b— g(x)

Proof We prove the theorem for finite L and leave the case where L = 400 to you
(Exercise 1).

Suppose that € > 0. From (3), there is an x¢ in (a, b) such that

fe)
g'(c)

Theorem 2.3.10 implies that if x and ¢ are in [xg, b), then there is a ¢ between them, and
therefore in (x¢, b), such that

[g(x) =g f'(€) = [f(x) = f(D]g' () (6)

Since g’ has no zeros in (@, b), Theorem 2.3.11 implies that

gx)—g@) #0 if x,t€(a,b).

Li<e if xg<c<b. ®)

This means that g cannot have more than one zero in (@, b). Therefore, we can choose x¢
so that, in addition to (5), g has no zeros in [xg, b). Then (6) can be rewritten as

f@) =) _ f(e)
gx) —g(t)  g)’

so (5) implies that

fE) = f@©)

<(x) — g(0) Ll <e if x,t € [xg,b). )

If (1) holds, let x be fixed in [x¢, b), and consider the function

S(x)— f@)
Gi)y=2""—1"_L
O = —50
From (1),
Jim f@) = Jim. g(t) =0,
w0 £()
. X



90 Chapter 2 Differential Calculus of Functions of One Variable

Since
|G(t)| <e if xo<t<b,

because of (7), (8) implies that
fo
g(x)
This holds for all x in (xg, ), which implies (4).
The proof under assumption (2) is more complicated. Again choose x¢ so that (5) holds
and g has no zeros in [xg, ). Letting t = x¢ in (7), we see that

f(x) = fxo)
g(x) — g(xo)

Since limy_,5— f(x) = Fo00, we can choose x; > x¢ so that f(x) # Oand f(x) # f(xo)
if x; < x < b. Then the function

< €.

Ll <e if x9<x<b. 9

1 —g(x0)/8(x)
1= f(x0)/f(x)

is defined and nonzero if x; < x < b, and

u(x) =

lim u(x) =1, (10)

x—>b—

because of (2).

Since

f@) = fxo) _ f0) 1= f)/ () _ f()
gx) —glxo)  g(x) 1—g(x0)/g(x)  gx)u(x)’

(9) implies that

Li<e if x1<x<b,

‘ S
g(x)u(x)
which can be rewritten as

& — Lu(x)

g(x)

From this and the triangle inequality,

0| [
2(0) L‘— e

Because of (10), there is a point x5 in (x7, b) such that

<e€lulx)] if x;<x<b. an

+ |Lu(x) — L| < €lu(x)| + |L||u(x) —1]. (12)

|u(x) — 1| < € andtherefore |u(x)|<1l+e€ if x2<x <b.
This, (11), and (12) imply that

W,

<e(l+e)+|Lle if x2<x <b,
g(x)




Section 2.4 L’Hospital’s Rule 91

which proves (4) under assumption (2). a

Theorem 2.4.1 and the proof given here remain valid if b = oo and “x — b—"is
replaced by “x — o00” throughout. Only minor changes in the proof are required to show
that similar theorems are valid for limits from the right, limits at —oo, and ordinary (two-
sided) limits. We will take these as given.

The Indeterminate Forms 0/0 and oco/oco
We say that f/g is of the form 0/0 as x — b— if
lim f(x) = lim g(x) =0,
x—>b— x—>b—
or of the form co/oco as x — b— if
lim f(x) =+o00
x—>b—

and
lim g(x) = *o0.
x—>b—

The corresponding definitions for x — b+ and x — £oo are similar. If f/g is of one of
these forms as x — b— and as x — b+, then we say that it is of that form as x — b.

Example 2.4.1 The ratio sinx/x is of the form 0/0 as x — 0, and L’Hospital’s rule
yields

. sinx . Ccosx
lim = lim =1. [ |
x—>0 X x—0 1

Example 2.4.2 The ratio e */x is of the form co/o0 as x — —oo, and L’Hospital’s
rule yields
e~ X
lim — = lim
xX—>—00 X xX—>—00 1

= —0Q. |

Example 2.4.3 Using I’Hospital’s rule may lead to another indeterminate form; thus,
X X

lim — = lim —
X—>00 X x—00 2X

if the limit on the right exists in the extended reals. Applying L'Hospital’s rule again yields

e
lim — = lim — = oo.
x—>00 2x x—o00 2
Therefore,
X
.e
lim — = o0
X—>00 X
More generally,
X
lim — = o0
x—>00 x%

for any real number o« (Exercise 33). |
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Example 2.4.4 Sometimes it pays to combine L’Hospital’s rule with other manipula-
tions. For example,

. 4 —4cosx — 2sin® x . 4sinx —4sinx cosx
lim 7 = lim 3
x—0 X x—0 4x

. sinx . 1 —cosx
= | lim lim —
x—>0 X x—>0 X

=11

As another example, L’Hospital’s rule yields

=1.

lim e log(1 + x) — lim —2xe™* log(l + x) + e‘x2(1 +x)7!
x—0 X x—0 1

However, it is better to remove the “determinate” part of the ratio before using L’Hospital’s
rule:

. e log(l+x) (.. _» . log(1+ x)
lim — = =|(lime lim —————=

x—0 X x—0 x—0 X
log(1 +
— (1) tim 280+
x—>0 X

1/(1
= lim M =1 n

x—0 1

In using L’Hospital’s rule we usually write, for example,
/

tim L& — i L&) (13)

x—b g(x)  x—b g'(x)
and then try to find the limit on the right. This is convenient, but technically incorrect, since
(13) is true only if the limit on the right exists in the extended reals. It may happen that the
limit on the left exists but the one on the right does not. In this case, (13) is incorrect.
Example 2.4.5 If

1
f(x) =x—x%sin— and g(x) =sinux,
x

then

1 1
f/(x) =1—2xsin o + cos < and g’(x) = cos x.
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Therefore, limy—o f/(x)/g’(x) does not exist. However,

lim L&) _ g Lm0/ L m
x=>0 g(x) x—0 (sinx)/x 1

The Indeterminate Form 0- oo

We say that a product fg is of the form 0 - co as x — b— if one of the factors approaches
0 and the other approaches 0o as x — b—. In this case, it may be useful to apply
L’Hospital’s rule after writing

£) e
g O TR0 =150

since one of these ratios is of the form 0/0 and the other is of the form co/oco as x — b—.

f(x)gx) =

Similar statements apply to limits as x — b+, x — b, and x — +oo.

Example 2.4.6 The product x log x is of the form 0 - oo as x — 0+. Converting it to
an oo/ oo form yields

log x

lim xlogx = lim
x—>0+ & x—>0+ l/x

I 1/x
im
x—0+ —1/x2

=— lim x =0.
x—>0+

Converting to a 0/0 form leads to a more complicated problem:

X

li 1 = i
w0y OB T A 1/logx

Iim ————
0t —1 /x(log x)?

=— li logx)* =?
i, (o8 ) .

Example 2.4.7 The product x log(1+ 1/x) is of the form 0-00 as x — co. Converting
itto a 0/0 form yields

log(1 + 1
lim xlog(l + 1/x) = lim M
x—>00 x—>00 1/x

o 0 ) 1)
T xoo0 —1/x2

1
= lim —— =1
x—>ool+1/x
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In this case, converting to an co/oo form complicates the problem:

X
li log(1 +1 = lim ————
xlgolox og(l + 1/x) xl>nolo 1/1log(1 4+ 1/x)

, 1
=, 1 —1/x2

(e 7o7) (F57)
= lim x(x + Dflog(1 + 1/x)? =2 -

The Indeterminate Form oo — oo
A difference f — g is of the form oo — oo as x — b—if
lim f(x) = lim g(x) = *oo.
x—>b— x—>b—

In this case, it may be possible to manipulate f — g into an expression that is no longer
indeterminate, or is of the form 0/0 or co/oco as x — b—. Similar remarks apply to limits
asx — b+, x — b,orx — too.

Example 2.4.8 The difference

is of the form co — oo as x — 0, but it can be rewritten as the 0/0 form

sinx — x
x2
Hence,
. sin x 1 . sinx —Xx . cosx —1
lim ——)=1lm —— = lim ——
x—>0 \ x2 X x—0 x2 X—0 2x
. —sinx
= lim = -
x—0 2
Example 2.4.9 The difference
x2—x

is of the form co — 0o as x — oco. Rewriting it as

1
(=9
X

which is no longer indeterminate as x — oo, we find that

1
lim (x? —x) = lim x? (1 - —)
(o 9)

xX—>00 x— X

. 5\ . 1
:(hmx)hm 1——
X—>00 X—>00 X
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The Indeterminate Forms 0°, 1°, and o’

The function f# is defined by

F(x)FD) = 8@ 10eS() = exp(g(x)log f(x))

for all x such that f(x) > 0. Therefore, if f and g are defined and f(x) > 0 on an interval
(a, b), Exercise 2.2.22 implies that

lim [/ = exp ( lim g(x)log f(x)) (14)

if limy—p— g(x)log f(x) exists in the extended reals. (If this limit is +oo then (14) is
valid if we define e = 0 and ¢® = 00.) The product glog f can be of the form 0 - co
in three ways as x — b—:

(a) Iflimyp— g(x) = 0and limy_p,_ f(x) = 0.
(b) Iflimy_p_ g(x) = oo and limy_p— f(x) = 1.
(c) Iflimyp_ g(x) = 0andlimy_,_ f(x) = oo.

In these three cases, we say that £ is of the form 0°, 1°°, and oo°, respectively, as x —
b—. Similar definitions apply to limits as x — b+, x — b, and x — Fo00.

Example 2.4.10 The function x* is of the form 0° as x — 0+. Since

XX = exlogx
and limy_ 04+ x logx = 0 (Example 2.4.6),
lim x* =¢%=1. [ |
x—>0+

Example 2.4.11 The function x'/*~1 s of the form 1% as x — 1. Since

(/=1 exp ( logx)
x—1

. logx o 1/x
lim = lim — =1,
x—>1x—1 x—>1 1

and

it follows that

lim x /=D = o1 — ¢, [ |
x—1

0

Example 2.4.12 The function x/* is of the form 0c® as x — oc. Since

and
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it follows that

lim x'/* = ¢ = 1.

X—>00

2.4 Exercises

1.

Prove Theorem 2.4.1 for the case where limy_,;,_ f'(x)/g’(x) = Foc.

In Exercises 2—40, find the indicated limits.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

tan—!

lim —
x—=>0sin” "~ Xx

sinnx

Iim —
x—>m sinXx

lim xsin(1/x)
X—>00

lim sinx log(| tan x|)
X—>T

lim (vx +1— /)
X—>00

lim (cot x — csc x)
x—>0

lim | sin x|™"*

X—>TT

lim | sin x|*

x—0

sin(1/x)

lim x
X—>00

lim x“logx

x—>0+
x+1 Var-1
lim ( )
x—>oo \ x — 1
_ (logx)?
lim ——
X—>00 X

lim (x* —log x)
X—>00

. 1 —cosx 1 + cos x
3. lim ——— ) .
x~0 log(I + x?) 4. lim =5
6. lim log(1 + x) 7. lim e* sine™*’
x—>0 X

9. xli)rgo«/}(e_l/x—l) 10.
12.
14.
16.
18.
20.

22,

24.

26.

28.

30.

lim tanxlogx
x—0+
lim

1

— + log(t
m [x + log( anx)i|
lim - —
x—>0\e*—1 Xx
lim | — - —
x—>0 \ sin x X

lim |tanx|°®*
x—m/2

lim (1 4+ x)/*
x—0

m (i3
Iim (| — — —
x>0\1—cosx x

. log(log x)
lim —————
x—e sin(x — e)

. (x +1
lim
x—>1+ \ x — 1

)m

lim (cosh x — sinh x)
X—>00

. 2 .
lim e sin(e®)
X—>—00



31.

33.

35.
37.

38.

39.

40.
41.

42.

43.

Section 2.4 L’Hospital’s Rule

. osinx —x + x3/6
lim x(x + 1) [log(l + 1/x)* 32. lim —————
X—>00

x—0 XS
e 34. lim e cosx
lim — x—3m/2—
X—>00 X
X
. o 36. lim
Jim (logx)” log(log x) x—00 x log x
lim (sinx)™*
x—>m/2
n
e* — Z x"r!
lim r=9 (n = integer > 1)
x—0 xn
n x2r+1
sinx — 1)
Z;)( ) Q@r+ 1!
)11—% x2n+1 (n = integer = 0)
e,—l/x2
lim =0 (n = integer)
x—>0 x"

97

(a) Prove: If f is continuous at xo and limy_,x, f’(x) exists, then f’(x¢) exists

and f” is continuous at xg.

(b) Give an example to show that it is necessary to assume in (@) that f is con-

tinuous at xy.
The iterated logarithms are defined by Lo(x) = x and
Ln(x) =log(Lp-1(x)), x>an, n=1,
where a1 = 0 and a, = e%"—!,n > 1. Show that
(a) Ln(x) = Lp—1(logx), x>a,, n>1.
(b) Lu—1(an+)=0and L,(an+) = —oo.
(c) lim+(L,,_1(x))“L,,(x) =0ifoe>0andn > 1.
xX—an
(d) lim (Ln(x))*/Ly—1(x) = 0if « is arbitrary and n > 1.
X—>00
Let f be positive and differentiable on (0, co), and suppose that
lim L&)
x—o00 f(x)
Define fo(x) = x and

=L, where 0<L <o0.

fn(x) = f(fam1(x)), n=1
Use L’Hospital’s rule to show that

i G _
m ——

= if a>0 and n>1.
xX—>00 fn—l(-x)
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44. Let f be differentiable on some deleted neighborhood N of x¢, and suppose that f
and f” have no zeros in N. Find

(a) lim |[f(x)7®if lim f(x) = 0;
X—>Xx0 X—>X0

(b) lim |f()|YYOTD G lim f(x) = 1;
X—>Xx0 X—>X0

(€) Jim | /(0] iflime sy, f(x) = oo,

45. Suppose that f and g are differentiable and g’ has no zeros on (a, b). Suppose also
that limy 5 f/(x)/g’(x) = L and either

lim f(x) = lim g(x) =0
x—>b— x—>b—

or
lim f(x) =00 and lim g(x) = £oo.
x—>b— x—>b—

Find limy 5 (1 + f(x))l/g(x) ]

46. We distinguish between 0o - 0o (= 00) and (—o0)oo (= —00) and between 0o + 0o
(= o00) and —oo — 0o (= —o0). Why don’t we distinguish between O - co and
0 (—00), 00 — 00 and —00 + 00, 00/00 and —oco /00, and 1°° and 17°°7

2.5 TAYLOR’S THEOREM

A polynomial is a function of the form
p(x) =ao + ai(x —xo) + -+ + an(x — x0)", (1

where ay, ..., a, and x¢ are constants. Since it is easy to calculate the values of a polyno-
mial, considerable effort has been devoted to using them to approximate more complicated
functions. Taylor’s theorem is one of the oldest and most important results on this question.

The polynomial (1) is said to be written in powers of x —xo, and is of degree n if a,, # 0.
If we wish to leave open the possibility that a, = 0, we say that p is of degree < n. In
particular, a constant polynomial p(x) = ay is of degree zero if ag # 0. If ap = 0, so that
p vanishes identically, then p has no degree according to our definition, which requires
at least one coefficient to be nonzero. For convenience we say that the identically zero
polynomial p has degree —oo. (Any negative number would do as well as —oco. The point
is that with this convention, the statement that p is a polynomial of degree < n includes
the possibility that p is identically zero.)

Taylor Polynomials

We saw in Lemma 2.3.2 that if f is differentiable at x¢, then

f(x) = f(x0) + f'(x0)(x — x0) + E(x)(x — xo),
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where
lim E(x) =0.

X—>X0

To generalize this result, we first restate it: the polynomial
Ti(x) = f(x0) + f'(x0)(x — Xo),
which is of degree < 1 and satisfies
Ti(xo) = f(x0), T{(x0) = f'(x0),
approximates f so well near x¢ that

i T® -
m —— =
X—>X0 X — Xp

0. @

Now suppose that f has n derivatives at x¢ and T}, is the polynomial of degree < n
such that
T (o) = fP(xo). 0<r=<n. 3)

How well does T}, approximate f near xo?

To answer this question, we must first find 7. Since T} is a polynomial of degree < n,
it can be written as

Ta(x) = ao + ai(x — xo) + -+ + an(x — x0)", “)
where ay, ..., a, are constants. Differentiating (4) yields
T\ (x0) =rla,, 0<r<n,

so (3) determines a, uniquely as

o = S0 “n
r! -
Therefore,
/ (n)
Tu(x) = f(xo) + / ﬁCO) (x—x0) + -+ %(x — xo)"

n (r)
= Z 7f r('XO) (x — X())r.
r=0 :

We call Ty, the nth Taylor polynomial of f about xy.

The following theorem describes how T,, approximates f near xq.

Theorem 2.5.1 If ™ (xo) exists for some integer n > 1 and Ty, is the nth Taylor
polynomial of | about xo, then
f(x) = Ta(x)
m —

lim ———— = 0. 5
%0 (x — xo)" ©)
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Proof The proof is by induction. Let P, be the assertion of the theorem. From (2) we
know that (5) is true if n = 1; that is, P; is true. Now suppose that P, is true for some
integer n > 1, and £ +1 exists. Since the ratio

S(x) = Tht1(x)
(x — xo)t1

is indeterminate of the form 0/0 as x — x¢, L'Hospital’s rule implies that

SO =T 1 @) =T, ()
lim = lim
x—xo  (x —xo)"t! n+1x-x  (x —xo)"

(6)
if the limit on the right exists. But f/ has an nth derivative at x¢, and

n (r+1)
T = 3 T gy

r=0

is the nth Taylor polynomial of f” about xo. Therefore, the induction assumption, applied

to f”/, implies that
S0 =Ty @)

1 =0.
%0 (x —x0)"
This and (6) imply that
S = T (x)
lim ————————~ =0,
x—=x0 (X — xo)"t1
which completes the induction. a

It can be shown (Exercise 8) that if
Pn = ao + ai(x —xo) + -+ + an(x — xo)"

is a polynomial of degree < n such that

. fx) = palx) _
m — - —

li 0,
xX—Xx0 (_x — _xo)”
then
[ (x0)
ap = ———;
r!

that is, p, = T,. Thus, T, is the only polynomial of degree < n that approximates f near
Xo in the manner indicated in (5).

Theorem 2.5.1 can be restated as a generalization of Lemma 2.3.2.

Lemma 2.5.2 If ™ (x¢) exists, then
n ()
f =3 #(x —x0)" + En(x)(x —x0)", M
r=0 :

where
lim E,(x) = E,(x9) = 0.
X—>X0
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Proof Define
f() = Tu(x) B
En(x) = (x — xo)" , XE€ Df {xo},
0, X = Xop.

Then (5) implies that limy_,x, E,(x) = E,(xo) = 0, and it is straightforward to verify
D). a

Example 2.5.1 If f(x) = e*, then ™ (x) = e*. Therefore, £ (0) = 1 forn >0,
so the nth Taylor polynomial of f about xo = 0 is

2 X"
Tn(x) = Zf— + = +5+ + (8)
Theorem 2.5.1 implies that
n r
R
r!
lim = =0
x—0 xn
(See also Exercise 2.4.38.) |

Example 2.5.2 If f(x) = logx, then f(1) = 0 and

ﬂWﬂ=Gﬂ“”g%E,r2L

so the nth Taylor polynomial of f about xo = 1is

r—1
0 =3 1y

r=1
ifn > 1. (Tp = 0.) Theorem 2.5.1 implies that

n

logx — E D" —-1)
. r=1
= >
)11_>rnl 1) 0, n>1. |

Example 2.5.3 If f(x) = (1 + x)?, then
10 = q(1 + 007!
() =qlg =D +x)772

@) =qg—1) - (@—n+ 11 +x)7"

(q>:1 and (q):q(q—l) (q—n+1) n 1
0 n n!

If we define
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f™0)  (q
nt \n)

and the nth Taylor polynomial of f about 0 can be written as

Tix) =y (Z>x ©

r=0

then

Theorem 2.5.1 implies that

n
I+ x)?— Z (q)x’
r
lim r=0 =0, n>0. =

x—0 xn

If ¢ is a nonnegative integer, then 1 is the binomial coefficient defined in Exer-
n

cise 1.2.19. In this case, we see from (9) that

Th(x) =1 +x)7=f(x), n=gq.

Applications to Finding Local Extrema

Lemma 2.5.2 yields the following theorem.

Theorem 2.5.3 Suppose that f has n derivatives at xo and n is the smallest positive
integer such that ™ (xq) # 0.

(a) Ifnisodd, xo is not a local extreme point of f.

(b) Ifn is even, xg is a local maximum of f if f™ (xo) < 0, or a local mininum of f if
£ (x0) > 0.

Proof Since f(’)(xo) =0forl <r <n—1,(7)implies that

FARIED)
n!

f(x) = f(xo) = [ + En(x)] (x —x9)" (10

in some interval containing xo. Since limy_,y, E,(x) = 0 and f(”)(xo) # 0, there is a
& > 0 such that

n

™ (x0)
!

|Eqn(x)] < if |x—xo| <3.
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This and (10) imply that
f(x) — f(x0)
(x —xo)"

(1)

has the same sign as £ (xo) if 0 < |x — x| < 8. If n is odd the denominator of (11)
changes sign in every neighborhood of X, and therefore so must the numerator (since the
ratio has constant sign for 0 < |x — xo| < §). Consequently, f(xp) cannot be a local
extreme value of f. This proves (a). If n is even, the denominator of (11) is positive for
x # x0,50 f(x)— f(xo) must have the same sign as f ) (xq) for 0 < |x — xo| < 8. This
proves (b). a

For n = 2,(b) is called the second derivative test for local extreme points.

Example 2.5.4 If f(x) = e*’, then f'(x) = 3x2¢*’, and 0 is the only critical point
of f. Since
f(x) = (6x + 9xh)e™
and
F7(x) = (6 + 54x3 + 27x6)e™”
f7(0) = 0and f"’(0) # 0. Therefore, Theorem 2.5.3 implies that 0 is not a local extreme

point of f. Since f is differentiable everywhere, it has no local maxima or minima. [ ]

Example 2.5.5 If f(x) = sinx?, then f/(x) = 2x cos x2, so the critical points of f

are 0 and ++/(k + 1/2)7, k =0,1,2,.... Since

f"(x) = 2cos x? — 4x?sin x2,
£70)=2 and f” (i * + 1/2)71)) = (=¥ (4k + 2)7.

Therefore, Theorem 2.5.3 implies that f attains local minima at 0 and +/(k + 1/2)7 for
odd integers k, and local maxima at ++/(k + 1/2)n for even integers k. ]

Taylor’s theorem

Theorem 2.5.1 implies that the error in approximating f(x) by T,(x) approaches zero
faster than (x — xo)" as x approaches xo; however, it gives no estimate of the error in
approximating f(x) by T,(x) for a fixed x. For instance, it provides no estimate of the
error in the approximation

0.1 (0.1)

0.1 _ v.z
A T0) =14 S0+

= 1.105 (12)

obtained by setting n = 2 and x = 0.1 in (8). The following theorem provides a way
of estimating errors of this kind under the additional assumption that f®*1 exists in a
neighborhood of xy.
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Theorem 2.5.4 (Taylor’s Theorem) Suppose that f "V exists on an open in-
terval I about xq, and let x be in I. Then the remainder

Ru(x) = f(x) = Tu(x)
can be written as
f (n+1) (c)
(n+1)!
where ¢ depends upon x and is between x and X.

Rn(x) = (X—Xo)"H,

This theorem follows from an extension of the mean value theorem that we will prove
below. For now, let us assume that Theorem 2.5.4 is correct, and apply it.

Example 2.5.6 If f(x) = e¥, then f"’(x) = ¢, and Theorem 2.5.4 withn = 2
implies that

X _ x?  efx3
e =14+x+ ; + 3
where ¢ is between 0 and x. Hence, from (12),
e€(0.1)3

0.1
e =1.105+ ,
6
where 0 < ¢ < 0.1. Since 0 < € < €%, we know from this that
0.1 3
0.1
1105 < ¢®1 < 1.105 + < OD°

The second inequality implies that

13
e01 [1— (06) } < 1.105,

)
%1 < 1.1052.
Therefore,
1.105 < %! < 1.1052,
and the error in (12) is less than 0.0002. |

Example 2.5.7 In numerical analysis, forward differences are used to approximate
derivatives. If 1 > 0, the first and second forward differences with spacing h are defined
by
Af(x) = fx+h) = f(x)
and
A2f(x) = A[Af)] = Af(x + h) = Af(x) (13)
= f(x+2h) =2f(x +h) + f(x).

Higher forward differences are defined inductively (Exercise 18).
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We will find upper bounds for the magnitudes of the errors in the approximations

f'(xo) ~ L0

(14)

and

Azf(xo)

1" (xo0) ~ 15)

If f” exists on an open interval containing xo and xo + /1, we can use Theorem 2.5.4 to
estimate the error in (14) by writing

" 2
Fxo+ ) = f)+ o+ L (16)

where xog < ¢ < xo + h. We can rewrite (16) as

S (xo +h) — f(x0)
h

"(c)h
— f(x0) = f(zc) ,

which is equivalent to

Af (x0) f ”(C)h

= f(x0) =

Therefore,

DGO _ iy < Mo,

where M, is an upper bound for |f”| on (xo, Xo + h).

If /" exists on an open interval containing x¢ and xo + 2/, we can use Theorem 2.5.4
to estimate the error in (15) by writing

h? h3
fxo+h) = f(xo) +hf'(x0) + Tf"(xo) + ?f”’(co)
and
/ 2 o1 4h3 "
Sf(xo +2h) = f(xo0) + 2hf"(x0) + 2h7 f"(x0) + Tf (c1),

where xg < ¢o < xo + h and x¢ < ¢1 < x¢ + 2h. These two equations imply that

o+ 20) = 2f o+ ) F o) = 2 0) [ §7e0) = 3"

which can be rewritten as

A2
% _ f//(xO) — [gfm(cl) _ %f///(co)i| h

because of (13). Therefore,

‘ A? f(xo) _
2

4

S5Msh
< b
- 3

where M3 is an upper bound for | /| on (xg, xo + 2h). ]
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The Extended Mean Value Theorem

We now consider the extended mean value theorem, which implies Theorem 2.5.4 (Exer-
cise 24). In the following theorem, a and b are the endpoints of an interval, but we do not
assume thata < b.

Theorem 2.5.5 (Extended Mean Value Theorem) Supposethat f is con-
tinuous on a finite closed interval 1 with endpoints a and b (that is, either I = (a, b) or

I = (b,a)), @V exists on the open interval 1°, and, ifn > 0, that f', ..., f® exist
and are continuous at a. Then
n
[ fU )
b) — T —Zb-a)y =+t——7((b—a)! 17
f();0 -4 =T -a (17)

for some ¢ in 1°.

Proof The proof is by induction. The mean value theorem (Theorem 2.3.11) implies
the conclusion for n = 0. Now suppose that # > 1, and assume that the assertion of the
theorem is true with n replaced by n — 1. The left side of (17) can be written as

f(r)(a) . (b _ a)n+1
f(b)— Z_;) b—a)y = KW (18)

for some number K. We must prove that K = f®+V(c) for some ¢ in I°. To this end,
consider the auxiliary function

n (r) _ )+l
o) = 70 = 32 Dy - kSO
r=0 : '

which satisfies

h(a) =0, h() =0,
(the latter because of (18)) and is continuous on the closed interval / and differentiable on
1°, with

(r+1) .\
H(x) = f'(x) - Zf @ (¢ gy — g =" (19)

n!

Therefore, Rolle’s theorem (Theorem 2.3.8) implies that 4’(h;) = 0 for some by in 1°;
thus, from (19),

(r+1) _ )
£1(b) - Zf Dy —ay g B

n!

If we temporarily write f’ = g, this becomes

(r) b — a)"
g(b1) — Z £ (a) —a) — g (20)
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Since by € 1°, the hypotheses on f imply that g is continuous on the closed interval J
with endpoints a and by, g(”) exists on JO, and, if n > 1, g, ..., g(”_l) exist and are
continuous at a (also at by, but this is not important). The induction hypothesis, applied to
g on the interval J, implies that

nzl () (n)
e - E Dy —ay = £ g
r=0 :

r: n

for some ¢ in J°. Comparing this with (20) and recalling that g = f” yields
K =g"(c)= ")
Since c is in 79, this completes the induction. a

2.5 Exercises

1. Let 5
_fe™V¥ 0 x #£o0,
S =10, x=0.

Show that f has derivatives of all orders on (—o0, 0c0) and every Taylor polynomial
of f about 0 is identically zero. HINT: See Exercise 2.4.40.

2.  Suppose that £ #+V(x) exists, and let T}, be the nth Taylor polynomial of f about
Xo. Show that the function

f(x) = Tu(x)
En(x) =1 (x—xo)
0, X = Xo,

, X € Dy —{xo},

is differentiable at x¢, and find E}, (xo).

3. (a) Prove: If f is continuous at x¢ and there are constants a¢ and a; such that

. f(x)—ao—ai(x —xo)
lim =
X—=>Xx0 X — Xo

Oa

then ag = f(x¢), f' is differentiable at xo, and f”(xg) = a;.
(b) Give a counterexample to the following statement: If f and f’ are continuous
at xo and there are constants aq, @1, and a, such that

f(x) —ao —ay(x — xp) — az(x — x¢)? _

li 0,
x>0 (x —x0)?
then "' (x¢) exists.
4. (a) Prove: if f”(xo) exists, then
h)—2 —h
Ly Lo + 1) =2/ (x0) + fxo —h) _ 17 (xo).

h—0 h2
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(b) Prove or give a counterexample: If the limit in (&) exists, then so does
f"(x0), and they are equal.

5. Afunction f has a simple zero (or a zero of multiplicity 1) at x¢ if f is differentiable
at xg and f'(xo) = 0, while f’(x¢) # 0.

(a) Prove that f has a simple zero at xg if and only if

J(x) = g(x)(x = xo),

where g is continuous at xo and differentiable on a deleted neighborhood of
xO, and g(‘x()) # O
(b) Give an example showing that g in(@) need not be differentiable at xo.

6. A function f has a double zero (or a zero of multiplicity 2) at xo if f is twice
differentiable at x¢ and f(x9) = f’'(x0) = 0, while 1" (x) # 0.

(a) Prove that f has a double zero at xo if and only if

f(x) = g()(x = x0)%,

where g is continuous at xo and twice differentiable on a deleted neighborhood
of x¢, g(x¢) # 0, and

lim (x — x0)g’(x) = 0.
X—>X0

(b) Give an example showing that g in(a) need not be differentiable at xo.

7. Let n be a positive integer. A function f has a zero of multiplicity n at xg if f
is n times differentiable at xo, f(xo) = f'(x0) = --- = f@ D (x9) = 0 and
£ (xo) # 0. Prove that f has a zero of multiplicity n at xg if and only if

J ) = g(x)(x — xo)",

where g is continuous at x¢ and » times differentiable on a deleted neighborhood of
X0, g(x0) # 0, and

lim (x—xo)jg(j)(x) =0, 1=j=<n-1

X—>X0

HINT: Use Exercise 6 and induction.

8. (a) Let
O(x) =g+ ap(x —xg) + -+ + an(x — xp)"

be a polynomial of degree < n such that

fim )

——=0.
x=x0 (X — Xxo)"

Show thatog = ¢y = --- = o, = 0.



10.

11.
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(b) Suppose that f is n times differentiable at xo and p is a polynomial
p(x) =ao +ai(x —xo) + -+ an(x — x0)"
of degree < n such that

lim L =PX _

X—>XQ (x — xo)”
Show that

if 0<r<mnm;

£ (xo)
ap = —>"
1

that is, p = Ty, the nth Taylor polynomial of f about xo.
Show that if £ (x¢) and g™ (x¢) exist and

i S0 2@ _ o
x—=>x0 (X — xo)"

then f(’)(xo) = g(’)(xo), 0<r<n.

(a) Let Fy,, G,, and H, be the nth Taylor polynomials about x¢ of f, g, and their
product i = fg. Show that H, can be obtained by multiplying F,, by G, and
retaining only the powers of x — x through the nth. HINT: Use Exercise 8(b).

(b) Use the method suggested by (a) to compute 21" (x¢), r = 1,2, 3, 4.

(i) h(x) =e*sinx, xp=0

(i1) A(x) = (cos wx/2)(logx), xo=1
(iii) A(x) = x%cosx, xo=1/2
(iv) h(x)=(0+x)"te™, x=0

(a) It can be shown that if g is n times differentiable at x and f is n times dif-
ferentiable at g(x), then the composite function h(x) = f(g(x)) is n times
differentiable at x and

& U\ (N (g™ )
B () = (r) (& ..
(x) r;f (g(x))zr:rll---rn! T 2! n!
where Zr is over all n-tuples (r1, 72, . . ., r,) of nonnegative integers such that

r+rat+--t+rp=r
and
ri+2r4+---+nr, =n.
(This is Faa di Bruno’s formula.) However, this formula is quite complicated.

Justify the following alternative method for computing the derivatives of a
composite function at a point xo:
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12.

13.

14.

Let F,, be the nth Taylor polynomial of f about yo = g(xo), and let G, and
H, be the nth Taylor polynomials of g and / about x¢. Show that H, can
be obtained by substituting G, into F}, and retaining only powers of x — xq
through the nth. HINT: See Exercise 8(b).

(b) Compute the first four derivatives of 4(x) = cos(sin x) at xo = 0, using the
method suggested by (a).

(a) If g(xo) # 0 and g™ (xo) exists, then the reciprocal & = 1/g is also n times
differentiable at xo, by Exercise 11(a), with f(x) = 1/x. Let G, and H, be
the nth Taylor polynomials of g and & about xo. Use Exercise 11(a) to prove
that if g(xo) = 1, then H, can be obtained by expanding the polynomial

n

> 1= Gu))
r=1
in powers of x — x¢ and retaining only powers through the nth.
(b) Use the method of (a) to compute the first four derivatives of the following
functions at xg.
(i) h(x) =cscx, xo=m/2
(i) "x)=0+x+x>)7 x=0
(iii) h(x) =secx, xo=m/4
(iv) h(x) =[1+logd + )", x =0
(c) Use Exercise 10 to justify the following alternative procedure for obtaining
H,,, again assuming that g(xo) = 1: If

Gu(x) =1+ ai1(x —xo) + -+ an(x — xp)"
(where, of course, a, = g(’)(xo)/r!) and
Hy(x) = bo + b1(x — x0) + -+ + bn(x — x0)",
then
k

bo=1, be=-) arbp—r. 1<k =n.

r=1

Determine whether xo = 0 is a local maximum, local minimum, or neither.

(a) f(x) = x2e*’ (b) f(x) = x3ex
142 1+ x3
(c) f(x) = T4 .3 (d) f(x) = o2
(e) f(x) = x2sin®x + x%cosx £) fx) = e~ sinx
(8) f(x) = e*sinx? (h) f(x) = e cos x

Give an example of a function that has zero derivatives of all orders at a local mini-
mum point.



15.

16.

17.

18.

Section 2.5 Taylor’s Theorem

Find the critical points of
3 2
X bx
fx)=—+—+cx+d
3 2
and identify them as local maxima, local minima, or neither.

Find an upper bound for the magnitude of the error in the approximation.

(a) sinx ~x, |x]| <2ﬂ—0

(b) «/1+x%1+§, |x|<é
1
V21-(x=%)] F<x<%f

—1)? —1)? 1
-7 D7 1] < -
2 3 64

(c) cosx =~

(d) logx~(x—1)—

Prove: If

n xr
L) =)~
r=0 "~

then
n+1

-1
o+ 1)!} Tn(x)

Th(x) < Tyy1(x) <e* < [1 —

if0 < x < [(n + DYDY,

The forward difference operators with spacing i > 0 are defined by

Af(x) = f(x), Af(x)= flx+h) - f(x),

A" f(x) = A[A"f(0)]. n =1

111

(a) Prove by inductionon n: If k > 2, ¢y, ..., ¢ are constants, and n > 1, then

Aer fi(x) + -+ ek [ ()] =t A" fi(x) + - 4 e A" fie (x).

(b) Prove by induction: If n > 1, then

A" )= 3 (=1 (”;) f(x + mh).
m=0

HINT: See Exercise 1.2.19.

In Exercises 19-22, A is the forward difference operator with spacing h > 0.
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19.

20.

21.

22,

23.

24.

Let m and n be nonnegative integers, and let xo be any real number. Prove by
induction on 7 that

0 if 0<m<n,

ne. m _
A% (x = xo) n'h" if m=n.

Does this suggest an analogy between “differencing" and differentiation?
Find an upper bound for the magnitude of the error in the approximation
A f(xo — h)
1" (x0) ~ —
(a) assuming that f”” is bounded on (xo — &, xo + h);
(b) assuming that £ ® is bounded on (x¢ — &, xo + h).

Let /" be bounded on an open interval containing x¢ and xo + 24. Find a constant
k such that the magnitude of the error in the approximation

Af(xo) |, A%f(xo)
Y +k 2

f(xo) ~

is not greater than M h?, where M = sup {| f""(c)| | |xo < ¢ < xo}.

Prove: If £@*1 is bounded on an open interval containing xo and xo + nk, then

An
# — f™(xo)| < AuMyy1h,

where A, is a constant independent of f and

Muysr = sup £

xo<c<xo+nh

HINT: See Exercises 18 and 19.

Suppose that £+ exists on (a, b), Xo, ..., X, are in (a, b), and p is the polyno-
mial of degree < n such that p(x;) = f(x;), 0 <i < n. Prove: If x € (a,b),
then 1)

fx)=pl)+ fi((x —x0)(X — x1) -+ (x —xp),

(n+1)!
where ¢, which depends on x, is in (a, b). HINT: Let x be fixed, distinct from x,
X1, ..., Xn, and consider the function

gy)=f0)—-pr0®») - y =x0)(y —x1) - (¥ — Xn),

K
(n+ 1!

where K is chosen so that g(x) = 0. Use Rolle’s theorem to show that K =
£@tD(¢) for some c in (a, b).

Deduce Theorem 2.5.4 from Theorem 2.5.5.



CHAPTER 3

Integral Calculus of
Functions of One Variable

IN THIS CHAPTER we discuss the Riemann integral of a bounded function on a finite
interval [a, b], and improper integrals in which either the function or the interval of inte-
gration is unbounded.

SECTION 3.1 begins with the definition of the Riemann integral and presents the geo-
metrical interpretation of the Riemann integral as the area under a curve. We show that
an unbounded function cannot be Riemann integrable. Then we define upper and lower
sums and upper and lower integrals of a bounded function. The section concludes with the
definition of the Riemann—Stieltjes integral.

SECTION 3.2 presents necessary and sufficient conditions for the existence of the Riemann
integral in terms of upper and lower sums and upper and lower integrals. We show that
continuous functions and bounded monotonic functions are Riemann integrable.

SECTION 3.3 begins with proofs that the sum and product of Riemann integrable functions
are integrable, and that | | is Riemann integrable if f is Riemann integrable. Other topics
covered include the first mean value theorem for integrals, antiderivatives, the fundamental
theorem of calculus, change of variables, integration by parts, and the second mean value
theorem for integrals.

SECTION 3.4 presents a comprehensive discussion of improper integrals. Concepts de-
fined and considered include absolute and conditional convergence of an improper integral,
Dirichlet’s test, and change of variable in an improper integral.

SECTION 3.5 defines the notion of a set with Lebesgue measure zero, and presents a
necessary and sufficient condition for a bounded function f to be Riemann integrable on
an interval [a, b]; namely, that the discontinuities of f form a set with Lebesgue masure
ZEero.

113
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3.1 DEFINITION OF THE INTEGRAL

The integral that you studied in calculus is the Riemann integral, named after the German
mathematician Bernhard Riemann, who provided a rigorous formulation to replace the
intuitive notion of integral due to Newton and Leibniz. Since Riemann’s time, other kinds
of integrals have been defined and studied; however, they are all generalizations of the
Riemann integral, and it is hardly possible to understand them or appreciate the reasons for
developing them without a thorough understanding of the Riemann integral. In this section
we deal with functions defined on a finite interval [a, b]. A partition of [a, b] is a set of
subintervals

[x0, x1], [x1,x2), ..., [Xn—1, Xal, (D
where

a=Xx9<XxX1--<Xx,=b. 2)

Thus, any set of n + 1 points satisfying (2) defines a partition P of [a, b], which we denote

by
P = {X(),xl, ...,Xn}.

The points xg, X1, ..., X, are the partition points of P. The largest of the lengths of the
subintervals (1) is the norm of P, written as || P ||; thus,

[Pl = max (x; — x;—1).
1<i<n

If P and P’ are partitions of [a, b], then P’ is a refinement of P if every partition point

of P is also a partition point of P’; that is, if P’ is obtained by inserting additional points
between those of P. If f is defined on [a, b], then a sum

o= fle)x; —xj-1),

Jj=1
where
Xj-1=c¢j<x;, l=j=n,
is a Riemann sum of f over the partition P = {xo, x1, ..., Xn} (Occasionally we will say

more simply that o is a Riemann sum of f over [a, b].) Since ¢; can be chosen arbitrarily
in [x;, xj_1], there are infinitely many Riemann sums for a given function f over a given
partition P.

Definition 3.1.1 Let f be defined on [a, b]. We say that f is Riemann integrable on
[a, b] if there is a number L with the following property: For every € > 0, thereisa§ > 0
such that

lo—L| <e¢

if o is any Riemann sum of f over a partition P of [a, b] such that | P| < §. In this case,
we say that L is the Riemann integral of f over [a, b], and write

b
/ f(x)dx = L. [ ]
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. . b . . e .
We leave it to you (Exercise 1) to show that fa f(x)dx is unique, if it exists; that is,
there cannot be more than one number L that satisfies Definition 3.1.1.
For brevity we will say “integrable” and “integral” when we mean “Riemann integrable”
and “Riemann integral.” Saying that [ ab f(x)dx exists is equivalent to saying that f is

integrable on [a, b].
Example 3.1.1 If

fx)y=1 a=x=<b,
then

n

D flepy —xjm) =D (xj —xj-1).

Jj=1 Jj=1
Most of the terms in the sum on the right cancel in pairs; that is,

n
Z(xj —Xj-1) = (x1 —x0) + (x2 —x1) + -+ + (xp — Xp—1)
Jj=1
=—x0+ (x1 —x1) + (x2 —x2) + -+ (Xp—1 — Xn—1) + Xn
= Xn — Xo
=b—a.

Thus, every Riemann sum of f over any partition of [a, b] equals b — a, so

b
/ dx=b—a. [ |

Example 3.1.2 Riemann sums for the function
f(x)=x, a=x=<b,
are of the form
n
o = Z c‘,-(x‘,- —Xj_l). (3
Jj=1
Since x;—1 < c¢; < x; and (x; + x,_1)/2 is the midpoint of [x;_1, x;], we can write

Xj+Xj-1

¢j == +d;. 4)

where 1P

Xj—Xj—1
dil < J J < . 5
ldj| = 2 =5 Q)
Substituting (4) into (3) yields
n n
X;+xj-1
o= %(xj —xji) 4 Y di(x;—xj)

Jj=1 Jj=1 (6)

==Y (F—x2 )+ > dilx;—xj).
j=1

Jj=1

| =
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Because of cancellations like those in Example 3.1.1,
n
YW=
j=1

so (6) can be rewritten as

b% —q? "
o=—F>"+= Y dj(x; —xj).
j=1

Hence,
b% —a? - Pl «
o~ TS e Yl xS ) e )
Jj=1 j=1
P
= ”Z—H(b —a).

Therefore, every Riemann sum of f over a partition P of [a, b] satisfies

b% — 42 2¢

<e if Pl <=
1P <8 ==

o —

Hence,

b 2 2
b*—a
/;xdx— 5 [ |

The Integral as the Area Under a Curve

An important application of the integral, indeed, the one invariably used to motivate its
definition, is the computation of the area bounded by a curve y = f(x), the x-axis, and
the lines x = a and x = b (“the area under the curve”), as in Figure 3.1.1.

y
A

y=f

Figure 3.1.1
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For simplicity, suppose that f(x) > 0. Then f(c;)(x; —x;—1) is the area of a rectangle
with base x; — x;_ and height f(c;), so the Riemann sum

Y fle)lx = xj-1)

J=1

can be interpreted as the sum of the areas of rectangles related to the curve y = f(x), as
shown in Figure 3.1.2.

y=f®

Figure 3.1.2

An apparently plausible argument, that the Riemann sums approximate the area under
the curve more and more closely as the number of rectangles increases and the largest of

their widths is made smaller, seems to support the assertion that | ab f(x)dx equals the
area under the curve. This argument is useful as a motivation for Definition 3.1.1, which
without it would seem mysterious. Nevertheless, the logic is incorrect, since it is based
on the assumption that the area under the curve has been previously defined in some other
way. Although this is true for certain curves such as, for example, those consisting of line
segments or circular arcs, it is not true in general. In fact, the area under a more complicated
curve is defined to be equal to the integral, if the integral exists. That this new definition is
consistent with the old one, where the latter applies, is evidence that the integral provides
a useful generalization of the definition of area.

Example 3.1.3 Let f(x) = x, 1 < x < 2 (Figure 3.1.3, page 118). The region under
the curve consists of a square of unit area, surmounted by a triangle of area 1/2; thus, the
area of the region is 3/2. From Example 3.1.2,

2 1 3
__22_12__
/lxdx_z( )_2,

so the integral equals the area under the curve. [ ]
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Figure 3.1.3

Figure 3.1.4

Example 3.1.4 If
fx)=x% 1<x<2

(Figure 3.1.4), then
[ reax =t =]
1 xX)dx = 3 =3

(Exercise 4), so we say that the area under the curve is 7/3. However, this is the definition
of the area rather than a confirmation of a previously known fact, as in Example 3.1.3. H
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Theorem 3.1.2 If f is unbounded on [a, b], then f is not integrable on [a, b].

Proof We will show that if f is unbounded on [a, b], P is any partition of [a, b], and
M > 0, then there are Riemann sums ¢ and ¢’ of f over P such that

o —ao'| > M. 7

We leave it to you (Exercise 2) to complete the proof by showing from this that f* cannot
satisfy Definition 3.1.1.

Let .
o= fle)x;—xj-1)
j=1

be a Riemann sum of f over a partition P of [a,b]. There must be an integer i in
{1,2,...,n} such that

M
|f(c) = fle)l =2 ——— ®)
Xi — Xj—1
for some ¢ in [x;_1x;], because if there were not so, we would have
M .
|f(x) = flepl < T _x Y =x=x, l=sjsn
J A1

Then

[fOOl = 1f(e)) + F(x) = flepl < | flepl + 11 (x) = fle))l

M .
<|flej)l+ ——— xj1=<x=<x;, 1=<j=<n.
Xj—Xj-1

which implies that

M
| f()| <max1<j<n|f(c)l+———, a=<x=bh,
‘ Xj Jj-1

contradicting the assumption that f is unbounded on [a, b].

Now suppose that ¢ satisfies (8), and consider the Riemann sum

n
o =) feE;—xjm1)
Jj=1
over the same partition P, where

c, Jj=I.

/ :{C/a j#la
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Since
o—0o'|=|f(c)—= fle)l(xi —xi-1).
(8) implies (7). 0

Upper and Lower Integrals
Because of Theorem 3.1.2, we consider only bounded functions throughout the rest of this

section.

To prove directly from Definition 3.1.1 that |, ab f(x) dx exists, it is necessary to discover
its value L in one way or another and to show that L has the properties required by the
definition. For a specific function it may happen that this can be done by straightforward
calculation, as in Examples 3.1.1 and 3.1.2. However, this is not so if the objective is to find

general conditions which imply that [ ab f(x) dx exists. The following approach avoids the
difficulty of having to discover L in advance, without knowing whether it exists in the first
place, and requires only that we compare two numbers that must exist if f is bounded on

[a, b]. We will see that [ ab f(x) dx exists if and only if these two numbers are equal.

Definition 3.1.3 If f is bounded on [a, b] and P = {xg, X1, ..., Xy} is a partition of
[a, b], let

M;= sup  f(x)

Xj—1SX=X;
and
mj = inf  f(x).

Xj—1=X=X;

The upper sum of f over P is

S(P) =) Mj(xj —xj-1),

Jj=1

and the upper integral of f over, [a, b], denoted by

ff(X) dx,

is the infimum of all upper sums. The lower sum of f over P is
n
s(P) =) mj(x; —xj-1),
j=1
and the lower integral of f over [a, b], denoted by

/ " fyd,

is the supremum of all lower sums. [ ]
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Ifm < f(x) < M forall x in [a, b], then
m(b —a) < s(P) < S(P) < M(b —a)
for every partition P; thus, the set of upper sums of f over all partitions P of [a, b] is
bounded, as is the set of lower sums. Therefore, Theorems 1.1.3 and 1.1.8 imply that

/ ab f(x)dx and [ ab f(x) dx exist, are unique, and satisfy the inequalities

b
m(b - a) 5/ F(x)dx < M(b —a)
and

b
m(b — a) 5/ f(x)dx <M —a).

Theorem 3.1.4 Let f be bounded on [a, b), and let P be a partition of [a, b]. Then

(a) The upper sum S(P) of f over P is the supremum of the set of all Riemann sums of
f over P.

(b) The lower sum s(P) of f over P is the infimum of the set of all Riemann sums of f
over P.

Proof (a)If P = {xo,x1,...,xn}, then

n
S(P) =) M;(x;—xj-1),
Jj=1
where
Mj = supx;_;1 <x < x;.
S
An arbitrary Riemann sum of f over P is of the form

o=y fle))xj—xj-1),

j=1
where x;_1 < c; < x;. Since f(c;) < M;, it follows that o < S(P).
Now let € > 0 and choose ¢ in [x;_1, x] so that

€

cj)>Mj ———, 1<j<n.

/€; Tonxy = x o) /

The Riemann sum produced in this way is
n n €

o= ci)(xj—x;-1) > M — — )| (xj —xj—1) = S(P) —e.
S @ =5 > Y | My = e [ 5 =) = S(P)

Jj=1 j=1

Now Theorem 1.1.3 implies that S(P) is the supremum of the set of Riemann sums of f
over P.

(b) Exercise 7. a
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Example 3.1.5 Let

flx) = 0 if x is irrational,
~ )1 if x is rational,
and P = {x¢, X1, ..., X} be a partition of [a, b]. Since every interval contains both ratio-

nal and irrational numbers (Theorems 1.1.6 and 1.1.7),
m; =0 and M; =1, 1=<j =<n.
Hence,
n
S(Py=> 1-(xj—xj-1)=b—a
j=1
and
n
s(P)=>"0-(x; —xj-1) = 0.
Jj=1

Since all upper sums equal b — a and all lower sums equal 0, Definition 3.1.3 implies that
T b b

/ f(x)dx =b—a and / f(x)dx = 0. ]
a Ja_

Example 3.1.6 Let f be defined on [1,2] by f(x) = 0if x isirrational and f(p/q) =
1/q if p and g are positive integers with no common factors (Exercise 2.2.7). If P =

{X0, X1, ..., Xn} is any partition of [1,2],thenm; = 0,1 < j < n, so s(P) = 0; hence,
2
/ f(x)dx =0.
J1
We now show that _
2
| reax=o ©)
1
also. Since S(P) > 0 for every P, Definition 3.1.3 implies that
T2
[ s =o.
1
so we need only show that L
2
[ e <o,
1

which will follow if we show that no positive number is less than every upper sum. To this
end, we observe that if 0 < € < 2, then f(x) > ¢/2 for only finitely many values of x in
[1.2].
Let k be the number of such points and let Py be a partition of [1, 2] such that
€

P .
I1Poll < 5

(10)
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Consider the upper sum

n
S(Po) =y Mj(xj —xj-1).
Jj=1
There are at most k values of j in this sum for which M; > €/2, and M; < I even for
these. The contribution of these terms to the sum is less than k(e/2k) = €/2, because of
(10). Since M; < €/2 for all other values of j, the sum of the other terms is less than

n
€ € € €
3 ;_l(xj —Xj-1) = E(xn —Xo) = 5(2 -H=

7"
Therefore, S(Py) < € and, since € can be chosen as small as we wish, no positive number
is less than all upper sums. This proves (9). |

The motivation for Definition 3.1.3 can be seen by again considering the idea of area
under a curve. Figure 3.1.5 shows the graph of a positive function y = f(x),a < x < b,
with [a, b] partitioned into four subintervals.

y
A

y=f

Figure 3.1.5

The upper and lower sums of f over this partition can be interpreted as the sums of the areas
of the rectangles surmounted by the solid and dashed lines, respectively. This indicates that
a sensible definition of area A under the curve must admit the inequalities

s(P)<A<S(P)

for every partition P of [a, b]. Thus, A must be an upper bound for all lower sums and a
lower bound for all upper sums of f over partitions of [a, b]. If

DY) b
/ Fx)dx = / F(x)dx, (11



124 Chapter 3 Integral Calculus of Functions of One Variable

there is only one number, the common value of the upper and lower integrals, with this
property, and we define A to be that number; if (11) does not hold, then A is not defined.
We will see below that this definition of area is consistent with the definition stated earlier
in terms of Riemann sums.

Example 3.1.7 Returning to Example 3.1.3, consider the function
fx)=x, 1<x<2.
If P = {x0, x1,...,Xn}is apartition of [1, 2], then, since f is increasing,

Mj=fap)=x; and mj=flej-1) = xj-1.

Hence,
n
S(P)=> x;j(xj —xj-1) (12)
j=1
and
n
S(P) = ij_l(xj —Xj_l). (13)
Jj=1
By writing

= Y X T X
J 2 2 ’

we see from (12) that

1 1 &
S(P) = 3 Z(x? - x?_l) + 3 Z(xj —xj-1)?
j=1

= 5(22 — 12) + 5 Z(Xj - Xj_l)z.
Jj=1
Since
n n
0 <Y ;= xj=1 NP Yy —xjm) = | P2~ 1),
Jj=1 j=1
(14) implies that
3 3 1P|
—<S(P)< -+ —.
;<SP =5+
Since || P || can be made as small as we please, Definition 3.1.3 implies that
— ;
/ f(x)dx = =.
a 2
A similar argument starting from (13) shows that
3P| 3
' < P —
27y S =y



Section 3.1 Definition of the Integral 125

SO

b 3
/ fx)dx = =.
Ja 2
Since the upper and lower integrals both equal 3/2, the area under the curve is 3/2 accord-
ing to our new definition. This is consistent with the result in Example 3.1.3. |

The Riemann—Stieltjes Integral

The Riemann—Stieltjes integral is an important generalization of the Riemann integral. We
define it here, but confine our study of it to the exercises in this and other sections of this
chapter.

Definition 3.1.5 Let f and g be defined on [a, b]. We say that f is Riemann—Stieltjes
integrable with respect to g on [a, b] if there is a number L with the following property:
For every € > 0, there is a § > 0 such that

n
> Sep ety —grj-n] - L| <e, (15)
Jj=1
provided only that P = {xo, X1, ..., X} is a partition of [a, b] such that | P| < § and
Xj-1=c¢;<x;, j=L12,....n

In this case, we say that L is the Riemann—Stieltjes integral of f with respect to g over
[a, b], and write

b
/ F()dg(x) = L.

The sum
n
> fep[gty) —glxj1)]
Jj=1
in (15) is a Riemann—Stieltjes sum of f with respect to g over the partition P. |

3.1 Exercises

1. Show that there cannot be more than one number L that satisfies Definition 3.1.1.

2. (a) Prove: If fab f(x) dx exists, then for every € > 0, there is a § > 0 such that
|o1 — 02| < € if 07 and o3 are Riemann sums of f over partitions P; and P,
of [a, b] with norms less than §.
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(b) Suppose that there is an M > 0 such that, for every § > 0, there are Riemann
sums o1 and 0, over a partition P of [a, b] with || P|| < § such that |07 —02| >
M. Use (@) to prove that f is not integrable over [a, b].

3. Suppose that |, ab f(x) dx exists and there is a number A such that, for every € > 0
and § > 0, there is a partition P of [a, b] with || P|| < § and a Riemann sum o of f

over P that satisfies the inequality |[o0 — A| < €. Show that fab f(x)dx = A.

4. Prove directly from Definition 3.1.1 that

b 3.3
/xzdxzb a‘
a 3

Do not assume in advance that the integral exists. The proof of this is part of the
problem. HINT: Let P = {x¢, X2, ..., Xn} be an arbitrary partition of |a, b]. Use
the mean value theorem to show that

b3 —a3

5 = > di(xj—xj-1)
j=1

for some points dy, ..., dn, where x;_1 < dj < xj. Then relate this sum to
arbitrary Riemann sums for f(x) = x? over P.

5. Generalize the proof of Exercise 4 to show directly from Definition 3.1.1 that

b bm+1 _am+1
/ x"dx = ——M
a m+ 1

if m is an integer > 0.

6. Prove directly from Definition 3.1.1 that f(x) is integrable on [a, b] if and only if
f(—x) is integrable on [—b, —a], and, in this case,

—a

f(=x)dx.
b

/ab Fx)dx =

7. Let f be bounded on [a, b] and let P be a partition of [a, b]. Prove: The lower sum
s(P) of f over P is the infimum of the set of all Riemann sums of f over P.
8. Let f be defined on [a, b] and let P = {x¢, X1, ..., X, } be a partition of [a, b].

(a) Prove: If f is continuous on [a, b], then s(P) and S(P) are Riemann sums of
f over P.

(b) Name another class of functions for which the conclusion of (&) is valid.

(c) Give an example where s(P) and S(P) are not Riemann sums of f over P.
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11.

12.

13.

14.

15.

16.
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Find f_olf(x) dx and f_olf(x) dx if

x if x is rational, if x is rational,

1
(a) f(x) = —x if x is irrational. (b) f(x) = x  if x is irrational.
Given that [ ab e* dx exists, evaluate it by using the formula
1= rn+1
Thrdrittr=——- (#1
—r

to calculate certain Riemann sums. HINT: See Exercise 3.

Given that fob sin x dx exists, evaluate it by using the identity
cos(j — 1)0 —cos(j + 1)0 = 2sinfsin jO

to calculate certain Riemann sums. HINT: See Exercise 3.

Given that fob cos x dx exists, evaluate it by using the identity
sin(j + 1)0 —sin(j — 1)0 = 2sin6 cos jO

to calculate certain Riemann sums. HINT: See Exercise 3.
Show that if g(x) = x + ¢ (c=constant), then fab f(x)dg(x) exists if and only if
fab f(x) dx exists, in which case

/a " f) dg) = /  foyd.

Suppose that —oo < a < d < ¢ < oo and

(g1, g2 = constants),

g1, a<x<d,
g(x)—{gz’ d <x <b,

and let g(a), g(b), and g(d) be arbitrary. Suppose that f is defined on [a, b],
continuous from the right at ¢ and from the left at b, and continuous at d. Show that

fab f(x)dg(x) exists, and find its value.
Suppose that —0o <a =ag <a; <---<ap = b < 00, let g(x) = gn (constant)

on (Am—1,am), 1 <m =< p,andlet g(ap), g(ai), ..., g(ap) be arbitrary. Suppose
that f is defined on [a, b], continuous from the right at a and from the left at b, and

continuous at ai, az, ..., dp—1. Evaluate fab f(x)dg(x). HINT: See Exercise 14.

(a) Give an example where | ab f(x)dg(x) exists even though f is unbounded
on [a, b]. (Thus, the analog of Theorem 3.1.2 does not hold for the Riemann—
Stieltjes integral.)

(b) State and prove an analog of Theorem 3.1.2 for the case where g is increasing.
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17. For the case where g is nondecreasing and f is bounded on [a, b], define upper and
lower Riemann-Stieltjes integrals in a way analogous to Definition 3.1.3.

3.2 EXISTENCE OF THE INTEGRAL

The following lemma is the starting point for our study of the integrability of a bounded
function f on a closed interval [a, b].

Lemma 3.2.1 Suppose that

|f()| =M, a=<x=b, (1)
and let P’ be a partitionof [a, b] obtained by adding r points to a partition P = {x¢, X1, ..., Xn}
of [a, b]. Then

S(P) = S(P') = S(P)—2Mr||P| (2)

and
s(P) <s(P') <s(P)+2Mr|P|. (3)
Proof We will prove (2) and leave the proof of (3) to you (Exercise 1). First suppose
that » = 1, so P’ is obtained by adding one point ¢ to the partition P = {xg, X1,...,Xn};
then x;_1 < ¢ < x; forsome i in {1,2,...,n}. If j # i, the product M;(x; — x;_1)

appears in both S(P) and S(P’) and cancels out of the difference S(P)—S(P’). Therefore,
if
Miy = sup  f(x) and M= sup f(x),

Xj_1<x<c c<x<X;
then
S(P)—S(P') = M;(x; —xj—1) — Min(c — xi—1) — Mi2(x; —¢) @
= (M; — Mj1)(c — xi—1) + (M; — Mi2)(x; —¢).
Since (1) implies that
0<M;—M; <2M, r=1,2,
(4) implies that
0 < S(P)—S(P') <2M(x; — xj—1) <2M| P||.
This proves (2) forr = 1.
Now suppose that 7 > 1 and P’ is obtained by adding points ¢y, ¢, ..., ¢ to P. Let

P©® = P and, for j > 1, let PU) be the partition of [a, b] obtained by adding cj to
PU=D_ Then the result just proved implies that

0= S(PUV) —SPV) <2M|PUTV| 1<) <
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Adding these inequalities and taking account of cancellations yields
0= S(P@)=S(PD) <2M(IPO + PPN + -+ | PV, ()
Since P@ = P, P = P/ and [ PP < ||[P*&D| for 1 <k <r — 1, (5) implies that
0=<S(P)—S(P') =2Mr|P||,
which is equivalent to (2). a

Theorem 3.2.2 If f is bounded on |a, b], then

b T b
[ reav= [ reax ©
Ja_ a
Proof Suppose that Py and P, are partitions of [a, b] and P’ is a refinement of both.
Letting P = P; in (3) and P = P, in (2) shows that
s(P1) <s(P’) and S(P’) < S(P).

Since s(P’) < S(P’'), this implies that s(P1) < S(P2). Thus, every lower sum is a lower

bound for the set of all upper sums. Since [ ab f(x)dx is the infimum of this set, it follows
that

b
S(Py) < / £(6)dx

for every partition Py of [a, b]. This means that [ ab f(x)dx is an upper bound for the set

of all lower sums. Since | ab f(x) dx is the supremum of this set, this implies (6). o

Theorem 3.2.3 If f is integrable on [a, b], then

/Lbf(x)dx =ff(x)dx = /;b f(x)dx.

Proof We prove that fabf(x) dx = fab f(x) dx and leave it to you to show that fabf(x) dx =

fab f(x) dx (Exercise 2).

Suppose that P is a partition of [a, b] and ¢ is a Riemann sum of f over P. Since

DY) b Y
/ F)dx — / fx)dx = ( / Fx)dx — S(P)) +(S(P)—0)

b
+(a—/ f(x)dx),
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the triangle inequality implies that

DY) b DY)
/ F00)dx — / FOo)dx| < / F(x)dx — S(P)| +S(P) — o]

(N

b
+a—/ fx) dx

Now suppose that € > 0. From Definition 3.1.3, there is a partition Py of [a, b] such that

5 5 .
/ Fx)dx < S(Po) < / Fedx+ 5. ®)

From Definition 3.1.1, there is a § > 0 such that

b €
a—/ Fedx| < ©)

if | P|| < 6. Now suppose that | P|| < § and P is a refinement of Py. Since S(P) < S(Po)
by Lemma 3.2.1, (8) implies that

—3 —3
/; f(x)dx < S(P) < / f(x)dx + %

SO
T b
S(P)—/ f(x)dx <§ (10)
in addition to (9). Now (7), (9), and (10) imply that
Y b 2¢
/ f(x)dx—/ f(x)dx <?+|S(P)—a| an

for every Riemann sum o of f over P. Since S(P) is the supremum of these Riemann
sums (Theorem 3.1.4), we may choose o so that

IS(P) — 0| < <.
3
Now (11) implies that
<e€.

_bf(x)dx— bf(x)dx
Jreos-]

Since € is an arbitrary positive number, it follows that

ff(x)dxz/;bf(x)dx. O
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Lemma 3.2.4 If f is bounded on [a,b] and € > 0, there is a § > 0 such that

DY) DY)
/f(x)dfo(P)</f(x)dx+e (12)
and , ,
/f(X)dXES(P)>/ f(x)dx —e
iflP|<s.

Proof We show that (12) holds if || P| is sufficiently small, and leave the rest of the
proof to you (Exercise 3).

The first inequality in (12) follows immediately from Definition 3.1.3. To establish the
second inequality, suppose that | f(x)| < K if a < x < b. From Definition 3.1.3, there is
a partition Py = {xg, X1, ..., Xr4+1} of [a, b] such that

b
S(Po) </ f(x)dx+§. (13)

If P is any partition of [a, b], let P’ be constructed from the partition points of Py and P.
Then
S(P") < S(Py), (14)

by Lemma 3.2.1. Since P’ is obtained by adding at most r points to P, Lemma 3.2.1
implies that
S(P") = S(P) —2Kr| P|. (15)

Now (13), (14), and (15) imply that

S(P) < S(P') +2Kr| P|
= S(Po) +2Kr| P|

%
< / o) dx + % +2Kr|P|.

Therefore, (12) holds if
€
Pll<d=—.
IPI<8= i

Theorem 3.2.5 If f is bounded on |a, b] and

b b
/f(x)dxz/f(x)dsz, (16)

then f is integrable on [a, b] and

b
/ f(x)dx = L. 17)
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Proof Ife > 0, thereisad > 0 such that

b “rb
/ f(x)dx—e<s(P)§S(P)</ f(x)dx + € (18)
if |P|| <& (Lemma 3.2.4). If ¢ is a Riemann sum of f over P, then
s(P) <o =S(P),

so (16) and (18) imply that
L—-—e<o<L+e

if | P|| < §. Now Definition 3.1.1 implies (17). 0
Theorems 3.2.3 and 3.2.5 imply the following theorem.

Theorem 3.2.6 A bounded function f is integrable on [a, b] if and only if

/abf(x)dx =ff(x)dx.

The next theorem translates this into a test that can be conveniently applied.

Theorem 3.2.7 If f is bounded on |a, b, then f is integrable on [a, b] if and only if
for each € > 0 there is a partition P of [a, b] for which

S(P) —s(P) <e. (19)

Proof We leave it to you (Exercise 4) to show that if f ab f(x) dx exists, then (19) holds
for || P || sufficiently small. This implies that the stated condition is necessary for integra-
bility. To show that it is sufficient, we observe that since

b DY)
s(P) < / F)dx < / F(x)dx < S(P)

for all P, (19) implies that

Offf(x)dx—/;bf(x)dx <e.

Since € can be any positive number, this implies that

—bf(x)dx = bf(x)dx.
J o=

Therefore, |, ab f(x) dx exists, by Theorem 3.2.5. 0

The next two theorems are important applications of Theorem 3.2.7.



Section 3.2 Existence of the Integral 133

Theorem 3.2.8 If f is continuous on [a, b], then f is integrable on [a, b].

Proof Let P = {xg,x1,...,x,} beapartitionof [a, b]. Since f is continuous on [a, b],
there are points ¢; and ¢; in [x—1, x,] such that

flejy=Mj= sup  f(x)

Xj—1=X=X;

and
/ — S .
fEy=mj=_ inf_ f(x)

(Theorem 2.2.9). Therefore,

n

S(P)—=s(P) =" [f(c;) = f()] (x; —xj-1). (20)

Jj=1

Since f is uniformly continuous on [a, b] (Theorem 2.2.12), there is foreach e > 0ad > 0
such that

) = f0)] < 57—
—da

if x and x” are in [a, b] and |x — x'| < 8. If | P|| < 4, then |c; — ¢} < § and, from (20),

S(P)—s(P) < ﬁ Z(Xj —Xj-1) = €.
=1

Hence, f is integrable on [a, b], by Theorem 3.2.7. 0
Theorem 3.2.9 If f is monotonic on [a, b, then f is integrable on [a, b].

Proof Let P = {xg,x1,...,x,} be apartition of [a, b]. Since f is nondecreasing,

fGj)=M;= sup  f(x)

Xj—1SX=X;
and
fxjm1)=m; = inf f(x).

Hence,
S(P)—s(P) =Y (f(x;) = flxj—))xj —xj-1).
j=1
Since 0 < x; —x;j—1 < [[P| and f(x;) — f(x;-1) = 0,

S(P) —s(P) < [|PII Y _(f(x;) — f(x;-1)

J=1

= [ PII(f(B) = f(a)).
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Therefore,
S(P)—s(P) <e if |[[P[(f(b)— f(a)) <e,
so f is integrable on [a, b], by Theorem 3.2.7.
The proof for nonincreasing f is similar. a

We will also use Theorem 3.2.7 in the next section to establish properties of the integral.
In Section 3.5 we will study more general conditions for integrability.

3.2 Exercises

1. Complete the proof of Lemma 3.2.1 by verifying Eqn. (3).
2. Show thatif f is integrable on [a, b], then

b b
/ fx)dx = / f(x)dx.
Ja_ a
3. Prove: If f is bounded on [a, b], there is for each € > 0 a § > 0 such that

b b
/f(x)dxz/f(x)dx—e<s(P)

if |P|| <.
4. Prove: If f is integrable on [a,b] and € > 0, then S(P) — s(P) < e if || P|| is
sufficiently small. HINT: Use Theorem 3.1.4.

5. Suppose that f is integrable and g is bounded on [a, b], and g differs from f only
at points in a set A with the following property: For each € > 0, H can be covered
by a finite number of closed subintervals of [a, b], the sum of whose lengths is less
than €. Show that g is integrable on [a, b] and that

/abg(x)dx = /;b f(x)dx.

HINT: Use Exercise 3.1.3.

6. Suppose that g is bounded on [o, f],and let Q : @ = vg < vy < --- < vy = f be
a fixed partition of [«, 8]. Prove:

B L B L o
@ [swa=Y [ g ®) [ewd=3 [ cwar
e (=1 @ (=101

7. A function f is of bounded variation on [a, b] if there is a number K such that

Ve

Ve—1

S| f@p) ~ flaj-n| < K

J=1

whenever a = ag < a; < --- < ay = b. (The smallest number with this property
is the rotal variation of f on [a, b].)
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(a) Prove: If f is of bounded variation on [a, b], then f is bounded on [a, b].
(b) Prove: If f is of bounded variation on [a, b], then f is integrable on [a, b].
HINT: Use Theorems 3.1.4 and 3.2.7.

Let P = {xo, X1,..., X} be a partition of [a, b], co = X9 = a, Chy1 = Xn = b,
and x; 1 <c¢j <x;,j =1,2,..., n. Verify that

D el ep)—f )] = gb) f(b)—g@) f(@)—_ f(x))glcjr1)—g(c)].

J=1 J=0

Use this to prove that if fab f(x) dg(x) exists, then so does fab g(x)df(x), and

b b
| swrdrw = rreo) - f@s@ - [ 1w dgco
(This is the integration by parts formula for Riemann—Stieltjes integrals.)

Let f be continuous and g be of bounded variation (Exercise 7) on [a, b].

(a) Show thatif € > 0, there is a § > 0 such that |0 — 0’| < €/2 if o and o’
are Riemann—Stieltjes sums of f with respect to g over partitions P and P’
of [a, b], where P’ is a refinement of P and ||P| < §. HINT: Use Theo-
rem2.2.12.

(b) Let & be as chosen in (a). Suppose that o7 and o, are Riemann-Stieltjes
sums of f with respect to g over any partitions P and P; of [a, b] with norm
less than §. Show that |07 — 03| < €.

(c) If8 > 0, let L(8) be the supremum of all Riemann-Stieltjes sums of f with
respect to g over partitions of [a, b] with norms less than §. Show that L () is
finite. Then show that L = limg_,o4 L(8) exists. HINT: Use Theorem 2.1.9.

(d) Show that fab f(x)dg(x) = L.

Show that |, ab f(x)dg(x) exists if f is of bounded variation and g is continuous on
[a, b]. HINT: See Exercises 8 and 9.

3.3 PROPERTIES OF THE INTEGRAL

We now use the results of Sections 3.1 and 3.2 to establish the properties of the integral.
You are probably familiar with most of these properties, but not with their proofs.

Theorem 3.3.1 If f and g are integrable on [a, b], then so is | + g, and

/ab(f + 2)(x)dx =/abf(x)dx+/bg(x)dx.

a
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Proof Any Riemann sum of f + g over a partition P = {xq, X1, ..., X, } of [a, b] can
be written as

Orrg = [f(c))+gle)]x; —xj1)

J=1

n n
=D flep)j—xj-0) + Y gle)xj —xj-1)
Jj=1 j=1
=0f + 0g,
where 0y and o, are Riemann sums for f and g. Definition 3.1.1 implies that if ¢ > 0
there are positive numbers §; and §, such that

b
af—/ f(x)dx| < if ||P] <61

N M

and

b
ag—/ gx)dx| <

b b
(af —/; f(x) dx) + (ag —/; g(x) dx)

b
Og —/ g(x)dx

it ||P| < 6.

N M

If | P|| <& = min(éy, §2), then

b b
af+g—/; f(x)dx—/ g(x)dx

a

b
< af—/ f(x)dx|+

- e+e
-+ - =e,
22

so the conclusion follows from Definition 3.1.1. a0

The next theorem also follows from Definition 3.1.1 (Exercise 1).

Theorem 3.3.2 If f is integrable on [a, b] and c is a constant, then cf is integrable
on [a,b] and

b b
/ cf(x)dx = c/ f(x)dx.
a a
Theorems 3.3.1 and 3.3.2 and induction yield the following result (Exercise 2).

Theorem 3.3.3 If fi, f2, ..., fn are integrable on [a,b] and ¢y, ca, ..., ¢y are
constants, then ¢y f1 + c2 f2 + -+ + ¢n fu is integrable on [a, b] and

b b b
/(clfl+czf2+---+cnfn)(x)dx=61/ fl(x)dx+62/ fa(x)dx

b
+"'+Cn/ fn(x)dx.
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Theorem 3.3.4 If f and g are integrable on [a,b] and f(x) < g(x) fora < x < b,
then

b b
/.ﬂﬂdxs/‘gmdx (1)

a

Proof Since g(x) — f(x) > 0, every lower sum of g — f over any partition of [a, b] is
nonnegative. Therefore,

b
/ ((x) — f())dx > 0.
Hence, o

b b b
gdx— [ fydx= [ (00— f(0)dx
.,
/ (g(0) — f(x)) dx = 0,

which yields (1). (The first equality in (2) follows from Theorems 3.3.1 and 3.3.2; the
second, from Theorem 3.2.3.) a

@)

Theorem 3.3.5 If f is integrable on [a, b], then so is | f |, and

b b
/ Fodx| < / ()] dx. 3)

Proof Let P be a partition of [a, b] and define

Mj =sup{f(x)|xj-1 <x<x;},
mj =inf{f(x)|x;1 = x < x;},
M =sup{|f(O)]|xj-1 <x <x;},

j
mj =inf {|f(x)||xj—1 < x <x;}.

Then _
J— / /
M —mj =sup{|f)] =S| xj-1 < x, 5" < x;}
<sup{|f(x) = fO] xj-1 < x, %" < x;} )
=M;—m;j.
Therefore,

S(P)—5(P) < S(P)—s(P),

where the upper and lower sums on the left are associated with | /| and those on the right are
associated with f. Now suppose that € > 0. Since f is integrable on [a, b], Theorem 3.2.7
implies that there is a partition P of [a, b] such that S(P) — s(P) < e. This inequality
and (4) imply that S(P) — 5(P) < €. Therefore, | f| is integrable on [a, b], again by
Theorem 3.2.7.

Since

S =f®)] and - f(x) <[f(x)]. a=x<b,
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Theorems 3.3.2 and 3.3.4 imply that

b b b b
| s < [Cis@iar wa - [ s 1wl
which implies (3). a
Theorem 3.3.6 If f and g are integrable on [a, b], then so is the product fg.

Proof We consider the case where f and g are nonnegative, and leave the rest of the
proof to you (Exercise 4). The subscripts f, g, and fg in the following argument identify
the functions with which the various quantities are associated. We assume that neither f
nor g is identically zero on [a, b], since the conclusion is obvious if one of them is.

If P = {x¢,x1,...,Xn} 18 a partition of [a, b], then

n

Sre(P)=spe(p) = ) (Mpg,j —mpgj)(x; —xj-1). o)
j=1

Since f and g are nonnegative, Mrg ; < My ;M, j and my, ; > my ;mg ;. Hence,
Mygj —mygj =My Mg j—myjmg,;
=My —mysj)Mg,; +my; (Mg j —mg;)
= Mg(Myj—mpy;)+ Mg(Mg j —mg ),
where M s and M, are upper bounds for /" and g on [a, b]. From (5) and the last inequality,
Srg(P) —sfe(P) < Mg[Sy(P)—sy(P)] 4+ My[Sg(P)—sg(P)]. (6)

Now suppose that € > 0. Theorem 3.2.7 implies that there are partitions P; and P, of
[a, b] such that

€

Sf(Pl)—sf(Pl)<ﬁ and Sg(Pz)—Sg(P2)<2Mf. %)

If P is a refinement of both P; and P, then (7) and Lemma 3.2.1 imply that

€ €
This and (6) yield
€ €
Srg(P) —spg(P) < 3 + 5= €.

Therefore, fg is integrable on [a, b], by Theorem 3.2.7. 0
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Theorem 3.3.7 (First Mean Value Theorem for Integrals) Suppose that
u is continuous and v is integrable and nonnegative on [a, b]. Then

b b
/ u(x)v(x)dx = u(c)/ v(x)dx (8)

for some c in [a, b].

Proof From Theorem 3.2.8, u is integrable on [a, b]. Therefore, Theorem 3.3.6 implies
that the integral on the left exists. If m = min {u(x) | a<x=< b} and M = max {u(x) | a<x< b}
(recall Theorem 2.2.9), then

m<u(x)<M

and, since v(x) > 0,
mv(x) <u(x)v(x) < Mv(x).

Therefore, Theorems 3.3.2 and 3.3.4 imply that

b b b
m/ v(x)dxf/ u(x)v(x)dfo/ v(x)dx. 9)

This implies that (8) holds for any c in [a, b] if fab v(x)dx = 0. If fab v(x)dx # 0, let

b
/ u(x)v(x)dx
==+ (10)

/ab v(x)dx

Since fab v(x)dx > 0 in this case (why?), (9) implies that m < w < M, and the inter-
mediate value theorem (Theorem 2.2.10) implies that ¥ = u(c) for some ¢ in [a, b]. This
implies (8). a

If v(x) = 1, then (10) reduces to

1 b
u= m/; u(x)d.x,

so u is the average of u(x) over [a, b]. More generally, if v is any nonnegative integrable
function such that fab v(x)dx # 0, then & in (10) is the weighted average of u(x) over
[a, b] with respect to v. Theorem 3.3.7 says that a continuous function assumes any such
weighted average at some point in [a, b].

Theorem 3.3.8 If f isintegrable on[a,blanda < ay < by < b, then f is integrable
on [al, bl]
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Proof Supposethate > 0. From Theorem 3.2.7, there is a partition P = {x¢, X1, ..., Xn}
of [a, b] such that

S(P)—s(P) =Y (M; —m;)(x; — xj_1) <e. (11)
j=1

We may assume that a; and by are partition points of P, because if not they can be inserted
to obtain a refinement P’ such that S(P’) — s(P’) < S(P) — s(P) (Lemma 3.2.1). Let
a1 = x, and by = x;. Since every term in (11) is nonnegative,

> (Mj—my)(xj —xj-1) <e.

Jj=r+1

Thus, P = {X,,Xr41,...,Xs} is a partition of [ay, b;] over which the upper and lower
sums of f satisfy - -
S(P)—s(P) <e.

Therefore, f is integrable on [a1, b1], by Theorem 3.2.7. 0

We leave the proof of the next theorem to you (Exercise 8).

Theorem 3.3.9 If f is integrable on [a, b] and [b, c], then f is integrable on |a, c],
and

c b c
/ f(x)dxz/ f(x)dx+/ f(x)dx. (12)
a a b
So far we have defined | f f(x) dx only for the case where @ < . Now we define

/:f(x)dxz—/aﬂ f(x)dx

ifa < B, and

/: f(x)dx = 0.

With these conventions, (12) holds no matter what the relative order of a, b, and ¢, provided
that f is integrable on some closed interval containing them (Exercise 9).

Theorem 3.3.8 and these definitions enable us to define a function F(x) = |, Cx f(@)de,
where ¢ is an arbitrary, but fixed, point in [a, b].

Theorem 3.3.10 If f is integrable on [a,b] and a < ¢ < b, then the function F
defined by

F(x) =/ f@)dt

satisfies a Lipschitz condition on [a, b], and is therefore continuous on [a, b].
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Proof If x and x’ are in [a, b], then

Foo-ruy = [ pwdi- [ " oy = [ rwa

by Theorem 3.3.9 and the conventions just adopted. Since | f(t)| < K (@ <t < b) for

some constant K,
X
/ f@)de
x/

|[F(x) — F(x)| < K|x—x'|, a<x,x <b.

<K|x—x'|, a<x,x'<b

(Theorem 3.3.5), so

Theorem 3.3.11 If f is integrable on [a.blanda < ¢ < b, then F(x) = [ f(t)dt
is differentiable at any point xg in (a,b) where f is continuous, with F'(xo) = f(xo). If
[ is continuous from the right at a, then F' (a) = f(a). If f is continuous from the left
at b, then F’ (b) = f(b).

Proof We consider the case where a < xo < b and leave the rest to you (Exercise 14).
Since

L (" fxodt = Fxo),

X — X0 Jxq
we can write

PO Z P00 gy = —— / L0~ fe)de.
X — Xo X — X0 Jxo

From this and Theorem 3.3.5,

F(x) — F(xo)
X — X0

— f(xo)

=

/ () = fxo)l di|. (13)

|x — xol

(Why do we need the absolute value bars outside the integral?) Since f is continuous at
Xo, there is for each € > 0 a § > 0 such that

| /(@) — f(xo)| <€ if |x—xo|<$
and ¢ is between x and x¢. Therefore, from (13),

F(x) — F(xo) — f(xo) <€|x—xo|

X — Xo |x — xol

=e if 0<|x—xg| <3$.

Hence, F’(x0) = f(xo). O
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Example 3.3.1 If

) , 0=<x=1,
X) =
x+1, 1<x<2,
then the function
2
x x?, 0<x <1,
F(x):/ f@)d: = 22
0 S +a-l l<x=<2,

is continuous on [0, 2]. As implied by Theorem 3.3.11,

x = f(x), 0<x<l,
F'(x) =

x+1=f(x), 1<x<2,

. F(x)—F(0) . (x*/2) -0
F/ = 1 _— = 1 _— = =
+(0) Jim o Jim o 0= £(0),

F(x)— F(2 2/2 —1-

Fl@= tim £O=F@ _ @2+ x 173

x—>2— x—2 x—2— x—2

. ox+4

=y ==

F does not have a derivative at x = 1, where f is discontinuous, since

F/(I)=1 and F{(1)=2. [ ]
The next theorem relates integration and differentiation in another way.

Theorem 3.3.12 Suppose that F is continuous on the closed interval [a, b] and dif-
ferentiable on the open interval (a, b), and f is integrable on [a, b]. Suppose also that

F'(x)= f(x), a<x<b.

Then ,
/ f(x)dx = F(b) — F(a). (14)
Proof If P = {x¢,x1,..., Xy} is a partition of [a, b], then
F(b)— F(a) = Y (F(xj) — F(xj-1)). (15)

J=1
From Theorem 2.3.11, there is in each open interval (x;_y, x;) a point ¢; such that

F(x;) = F(xj—1) = f(c;)(x; —x;-1).
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Hence, (15) can be written as
F(b)— Fla) =) f(c;)(xj —xj-1) =0,
j=1

where o is a Riemann sum for f over P. Since f is integrable on [a, b], there is for each
€ > 0aé > 0such that

b
a—/ fx)dx| <e if |P| <.

Therefore,

<€

b
F(b) - Fa) - / £ dx

for every € > 0, which implies (14). |

Corollary 3.3.13 If f' is integrable on [a, b], then
b
| rwar=ro- r.

Proof Apply Theorem 3.3.12 with F and f replaced by f and f”, respectively. 0

A function F' is an antiderivative of f on [a, b] if F is continuous on [a, b] and differ-
entiable on (a, b), with
F'(x)= f(x), a<x<b.

If F is an antiderivative of f on [a, b], then so is F + ¢ for any constant c. Conversely,
if Fy and F, are antiderivatives of f on [a, b], then F; — F; is constant on [a, b] (Theo-
rem 2.3.12). Theorem 3.3.12 shows that antiderivatives can be used to evaluate integrals.

Theorem 3.3.14 (Fundamental Theorem of Calculus) If f is continu-
ous on [a, b], then f has an antiderivative on [a, b]. Moreover, if F is any antiderivative

of f onla,b], then
b
/ f(x)dx = F(b) — F(a).
a
Proof The function Fo(x) = fax f(¢)dt is continuous on [a, b] by Theorem 3.3.10,
and Fj(x) = f(x) on (a,b) by Theorem 3.3.11. Therefore, Fy is an antiderivative of f

on [a, b]. Now let F = Fy + ¢ (¢ = constant) be an arbitrary antiderivative of f on [a, b].
Then

b a b
F(b)—F(a)z/ f(x)dx+c—/ f(x)dx—c=/ f(x)dx. O
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When applying this theorem, we will use the familiar notation

b

F(b) — F(a) = F(x)

a

Theorem 3.3.15 (Integration by Parts) Ifu’ and v’ are integrable on [a, b],

then
b

b b
/u(x)v’(x)dx:u(x)v(x) —/ v(x)u'(x)dx. (16)

a

Proof Since u and v are continuous on [a, b] (Theorem 2.3.3), they are integrable on
[a, b]. Therefore, Theorems 3.3.1 and 3.3.6 imply that the function

wv) =u'v +uv’

is integrable on [a, b], and Theorem 3.3.12 implies that

b b
/ )V () + o’ (vl dx = u(()| -

which implies (16). a

We will use Theorem 3.3.15 here and in the next section to obtain other results.

Theorem 3.3.16 (Second Mean Value Theorem for Integrals) Suppose
that f' is nonnegative and integrable and g is continuous on [a, b]. Then

b c b
| rogwas = r@ [ ewrax+ 16) [ g a7
for some c in [a, b].
Proof Since f is differentiable on [a, b], it is continuous on [a, b] (Theorem 2.3.3).

Since g is continuouson [a, b], so is fg (Theorem 2.2.5). Therefore, Theorem 3.2.8 implies
that the integrals in (17) exist. If

Glx) = / g0 dr, (18)

then G'(x) = g(x), @ < x < b (Theorem 3.3.11). Therefore, Theorem 3.3.15 withu = f
and v = G yields

b b b
/ Fg() dx = f)G)| — / F/(0G(x) dox. (19)

Since f” is nonnegative and G is continuous, Theorem 3.3.7 implies that

b b
/ F1(06 ) dx = G(e) / () dx 20)
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for some ¢ in [a, b]. From Corollary 3.3.12,

b
/ £ dx = f(b) — fla).

From this and (18), (20) can be rewritten as

b c
/ F10G) dx = (f(b) — f(@)) / g(x)dox.

Substituting this into (19) and noting that G (a) = 0 yields

b b c
/ F)g@)dx = f(b) / () dx — (f(b) — (@) / g(x) dx.

c b a
= f() / () dx + f(b) ( / ¢ () dx — / ¢(x) dx)

c b
= f(a) / g(x)dx + f(b) / g(x)dx. 0

Change of Variable

The following theorem on change of variable is useful for evaluating integrals.

Theorem 3.3.17 Suppose that the transformation x = ¢(t) maps the interval ¢ <
t <d intothe intervala < x < b, with¢(c) = o and ¢(d) = B, and let | be continuous
on [a, b. Let ¢’ be integrable on [c, d]. Then

B d
/ Fx)dx = / F@O)P () dr. @1

Proof Bothintegrals in (21) exist: the one on the left by Theorem 3.2.8, the one on the
right by Theorems 3.2.8 and 3.3.6 and the continuity of f(¢(¢)). By Theorem 3.3.11, the
function

Flx) = / £O) dy

is an antiderivative of f on [a, b] and, therefore, also on the closed interval with endpoints
o and B. Hence, by Theorem 3.3.14,

B
/ Fx)dx = F(B) — F(@). 22)

By the chain rule, the function

G@) = F($())
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is an antiderivative of f(¢(¢))¢’(¢) on [c, d], and Theorem 3.3.12 implies that

d
/ F@@0)¢'(1)dt = G(d) — G(c) = F(¢(d)) — F(¢(c))
= F(B) — F(a).
Comparing this with (22) yields (21).

Example 3.3.2 To evaluate the integral
/2
I = / (1—2x%)(1 —x>)"V24x
-1/v2

we let
[y =1-2H)1-x>)""2 —1/V2<x<1/V2,
and
x =¢) =sint, —n/4<t<mn/4.
Then ¢'(t) = cost and

1/4/2 /4
1 =/ f(x)dx = f(sint)cost dt

1/4/2 —m/4

/4
= / (1 —2sin?1)(1 —sin?7)"Y2 cosr dt.
—m/4

1- sin? 1)'/2 = cost, —n/4d<t<m/4
and
1 —2sin%t = cos 2t,

(23) yields
/4

= 1.
—m/4

/4 in2t
1 :/ cos2tdt = S
—m/4

Example 3.3.3 To evaluate the integral

5m :
sint
1=/ st g,
o 2+ cost

we take ¢(t) = cost. Then ¢’(t) = —sint and

Y OB ,
a /o 2+¢(¢)dt— A f(@(0)¢' (1) dt,

where

1
S = 24 x

(23)
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Therefore, since ¢(0) = 1 and ¢(57) = —1,
-1

1 = /_1 dx = —log(2 + x) =log3 ]
= — — =—1o X = log3.
1 24+ x g 1 g

These examples illustrate two ways to use Theorem 3.3.17. In Example 3.3.2 we eval-
uated the left side of (21) by transforming it to the right side with a suitable substitution
x = ¢(t), while in Example 3.3.3 we evaluated the right side of (21) by recognizing that it
could be obtained from the left side by a suitable substitution.

The following theorem shows that the rule for change of variable remains valid under
weaker assumptions on [ if ¢ is monotonic.

Theorem 3.3.18 Suppose that ¢' is integrable and ¢ is monotonic on [c, d], and the
transformation x = ¢(t) maps [c, d] onto [a, b]. Let f be bounded on [a, b]. Then

g(t) = f(p@)e' (1)

is integrable on [c, d] if and only if f is integrable over [a, b], and in this case

b d
[ rwax=["rewmwolar

Proof We consider the case where f is nonnegative and ¢ is nondecreasing, and leave
the the rest of the proof to you (Exercises 20 and 21).

First assume that ¢ is increasing. We show first that

b T d
/ Fx)dx = / F@O)P () dr. (24)

Let P = {to.t1,...,t,} be apartition of [c, d] and P = {xq, x1,...,x,} withx; = ¢(¢;)
be the corresponding partition of [, b]. Define
Uj =sup{¢'(t) [tj-1 <t <1;},
uj =inf{¢'(t) |1j1 <1 <1;},
M; =sup {f(x)|xj—1 <x <x;},
and
M =sup {f(B@)$ (1) [1j-1 <t <1;}.
Since ¢ is increasing, u; > 0. Therefore,
0<u; <¢'(t) <U;, tj-1 =t =1t

Since f is nonnegative, this implies that

0= fld@)u; = f@)' (1) = f(9)U;. tj—1 =t =t;.

Therefore, o
Mju; < M; < M;Uj,
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which implies that

Mj=Mjp;, (25)

where
uj < pj =Uj. (26)

Now consider the upper sums
n n
S(P)y=7) M;(t;—t;—1) and S(P) =) Mj(x;—xj-1). @7
J=1 Jj=1
From the mean value theorem,
Xj—Xj-1=¢(t;) = (tj—1) = ¢'(rj)(t; — ;1) (28)

where t; 1 < t; <tj,s0

uj <¢'(r;) < U;. (29)
From (25), (27), and (28),
S(PY—=S(P)=)_ M;(pj —¢'(x)t; —tj-1). (30)
j=1

Now suppose that | f(x)| < M, a < x < b. Then (26), (29), and (30) imply that

IS(P)—S(P)| =M > (U; —uj)(tj —tj-).

J=1

The sum on the right is the difference between the upper and lower sums of ¢’ overf.
Since ¢’ is integrable on [c, d], this can be made as small as we please by choosing || P ||
sufficiently small (Exercise 3.2.4).

From (28), | P|| < K||P|| if |¢'(t)| < K,c <t < d. Hence, Lemma 3.2.4 implies that

b Td
S(P) - / feydx| <5 and [S(P)- / FoO wdi <5 @D
if | P| is sufficiently small. Now
5 —7 5 -
/ Fx)dx / £ @) @' () di| < / F(x)dx — S(P)| + |S(P) —5(P)|

+

o T d
S(P) - / FOO) (@) di

Choosing P so that |S(P) — S(P| < €/3 in addition to (31) yields

< €.

b d
/ Fx)dx — / FO) (@) di

Since € is an arbitrary positive number, this implies (24).
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If ¢ is nondecreasing (rather than increasing), it may happen that x; 1 = x; for some
values of j; however, this is no real complication, since it simply means that some terms in
S(P) vanish.

By applying (24) to — f', we infer that

b d
/ Fx) dx = / F@O)P () dr. (32)

since

f(—f)(x) dx = - / oy

and

T d d
/ (—f O (1)) di = — / F@O)P (0) dr.

Now suppose that f is integrable on [, b]. Then

b b b
/ Fx) dx = / Fx) dx = / F(x) dx.
by Theorem 3.2.3. Frorihis, (24), and (32),
d Td b
/ F@O)Y (1) di = / F@O)Y (1) di = / F(x) dx.

This and Theorem 3.2.5 (applied to f(¢(2))¢’ (¢)) imply that f(¢(¢))¢’ (¢) is integrable on
[c,d] and

b d
[ rwax=[" reowwar ()
A similar argument shows that if f(¢(¢))¢’ (¢) is integrable on [c, d], then f is integrable
on [a, b], and (33) holds. 0

3.3 Exercises

Prove Theorem 3.3.2.
Prove Theorem 3.3.3.
Can | f| be integrable on [a, b] if f is not?

A s

Complete the proof of Theorem 3.3.6. HINT: The partial proof given above implies
that if my and my are lower bounds for [ and g respectively on [a, b], then (f —
m1)(g — my) is integrable on [a, b].

5. Prove: If f is integrable on [a,b] and | f(x)| = p > Ofora < x < b, then 1/f is
integrable on [a, b]
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6.

10.

11.

12.

13.

14.
15.

Suppose that f is integrable on [a, b] and define

fx) if f(x) >0,
0 if f(x) <0,

0 if f(x) =0,

+ —
4 @)_g f(x) if f(x) <O.

Show that /™ and f~ are integrable on [a, b], and

/abf(x)dxz/abf+(x)dx+/abf_(x)dx.

Find the weighted average u of u(x) over [a, b] with respect to v, and find a point ¢
in [a, b] such that u(c) = u.

(a) u(x) = x, v(x) =x, [a,b]=][0,1]
(b) u(x) =sinx, v(x)=x2, [a,b]=[-1,1]
(c) u(x) = x2, v(x) =e*, [a,b]=1]0,1]
Prove Theorem 3.3.9.

Show that

c b c
/ f(x)dx = / f(x)dx +/ f(x)dx
a a b
for all possible relative orderings of a, b, and ¢, provided that f is integrable on a

closed interval containing them.

Prove: If f isintegrable on [a,b]anda = a9 < a; <--- < a, = b, then
b aj az an
/ f(x)dxz/ f(x)dx+/ f(x)dx+---+/ f(x)dx.
a ao aj an—1

Suppose that f is continuous on [a, b] and P = {xo, X1, ..., X,} is a partition of
[a, b]. Show that there is a Riemann sum of f over P that equals fab f(x)dx.

Suppose that f” exists and | f/(x)| < M on [a, b]. Show that any Riemann sum o
of f over any partition P of [a, b] satisfies

b
a—/ F()dx| < M® - a)|P].

HINT: See Exercise 11.

Prove: If f is integrable and f(x) > 0 on [a, b], then fab f(x)dx = 0, with strict
inequality if f is continuous and positive at some point in [a, b].

Complete the proof of Theorem 3.3.11.

State theorems analogous to Theorems 3.3.10 and 3.3.11 for the function

G(x) = / £y dr.

and show how your theorems can be obtained from them.
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16. The symbol [ f(x)dx denotes an antiderivative of f. A plausible analog of The-
orem 3.3.1 would state that if f and g have antiderivatives on [a, b], then so does
f + g, which is true, and

[ +omax = [ rmax+ [ewax ()

Howeyver, this is not true in the usual sense.
(a) Why not?
(b) State a correct interpretation of (A).

17. (See Exercise 16.) Formulate a valid interpretation of the relation

/ (ef)x)dx = ¢ / F@)dx (e £0).

Is your interpretation valid if ¢ = 0?7
18. (a) Let f@*D be integrable on [a, b]. Show that

R WAL O PRSIV B ey "
100 = 26— [ 06 o

HINT: Integrate by parts and use induction.
(b) What is the connection between (a) and Theorem 2.5.5?

19. In addition to the assumptions of Theorem 3.3.16, suppose that f(a) = 0, f # 0,
and g(x) > 0 (¢ < x < b). Show that there is only one point ¢ in [a, b] with the
property stated in Theorem 3.3.16. HINT: Use Exercise 13.

20. Assuming that Theorem 3.3.18 is true under the additional assumption that f is
nonnegative on [a, b], show that it is true without this assumption.

21. Assuming that the conclusion of Theorem 3.3.18 is true if ¢ is nondecreasing, show
that it is true if ¢ is nonincreasing. HINT: Use Exercise 3.1.6.

22. Suppose g’ is integrable and f is continuous on [a, b]. Show that fab f(x)dg(x)
exists and equals fab f(x)g'(x)dx.

23. Suppose f and g” are bounded and fg’ is integrable on [a, b]. Show that fab f(x)dg(x)
exists and equals fab f(x)g'(x)dx. HINT: Use Theorem 2.5.4.

3.4 IMPROPER INTEGRALS

So far we have confined our study of the integral to bounded functions on finite closed
intervals. This was for good reasons:

e From Theorem 3.1.2, an unbounded function cannot be integrable on a finite closed
interval.
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o Attempting to formulate Definition 3.1.1 for a function defined on an infinite or semi-
infinite interval would introduce questions concerning convergence of the resulting
Riemann sums, which would be infinite series.

In this section we extend the definition of integral to include cases where f is unbounded
or the interval is unbounded, or both.

We say f is locally integrable on an interval [ if f is integrable on every finite closed
subinterval of /. For example,

f(x) =sinx

is locally integrable on (—o0, 00);

1
(x—=1)
is locally integrable on (—o0, 0), (0, 1), and (1, co); and

h(x) = /x

gx) = <

is locally integrable on [0, c0).

Definition 3.4.1 If f is locally integrable on [a, b), we define

b c
| rear= tim [ peoas 0

if the limit exists (finite). To include the case where b = oo, we adopt the convention that
00— = 0. [ |

The limit in (1) always exists if [a, b) is finite and f is locally integrable and bounded

on [a, b). In this case, Definitions 3.1.1 and 3.4.1 assign the same value to fab f(x)dx no
matter how f'(b) is defined (Exercise 1). However, the limit may also exist in cases where
b =ocoorb < ooand f is unbounded as x approaches b from the left. In these cases,
Definition 3.4.1 assigns a value to an integral that does not exist in the sense of Defini-

tion 3.1.1, and fab f(x)dx is said to be an improper integral that converges to the limit in
(1). We also say in this case that f is integrable on [a, b) and that fab f(x)dx exists. Ifthe
limit in (1) does not exist (finite), we say that the improper integral |, ab f(x)dx diverges,
and f is nonintegrable on [a, b). In particular, if lim,_,5_ f: f(x)dx = £oo, we say that
fab f(x) dx diverges to 00, and we write

b b
/f(x)dxzoo or /f(x)dxz—oo,

whichever the case may be.

Similar comments apply to the next two definitions.
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Definition 3.4.2 If f is locally integrable on (a, b], we define

b b
Lf(x)dx:cgran+/c f(x)dx

provided that the limit exists (finite). To include the case where a = —oo, we adopt the
convention that —oo+ = —oo. [ ]

Definition 3.4.3 If f is locally integrable on (a, b), we define

b o b
| rmax= [ swax+ [ s
a a o
where a < a < b, provided that both improper integrals on the right exist (finite). [ ]

The existence and value of | ab f(x)dx according to Definition 3.4.3 do not depend on
the particular choice of « in (a, b) (Exercise 2).

When we wish to distinguish between improper integrals and integrals in the sense of
Definition 3.1.1, we will call the latter proper integrals.

In stating and proving theorems on improper integrals, we will consider integrals of
the kind introduced in Definition 3.4.1. Similar results apply to the integrals of Defini-
tions 3.4.2 and 3.4.3. We leave it to you to formulate and use them in the examples and
exercises as the need arises.

Example 3.4.1 The function

1
f(x) = 2xsin— — cos —
x x
is locally integrable and the derivative of
2.1
F(x) = x“sin —
x
on [—-2/m,0). Hence,
¢ 1 1 4
f(x)dx = x?sin — :czsin—+—2
-2/ X —2/x C T
and
0

f(x)dx = lim (czsinl + iz) = iz’

-2/ c—>0— c T T

according to Definition 3.4.1. However, this is not an improper integral, even though f(0)
is not defined and cannot be defined so as to make f continuous at 0. If we define f(0)
arbitrarily (say f(0) = 10), then f is bounded on the closed interval [-2 /7, 0] and con-
tinuous except at 0. Therefore, ffz /m f(x) dx exists and equals 4 /72 as a proper integral
(Exercise 1), in the sense of Definition 3.1.1. |
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Example 3.4.2 The function

fx)=(1-x)""
is locally integrable on [0, 1) and, if p # 1 and 0 < ¢ < 1,

0 p—

Lo p—1
Hence,
¢ _ -l
lim / (1—x)?dx = {(1 7l op<l,
c—>1— 0 00, p > 1
For p =1,
c
lim / a —x)"'dx =~ lim log(l —¢) = co.
c—~>1=Jo c—>1—
Hence,
! -1
- 1—p) <1
_ p _ ( )4 , D s
/0(1 . dx_{oo’ p=L

Example 3.4.3 The function
fx)=x77
is locally integrable on [1, 00) and, if p # 1 and ¢ > 1,
c —p+1
/ xPdx =2
1

¢ Pl

-p+1|, -p+1
Hence,
c —
lim xPdx = (p=D7N p>1
c—oo [y 00, p <L
For p =1,
c
lim x ldx = lim loge = oo.
Cc—>00 1 Cc—>00
Hence,
o0 —
x Pdx = (p_l) lv p>1v
1 00, p =<1

Example 3.4.4 If 1 < ¢ < o0, then

‘1 1 ‘1 1 5|¢ 1 5
—log—dx =— —logxdx = —=(logx)*| = —=(logc)~.
1 X X 1 X 2 1 2

Hence,
c

. 1
lim —log —dx = —o0,
c—>oo J1 X X

* 1 1
/ —log —dx = —o0.
1 X X

SO
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Example 3.4.5 The function f(x) = cos x is locally integrable on [0, o) and

c

lim cosxdx = lim sinc
C—>00 0 C—>00
does not exist; thus, fooo cos x dx diverges, but not to +oo. |

Example 3.4.6 The function f(x) = logx is locally integrable on (0, 1], but un-
bounded as x — 0+. Since

1 1

li 1 = i 1 - =—1-1 1 —c)=-1
B ), loerdr = g trlosr =0l ==t A (Close o =1,
Definition 3.4.2 yields
1
/ logx dx = —1. u
0

Example 3.4.7 In connection with Definition 3.4.3, it is important to recognize that

the improper integrals [ f(x) dx and |, 5 f(x) dx must converge separately for |, ab f(x)dx
to converge. For example, the existence of the symmetric limit

R
lim / f(x)dx,
-R

R—o0

which is called the principal value of [ f(x)dx, does not imply that [°0_ f(x)dx
converges; thus,

R
lim xdx = lim 0=0,
R—oo J_R —00
but [;° x dx and fi)oo x dx diverge and therefore so does [0 x dx. [ |

Theorem 3.4.4 Suppose that f1, fa, ..., fu are locally integrable on [a, b) and that
fab fi(x)dx, fab falx)dx, ..., fab fn(x)dx converge. Let c1, ca, ..., ¢y be constants.
Then fab(clf 4+ c2fi 4+ -+ cnfn)(Xx) dx converges and

b b b
/(clfl+czf2+---+cnfn)(x)dx=61/ fl(x)dx+62/ fa(x)dx

+---+cn/bfn(x)dx.
Proof Ifa <c < b,then
/:(clfl+02f2+---+c,,fn)(x)dx=c1/:f1(x)dx+cz/:f2(x)dx
+---+cn/8fn(x)dx,

by Theorem 3.3.2. Letting ¢ — b— yields the stated result. a
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Improper Integrals of Nonnegative Functions

The theory of improper integrals of nonnegative functions is particularly simple.

Theorem 3.4.5 If f is nonnegative and locally integrable on [a, b), then fab f(x)dx
converges if the function

F(x) =/ f@)de

is bounded on [a, b), and fab f(x)dx = oo ifitis not. These are the only possibilities, and

b
/ f@)dt = sup F(x)

a<x<b

in either case.

Proof Since F is nondecreasing on [a, b), Theorem 2.1.9(a) implies the conclusion. 0

We often write

b
/ f(x)dx < o0

to indicate that an improper integral of a nonnegative function converges. Theorem 3.4.5
justifies this convention, since it asserts that a divergent integral of this kind can only di-

. e ... b .
verge to oo. Similarly, if f is nonpositive and | 2 J(x) dx converges, we write

b
/ f(x)dx > —oc0

because a divergent integral of this kind can only diverge to —oo. (To see this, apply
Theorem 3.4.5 to — f.) These conventions do not apply to improper integrals of functions
that assume both positive and negative values in (a, b), since they may diverge without
diverging to £ oo0.

Theorem 3.4.6 (Comparison Test) If f and g are locally integrable on [a, b)
and

0= /f(x)=gx), a=x<b, 2
then

b b
(a) / f(x)dx < oo if / g(x)dx < o0
and

b b
(b) /g(x)dxzoo if /f(x)dxzoo.
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Proof (a) Assumption (2) implies that

/xf(l)dIS/xg(t)dt, a<x<b

a

(Theorem 3.3.4), so

sup /x f@)dt < sup /x g(t)dr.

a<x<b a<x<b

It fab g(x)dx < oo, the right side of this inequality is finite by Theorem 3.4.5, so the left
side is also. This implies that fab f(x)dx < oo, again by Theorem 3.4.5.
(b) The proof'is by contradiction. If fab g(x) dx < oo, then (&) implies that fab f(x)dx <
0, contradicting the assumption that | ab f(x)dx = oo. 0
The comparison test is particularly useful if the integrand of the improper integral is

complicated but can be compared with a function that is easy to integrate.

Example 3.4.8 The improper integral
1 .
2
;= / +sinmwx dx
0o (1—x)?
converges if p < 1, since
2+ sinmx 3

0< < , 0<x<1,
I-xr —(a-xnr -

/lﬂ<oo <1
o (I—xyp - P=5

However, I diverges if p > 1, since

and, from Example 3.4.2,

0 < 1 §2+sm71x’ 0<x<l,
(T—x7 = (1-x7

and

1 dx . -1 -
o (l—xyp 0 P=+

If f is any function (not necessarily nonnegative) locally integrable on [a, b), then
c aj c
/ f(x)dxz/ f(x)dx+/ f(x)dx
a a aj

if a; and ¢ are in [a, b). Since f:l f(x)dx is a proper integral, on letting ¢ — b— we

conclude that if either of the improper integrals | ab f(x)dx and [ abl f(x)dx converges
then so does the other, and in this case

/abf(x)dxz/;alf(x)dx+/;bf(x)dx.
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This means that any theorem implying convergence or divergence of an improper integral

/ ab f(x)dx in the sense of Definition 3.4.1 remains valid if its hypotheses are satisfied
on a subinterval [ay, b) of [a, b) rather than on all of [a, b). For example, Theorem 3.4.6
remains valid if (2) is replaced by

0< f(x)<gx), ar=<x<b,

where a; is any pointin [a, b).

From this, you can see that if f(x) > 0 on some subinterval [a1, b) of [a, b), but not
necessarily for all x in [a, b), we can still use the convention introduced earlier for positive
functions; that is, we can write |, ab f(x)dx < oo if the improper integral converges or

fab f(x)dx = oo if it diverges.
Example 3.4.9 If p > 0, then
X7  (x—=1DPQ2+sinx) -

— =

2 (x—1/3)22  —

4x7P

for x sufficiently large. Therefore, Theorem 3.4.6 and Example 3.4.3 imply that

/oo (x —1)P(2 + sinx)
1 (x —1/3)%»

converges if p > 1 or diverges if p < 1. |

dx

Theorem 3.4.7 Suppose that f and g are locally integrable on [a, b), g(x) > 0 and
f(x) = 0 on some subinterval [a1, b) of [a, b), and

lim f®) =M 3)
x—>b— g(x)
(a) If0 < M < oo, then fab f(x)dx and fab g(x) dx converge or diverge together.
(b) IfM = ooand fab g(x)dx = oo, then fab f(x)dx = oo.
(c) IfM =0and fab g(x)dx < oo, then fab f(x)dx < oo
Proof (a) From (3), there is a point a, in [ay, b) such that
M X IM
0<7<%<7, a, < x < b,
and therefore M M
5 8W) < fx) < — 8(), @ =x< b. )

Theorem 3.4.6 and the first inequality in (4) imply that

b b
/g(x)dx<oo it /f(x)dx<oo.

2
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Theorem 3.4.6 and the second inequality in (4) imply that

b b
/f(x)dx<00 if /g(x)dx<oo.

2

Therefore, [ abz f(x)dx and [ ab2 g(x) dx converge or diverge together, and in the latter case
they must diverge to oo, since their integrands are nonnegative (Theorem 3.4.5).

(b) If M = oo, there is a point a5 in [a1, b) such that
fx)=g(x), ax=<x<b,

so Theorem 3.4.6(b) implies that fab f(x)dx = oo.
(c) If M = 0, there is a pointay in [a1, b) such that

f(x) <gx), ar»=<x=<bh,

so Theorem 3.4.6(a) implies that fab f(x)dx < oo. a
The hypotheses of Theorem 3.4.7(b) and (c) do notimply that fab f(x)dx and fab g(x)dx
necessarily converge or diverge together. For example, if b = oo, then f(x) = 1/x

and g(x) = 1/x? satisfy the hypotheses of Theorem 3.4.7(b), while f(x) = 1/x? and
g(x) = 1/x satisfy the hypotheses of Theorem 3.4.7(c). However, floo 1/xdx = oo,
while [ 1/x? dx < oo.

Example 3.4.10 Let f(x) = (1 + x)"? and g(x) = x~?. Since

f)
A T

and floo x~P dx converges if p > 1 or diverges if p < 1 (Example 3.4.3), Theorem 3.4.7
implies that the same is true of

/00(1 +x)"Pdx. m
1

Example 3.4.11 The function
fx)=x"P(1+x)1

is locally integrable on (0, 0o). To see whether
o0
I = / xP(1+x)"1dx
0
converges according to Definition 3.4.3, we consider the improper integrals

1 e’}
I = / xPA+x)9%dx and I, = / x P +x)9dx
0 1
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separately. (The choice of 1 as the upper limit of /; and the lower limit of /5 is completely
arbitrary; any other positive number would do just as well.) Since
VACY)

li = i 1 4 =1
Jm S = lim (14 x)

/lx_,,dx: {(l—p)‘l, p<l
0

00, p=1,

and

Theorem 3.4.7 implies that I; converges if and only if p < 1. Since

FC)
m

x—o00 X~ P74

= lim (14+x)9x7 =1
X—>00
and

¥ g, P Ha=DTN prg> 1
) 00, p+q=1,

Theorem 3.4.7 implies that I, converges if and only if p + ¢ > 1. Combining these
results, we conclude that I converges according to Definition 3.4.3 if and only if p < 1
and p +¢q > 1. [ ]

Absolute Integrability

Definition 3.4.8 We say that f is absolutely integrable on [a, b) if f is locally inte-

grable on [a, b) and fab | f(x)] dx < oo. In this case we also say that fab f(x)dx converges
absolutely, or is absolutely convergent. |

Example 3.4.12 If f is nonnegative and integrable on [a, b), then f is absolutely
integrable on [a, b), since | f| = f. ]

Example 3.4.13 Since
1

ey

sin x

xXP

and floo x7Pdx < ocoif p > 1 (Example 3.4.3), Theorem 3.4.6 implies that

| sinx
/ | | dx <oo, p>1;
1 xP

that is, the function )
sin x
fx) =
is absolutely integrable on [1,00) if p > 1. It is not absolutely integrable on [1, co) if
p < 1. To see this, we first consider the case where p = 1. Let k be an integer

xP
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greater than 3. Then

k7 | sin x| k7 | sin x|
dx >/ dx
o L

G+D7 | sin x|

k—1
=2/, T dx (5)
J=1

k

- (+Dm
Z ]+1)71/ | sinx| dx.

But
(+D)=m 4

/ |sinx|dx=/ sinx dx = 2,
j 0

Jjm
so (5) implies that
-1

k| smx|
/ Z ©)

Jj=

1 J+2 gx
-— 2/ —, Jj=12,...,
J+1 j+1 X

However,

so (6) implies that

km | o k=1 .j42
2 )
/ | sin x| . 2 Z / X
1 X 0 j+1 X

/k+1dx 21 k+ 1
-z X _ g2
2

Since limg o log[(k + 1)/2] = oo, Theorem 3.4.5 implies that

| sin x|
———dx = o0.
o

Now Theorem 3.4.6(b) implies that

| sin x|
dx =00, p<l. @)
1

xP

Theorem 3.4.9 If f is locally integrable on [a,b) and fab | f(x)|dx < oo, then

fab f(x)dx converges; that is, an absolutely convergent integral is convergent.

Proof If
g(x) = f(x)] = f(x),
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then
0 < g(x) <2[f(x)]

and [ ab g(x) dx < oo, because of Theorem 3.4.6 and the absolute integrability of f. Since
f=1fl-g

Theorem 3.4.4 implies that |, ab f(x) dx converges. 0

Conditional Convergence

We say that f is nonoscillatory at b— (= oo if b = oo) if f is defined on [a, b) and
does not change sign on some subinterval [a1, b) of [a,b). If f changes sign on every
such subinterval, f is oscillatory at b—. For a function that is locally integrable on [a, b)
and nonoscillatory at b—, convergence and absolute convergence of | ab f(x)dx amount
to the same thing (Exercise 16), so absolute convergence is not an interesting concept in
connection with such functions. However, an oscillatory function may be integrable, but
not absolutely integrable, on [a, b), as the next example shows. We then say that f is

conditionally integrable on [a, b), and that [ ab f(x) dx converges conditionally.

Example 3.4.14 We saw in Example 3.4.13 that the integral

I(p):/ sin x dx
1

xXP

is not absolutely convergent if 0 < p < 1. We will show that it converges conditionally for
these values of p.

Integration by parts yields

c : c
sin x —cosc COS X
dx = +cosl—p dx. ®)
. xP cP , xptl
Since
COS X 1
[
xp+1 - xp+1

and floo x P77 ldx < oo if p > 0, Theorem 3.4.6 implies that x "7~ cos x is absolutely
integrable [1, 00) if p > 0. Therefore, Theorem 3.4.9 implies that x “?~! cos x is integrable
[1,00) if p > 0. Letting ¢ — oo in (8), we find that /(p) converges, and

*® cos x .
I(p):cosl—p/1 podx if p>0.

This and (7) imply that /(p) converges conditionallyif 0 < p < 1. [ ]

The method used in Example 3.4.14 is a special case of the following test for convergence
of improper integrals.
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Theorem 3.4.10 (Dirichlet’s Test) Suppose that f is continuous and its an-
tiderivative F(x) = fax f(t)dt is bounded on [a,b). Let g’ be absolutely integrable on
la,b), and suppose that
lirlr} g(x) =0. C)]
x—b—

Then fab f(x)g(x)dx converges.

Proof The continuous function fg is locally integrable on [a, b). Integration by parts
yields

/ F()g() dx = F(o)g(e) — / Fog () dx. a<c<b  (10)

Theorem 3.4.6 implies that the integral on the right converges absolutely as ¢ — b—, since
fab |g’(x)| dx < oo by assumption, and

|F(x)g'(x)| = Mg’ (x)],
where M is an upper bound for | F| on [a, b). Moreover, (9) and the boundedness of F

imply that lim,_,— F(c)g(c) = 0. Letting ¢ — b— in (10) yields

b b
/ Fgr) dx = — / Fo)g' () dx.

where the integral on the right converges absolutely. a

Dirichlet’s test is useful only if f is oscillatory at b—, since it can be shown that if f is

nonoscillatory at b— and F' is bounded on [a, b), then fab | f(x)g(x)|dx < oo ifonly gis
locally integrable and bounded on [a, b) (Exercise 14).

Example 3.4.15 Dirichlet’s test can also be used to show that certain integrals di-
verge. For example,
o0
/ x?sinx dx
1

diverges if g > 0, but none of the other tests that we have studied so far implies this. It
is not enough to argue that the integrand does not approach zero as x — oo (a common
mistake), since this does not imply divergence (Exercise 4.4.31). To see that the integral
diverges, we observe that if it converged for some ¢ > 0, then F(x) = flx x4 sinx dx
would be bounded on [1, 00), and we could let

f(x) =x%sinx and g(x) =x71

in Theorem 3.4.10 and conclude that

o0
/ sinx dx
1

also converges. This is false. [ ]
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The method used in Example 3.4.15 is a special case of the following test for divergence
of improper integrals.

Theorem 3.4.11 Suppose that u is continuous on [a, b) and fab u(x) dx diverges. Let
v be positive and differentiable on [a, b), and suppose that limy_,j,_ v(x) = 0o and v'/v?

is absolutely integrable on [a, b). Then fab u(x)v(x) dx diverges.

Proof The proof is by contradiction. Let f = uv and ¢ = 1/v, and suppose that

/ ab u(x)v(x) dx converges. Then f has the bounded antiderivative F(x) = [ ax u(t)v(t) dt
on [a, b), limye g(x) = 0and g’ = —v’/v? is absolutely integrable on [a, b). Therefore,
Theorem 3.4.10 implies that | ab u(x) dx converges, a contradiction. |

If Dirichlet’s test shows that | ab f(x)g(x)dx converges, there remains the question of
whether it converges absolutely or conditionally. The next theorem sometimes answers this
question. Its proof can be modeled after the method of Example 3.4.13 (Exercise 17). The
idea of an infinite sequence, which we will discuss in Section 4.1, enters into the statement
of this theorem. We assume that you recall the concept sufficiently well from calculus to
understand the meaning of the theorem.

Theorem 3.4.12 Suppose that g is monotonic on [a, b) and fab gx)dx = 0. Let f
be locally integrable on [a, b) and

Xj+1 .
/ f)dx = p, =0,

J

for some positive p, where {x;} is an increasing infinite sequence of points in [a, b) such
thatlimj oo x; =bandxj11—x; <M, j >0, for some M. Then

b
/ | (0)g ()] dx = oo.

Change of Variable in an Improper Integral

The next theorem enables us to investigate an improper integral by transforming it into
another whose convergence or divergence is known. It follows from Theorem 3.3.18 and
Definitions 3.4.1, 3.4.2, and 3.4.3. We omit the proof.

Theorem 3.4.13 Suppose that ¢ is monotonic and ¢' is locally integrable on either
of the half-open intervals I = [c,d) or (c,d], and let x = ¢(t) map I onto either of the
half-open intervals J = [a,b) or J = (a,b]. Let f be locally integrable on J. Then the
improper integrals

b d
/ f()dx  and / £ (@@)1¢/0)) di
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diverge or converge together, in the latter case to the same value. The same conclusion
holds if ¢ and ¢’ have the stated properties only on the open interval (a, b), the transfor-
mation x = ¢(t) maps (c,d) onto (a,b), and f is locally integrable on (a, b).

Example 3.4.16 To apply Theorem 3.4.13 to

o0
/ sinx? dx,
0

we use the change of variable x = ¢(¢) = /7, which takes [c, d) = [0, c0) into [a, b) =
[0, 00), with ¢'(t) = 1/(2+/t). Theorem 3.4.13 implies that

/ sinx2dx = —/ &dt.
0 2Jo Wi

Since the integral on the right converges (Example 3.4.14), so does the one on the left. W

/ x Pdx
1

converges if and only if p > 1 (Example 3.4.3). Defining ¢(z) = 1/t and applying
Theorem 3.4.13 yields

o] 1 1
/ x"Pdx :/ tP| —t72| dt =/ P2 dt,
1 0 0

which implies that fol t9 dt converges if and only if ¢ > —1. [ ]

Example 3.4.17 The integral

3.4 Exercises

1. (a) Let f be locally integrable and bounded on [a, b), and let f(b) be defined

arbitrarily. Show that f is properly integrable on [a, b], that |, ab f(x)dx does
not depend on f(b), and that

b c
/ f(x)dx = lim / f(x)dx.
a c—>b—Jq4
(b) State a result analogous to (a) which ends with the conclusion that
b b
/ f(x)dx = lim / f(x)dx.
a c—>a+ /.

2. Show that neither the existence nor the value of the improper integral of Defini-
tion 3.4.3 depends on the choice of the intermediate point «.
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3. Prove: If fab f(x) dx exists according to Definition 3.4.1 or 3.4.2, then fab f(x)dx
also exists according to Definition 3.4.3.

4. Find all values of p for which the following integrals exist (i) as proper integrals
(perhaps after defining f at the endpoints of the interval) or (ii) as improper inte-
grals. (iii) Evaluate the integrals for the values of p for which they converge.

1/m 1 1
(a) / (px”_1 sin — — x?72 cos —) dx
0 X X

2/ 1
(b) / (px”_1 O ¥+ xP2sin —) dx
0 1 X

o] 1 o]
(c)/ e P dx (d)/ x?dx (e)/ x"Pdx.
0 0 0
5. Evaluate

(a) /ooe_xx"dx n=0,1,...) (b) /ooe_xsinxdx
0 0
xdx U xdx
© [ 55 @ [,

COoS x Sln X o0 Sin X COS X
(e)/ ( )dx () 7r/2( . + 2 )dx

6. Prove: If f 2 J(x) dx exists as a proper or improper integral, then

b
lirlr)l / f@)dt =0.

7. Prove: If f is locally integrable on [a, b), then fab f(x) dx exists if and only if for
each € > 0 there is a number 7 in (a, b) such that

/}:2 f@)de

whenever r < x1, xo < b. HINT: See Exercise 2.1.38.

<€

8. Determine whether the integral converges or diverges.

00 . 00 3/2

(a)/l logx%dx (b )/ g4+?;3/2 sin® x dx
% 1 + cos? x *® 4+ cosx

()/ T (d)/o Arovr ™

(e) /000(x27 + sinx)e " dx () /000 x P2 +sinx)dx



10.

11.

12.

13.

14.

15.
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Find all values of p for which the integral converges.

/2 gin x /2 cos x ©
P, —X
(a)/0 2 dx (b)/0 Sy (c)/0 ¥Pe ™ dx

/2 ginx o0 dx 1 dx
(d)/o tanx)? (e)/1 x(log x)? (f)/o x(Tog x))?

T oxdx
(g) —
o (sinx)
Let L, (x) be the iterated logarithm defined in Exercise 2.4.42. Show that

/oo dx
a Lo(x)L1(x)- Lg(x)[Lgy1(x)]?

converges if and only if p > 1. Here a is any number such that L (x) > O for
X >a.

Find conditions on p and ¢ such that the integral converges.

! 1
(a) -1 (C((;S—ﬂ% dx (b) /_1 (1 =x)P(1 +x)? dx
X7 dx [log(1 + x)]? (log x)q
« )/ 1+ (d)/l xP+a
(e) /100 S il_ fog1)" dx () /Ooo (X_XS# dx

Let f and g be polynomials and suppose that g has no real zeros. Find necessary
and sufficient conditions for convergence of

< f (X)
—o0 g(X)

Prove: If f and g are locally integrable on [a, b) and the improper integrals | ab f2(x)dx
and fab g2(x) dx converge, then fab f(x)g(x)dx converges absolutely. HINT: (f £
)= 0.

Suppose that f is locally integrable and F(x) = fax f(¢)dt is bounded on [a, b),
and let f be nonoscillatory at b—. Let g be locally integrable and bounded on [a, b).
Show that

b
/ f()g)] dx < oo.

Suppose that g is positive and nonincreasing on [a, ) and |, ab f(x)dx exists as

a proper or absolutely convergent improper integral. Show that |, ab f(x)g(x)dx
exists and
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lim —/ f()g@)dt =0.

x—>b—
HINT: Use Exercise 6.
16. Show thatif f islocally integrable on [a, b) and nonoscillatory at b—, then || ab f(x)dx
exists if and only if fab | f(x)|dx < oo.

17. (a) Prove Theorem 3.4.12. HINT: See Example 3.4.13.

(b) Show that g satisfies the assumptions of Theorem 3.4.10 if g’ is locally inte-
grable, g is monotonic on [a, b), and lim,_,;_ g(x) = 0.

18. Find all values of p for which the integral converges (i) absolutely; (ii) condition-

ally.
*° cos x sin x sin x
(a)/l x? dx (b )/ x(logx)lJ ~logn)? 9¥ (c )/ x? logx
®sinl/x sin? xstx sin x
d f
@ [T @ ar () [

19. Supposethat g” is absolutely integrable on [O, 00), limy_00 g'(x) = 0, and limy—, o0 g(x) =

L (finite or infinite). Show that fooo g(x)sin x dx converges if and only if L = 0.
HINT: Integrate by parts.

20. Let & be continuous on [0, 00). Prove:
(a) 1f foooe_s"xh(x) dx converges absolutely, then foooe_”h(x) dx converges
absolutely if s > 5.
(b) If fooo e 0% h(x) dx converges, then fooo e **h(x) dx converges if s > s¢.
21. Suppose that f is locally integrable on [0, 00), limy—eo f(X) = A4, and @ > —1.
Find limy_ oo x %! fox f(#)t* dt, and prove your answer.

22. Supposethat f is continuousand F(x) = fax f(t)dt isbounded on [a, b). Suppose
also that g > 0, g’ is nonnegative and locally integrable on [a, b), and lim, 5 g(x) =
oo. Show that

dim s [ wswdn =0, o,

HINT: Integrate by parts.

23. In addition to the assumptions of Exercise 22, assume that | ab f(t)dt converges.
Show that

Jim m / F(g(t)di =o.

HINT: Let F(x) = fxb f(¢t)dt, integrate by parts, and use Exercise 6.
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24. Suppose that f is continuous, g’(x) < 0, and g(x) > 0 on [a, b). Show that if g’ is
integrable on [a, b) and fab f(x) dx exists, then fab f(x)g(x)dx exists and

Jin [ osoar=o

HINT: Let F(x) = fxb f(¢t)dt, integrate by parts, and use Exercise 6.

25.  Find all values of p for which the integral converges (i) absolutely; (ii) condition-
ally.

1 1 00
(a)/ xPsinl/xdx (b)/ |log x|? dx (c)/ x? cos(log x) dx
0 0 1

o0 o0
(d) / (logx)? dx (e) / sinx? dx
1 0
26. Letu; be positive and satisfy the differential equation

"+ p(x)u=0, 0<x<oo. (A)

® dx
——— < 00,

0 ul(x)

* dt
u3(t)

® dx
N T %%
0 ul(x)

ur(x) = ul(x)/

(a) Prove: If

then the function

ws(x) = 1 () /

also satisfies (A), while if

then the function

ui (1)
also satisfies (A).

(b) Prove: If (A) has a solution that is positive on [0, 00), then (A) has solutions
y1 and y, that are positive on (0, 0o) and have the following properties:

y1(X)y5(x) = yi(x)y2(x) =1, x>0,

y1(x)7
[YZ(X)} < 0 x=0

and
lim 21
1mm =
xX—00 yz(_x)
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27. (a) Prove: If & is continuous on [0, 00), then the function
X
u(x) =cre™ +cre* + / h(t) sinh(x —t) dt
0

satisfies the differential equation

uw —u=nh(x), x>0.

(b) Rewrite u in the form
u(x) = a(x)e™ + b(x)e”

and show that
u'(x) = —a(x)e ™ + b(x)e*.

(c) Show thatif limy_ a(x) = A (finite), then
lim e>*[b(x)— B] =0
X—>00
for some constant B. HINT: Use Exercise 24. Show also that

lim e” [u(x) — Ae™ — Be*] = 0.
X—>00

(d) Prove: If limy_o0 b(x) = B (finite), then

lim u(x)e™ = lim u/(x)e”™ = B.
X—>00 X—>00

HINT: Use Exercise 23.
28. Suppose that the differential equation

u" + p(x)u =0 (A)

has a positive solution on [0, 00), and therefore has two solutions y; and y, with the
properties given in Exercise 26(b).

(a) Prove: If & is continuous on [0, co) and ¢; and ¢, are constants, then

u(x) = cry1(x) + c2y2(x) + /Ox h(t) [y1()y2(x) = y1(x)y2(0)] dt - (B)
satisfies the differential equation
u” + p(x)u = h(x).
For convenience in (b) and (c), rewrite (B) as

u(x) = a(x)y1(x) + b(x)y2(x).



29.

30.
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(b) Prove: If [;° h(t)y2(r) dt converges, then [;° h(t)y;(r) dt converges, and

i u(x) — Ayi(x) — Bya(x)
im =
X—00 yl(x)

0

for some constants A and B. HINT: Use Exercise 24 with f = hy, and

g =y1/y2
(c) Prove: If [;° h(1)y1(t) dt converges, then

. oulx)
lim =B
xX—00 yz(x)

for some constant B. HINT: Use Exercise 23 with f = hy, and g = y2/y1.

Suppose that f, f1, and g are continuous, f > 0, and (f1/f) is absolutely inte-
grable on [a, b). Show that fab Ji1(x)g(x) dx converges if fab f(x)g(x)dx does.

Let g be locally integrable and f continuous, with f(x) > p > Oon [a, b). Suppose
that for some positive M and for every r in [a, b) there are points x; and x, such
that (a) r < x; < x2 < b; (b) g does not change sign in [x1, x2]; and (c)
f;lz lg(x)|dx = M. Show that fab f(x)g(x)dx diverges. HINT: Use Exercise 7
and Theorem 3.3.7.

3.5 A MORE ADVANCED LOOK AT THE EXISTENCE OF
THE PROPER RIEMANN INTEGRAL

In Section 3.2 we found necessary and sufficient conditions for existence of the proper
Riemann integral, and in Section 3.3 we used them to study the properties of the integral.
However, it is awkward to apply these conditions to a specific function and determine
whether it is integrable, since they require computations of upper and lower sums and
upper and lower integrals, which may be difficult. The main result of this section is an
integrability criterion due to Lebesgue that does not require computation, but has to do
with how badly discontinuous a function may be and still be integrable.

We emphasize that we are again considering proper integrals of bounded functions on
finite intervals.

Definition 3.5.1 If f is bounded on [a, b], the oscillation of f on [a, b] is defined by

Wyla.b] = sup |f(x)— (X)),

a<x,x'<b

which can also be written as

Wrla.bl = sup f(x)— inf f(x)

a<x<b
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(Exercise 1). If a < x < b, the oscillation of f at x is defined by

wr(x) = hgr(r)1+ We(x —h,x +h).

The corresponding definitions for x = ¢ and x = b are

wy(a) = hgr(r)l+ We(a,a+h) and wyr(b) = hgr(r)l+ Wye(b—h,b). ]

For a fixed x in (a,b), Wr(x — h, x 4 h) is a nonnegative and nondecreasing function
of h for 0 < h < min(x — a,b — x); therefore, w r(x) exists and is nonnegative, by
Theorem 2.1.9. Similar arguments apply to w ¢ (a) and w ¢ (b).

Theorem 3.5.2 Let f be defined on [a,b]. Then f is continuous at xg in |a,b] if
and only if wy(xg) = 0. (Continuity at a or b means continuity from the left or right,
respectively.)

Proof Suppose that a < xo < b. First, suppose that w s (xg) = 0 and € > 0. Then
Wylxo—h,xo +h] <€
for some h > 0, so
| f(x)— f(x") <€ if xo—h<x,x'" <x0+h.
Letting x’ = xo, we conclude that
|f(x) = f(xo)| <€ if [x —xo| <h.

Therefore, f is continuous at xg.

Conversely, if f is continuous at xo and € > 0, there is a § > 0 such that

@ = ool <3 and &)= f(xo)l <5

if xo — 8 < x, x’ < x¢ + §. From the triangle inequality,

|f(x) = fOD = 1) = fxo)l + [ f(x) = f(x0)| <,

SO
Welxo —h,xo +h] <e if h<é;

therefore, w (xg) = 0. Similar arguments apply if xo = a or xo = b. |

Lemma 3.5.3 If ws(x) < € fora < x < b, then there is a § > 0 such that
Wf[al,bl] < €, provided that [a1,b1] C [a,b] and by —a; < 6.

Proof We use the Heine—Borel theorem (Theorem 1.3.7). If w 7(x) < €, there is an
hy > 0 such that

|f() = f(x")] <€ (1
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if
x—2hy <x',x" <x+2h, and x',x"€]a,b]. 2)
If I, = (x — hy, x + hy), then the collection
H:{Ix|a§x§b}

is an open covering of [a, b], so the Heine—Borel theorem implies that there are finitely
many points Xy, Xz, ..., X, in [a, b] such that I, I,, ..., Iy, cover [a, b]. Let

h = min hy,
1<i<n

and suppose that [a, b1] C [a,b] and by —a; < h. If x’ and x” are in [ay, by], then
x" €I, forsomer (1 <r <n),so

|x" — x;| < hy, .
Therefore,

|x" —xp| < X" = x|+ X' —xp| < b1 —ay + hy,
< h+4hy <2hy,.

Thus, any two points x” and x” in [a;, b1] satisfy (2) with x = x,, so they also satisfy (1).
Therefore, € is an upper bound for the set

UFE) = fED ' x" € [ar, b}
which has the supremum Wy (a1, bi]. Hence, Wyla, b1] < €. O
In the following, L (1) is the length of the interval /.

Lemma 3.5.4 Let f be bounded on [a, b] and define

Ep={x €la.b]|ws(x) = p}.
Then E, is closed, and f is integrable on |[a, b] if and only if for every pair of positive

numbers p and §, E, can be covered by finitely many open intervals I, I,..., I, such
that
p
> L)) <. 3)
j=1

Proof We first show that E, is closed. Suppose that xg is a limit point of E,. If A > 0,
there is an X from E, in (xo — i, xo + h). Since [X — h1,X + hi] C [xo — h, xo + h] for
sufficiently small &y and Wy [x — h1,X + hy] > p, it follows that Wr[xo —h, xo + h] > p
for all 4 > 0. This implies that xo € E,, so E,, is closed (Corollary 1.3.6).

Now we will show that the stated condition in necessary for integrability. Suppose that
the condition is not satisfied; that is, there isa p > 0 and a § > 0 such that

V4
Y L) =8
Jj=1
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for every finite set {1, I, ..., I} of open intervals covering E,. If P = {xo, X1, ..., Xn}
is a partition of [a, b], then

S(P)—=s(P) =Y (M; —m;)(x; —x;—1) + Y _(Mj —m;)(x; —x;1). (4

jea icB
where
A={j|lxjo1.x]NE, #0} and B ={j|[xj—1.x;]N E, = 0}.
Since UjeA(xj_l, x ;) contains all points of £, except any of xo, X1, ..., X, that may

be in E,, and each of these finitely many possible exceptions can be covered by an open
interval of length as small as we please, our assumption on E, implies that

Y e —xj-1) = 6.

J€EA
Moreover, if j € A, then
Mj;—m; = p,

so (4) implies that
S(P)=s(P)=p Y (xj —xj-1) = pé.

JeA

Since this holds for every partition of [a, b], f is not integrable on [a, b], by Theorem 3.2.7.
This proves that the stated condition is necessary for integrability.

For sufficiency, let p and § be positive numbers and let Iy, I, ..., I, be open intervals
that cover E, and satisfy (3). Let

I; =[a,b]NT;.

(7‘,- = closure of /.) After combining any of Z, E, e, }:, that overlap, we obtain a set of
pairwise disjoint closed subintervals

Cj=lwj.Bjl. 1=j=q(=p).
of [a, b] such that

af(xl<,31<052<,32---<Oéq_1<,34_1<Oéq<,34§b, %)

q
Y (Bi—e) <8 6)

i=1
and
wr(x) <p, Bj<x=<aj41, 1<j=<qg-1L

Also,wr(x) < pfora <x <aifa <ajandforB; <x <bif B; <b.
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Let Py be the partition of [a, b] with the partition points indicated in (5), and refine Py by
partitioning each subinterval [8;, «;11] (as well as [a, a1] if @ <y and [Bg, b] if B4 < b)
into subintervals on which the oscillation of f is not greater than p. This is possible by
Lemma 3.5.3. In this way, after renaming the entire collection of partition points, we obtain

a partition P = {xo, X1, ..., X} of [a, b] for which S(P) — s(P) can be written as in (4),
with
q
oy —xie) =) (Bi—ai) <8
jeA i=1
(see (6)) and

M;—mj<p, je€B.

For this partition,

D (Mj—mj)(xj—xj-1) <2K Y (xj —xj-1) < 2K§,

J€EA J€EA

where K is an upper bound for | | on [a, b] and

Z (Mj —mj)(xj—xj-1) < pb—a).

JEB

We have now shown that if p and § are arbitrary positive numbers, there is a partition P of
[a, b] such that

S(P)—s(P) <2Ké+ p(b—a). @)
If e > 0, let
€

€
5 P50 =0

4K

Then (7) yields
S(P)—s(P) <k,

and Theorem 3.2.7 implies that f is integrable on [a, b]. 0

We need the next definition to state Lebesgue’s integrability condition.

Definition 3.5.5 A subset S of the real line is of Lebesgue measure zero if for every

€ > 0 there is a finite or infinite sequence of open intervals /1, I5, ... such that
sclJr )
J
and
n
Y LUj)<e n=Ll )
j=1
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Note that any subset of a set of Lebesgue measure zero is also of Lebesgue measure zero.
(Why?)

Example 3.5.1 The empty set is of Lebesgue measure zero, since it is contained in

any open interval. [ ]
Example 3.5.2 Any finite set S = {x1,x2,...,x,} is of Lebesgue measure zero,
since we can choose open intervals /1, I, ..., I, such that x; € I; and L(/;) < €/n,
1<j<n. ]

Example 3.5.3 An infinite set is denumerable if its members can be listed in a se-
quence (that is, in a one-to-one correspondence with the positive integers); thus,

S ={x1,X2,..., Xp, ...} (10)

An infinite set that does not have this property is nondenumerable. Any denumerable set
(10) is of Lebesgue measure zero, since if € > 0, it is possible to choose open intervals /7,
I>,...,sothatx; € I; and L(/;) < 27 e, j = 1. Then (9) holds because

LTI UL N B (1
2 22 23 o on ‘
||

There are also nondenumerable sets of Lebesgue measure zero, but it is beyond the scope
of this book to discuss examples.

The next theorem is the main result of this section.

Theorem 3.5.6 A bounded function f is integrable on a finite interval [a, b] if and
only if the set S of discontinuities of f in [a, D] is of Lebesgue measure zero.

Proof From Theorem 3.5.2,
S ={x € [a,b]|wy(x) > 0}.

Since w s (x) > 0if and only if w s (x) > 1/i for some positive integer i, we can write

s=Js. (12)
where
Si={x€la,b]|ws(x)>1/i}.

Now suppose that f is integrable on [a, b] and € > 0. From Lemma 3.5.4, each S; can
be cpvered by a finite number of open intervals I;1, I;2, ..., I, of total length less than
€/2'. We simply renumber these intervals consecutively; thus,

117123“':1113”‘alln]alzla”‘alznza”‘aI[la“‘alinl‘a““

Now (8) and (9) hold because of (11) and (12), and we have shown that the stated condition
is necessary for integrability.
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For sufficiency, suppose that the stated condition holds and € > 0. Then S can be
covered by open intervals I1, I5, ... that satisfy (9). If p > 0, then the set

E,={x €[a,b]|wys(x) > p}

of Lemma 3.5.4 is contained in S (Theorem 3.5.2), and therefore E, is covered by I3, I5, . ...
Since E,, is closed (Lemma 3.5.4) and bounded, the Heine-Borel theorem implies that E,
is covered by a finite number of intervals from /1, I5,.... The sum of the lengths of the
latter is less than €, so Lemma 3.5.4 implies that f is integrable on [a, b]. 0

3.5 Exercises

1. In connection with Definition 3.5.1, show that

swp f() = SO = suwp f(0) = inf f().

x,x’ €la,b] a<x<

2. Use Theorem 3.5.6 to show that if f is integrable on [a, b], then so is | f| and, if
fx)=p>0(a <x<b),soisl/f.

3. Prove: The union of two sets of Lebesgue measure zero is of Lebesgue measure
ZEro.

4. Use Theorem 3.5.6 and Exercise 3 to show that if f and g are integrable on [a, b],
then so are f + g and fg.
5. Suppose f is integrable on [a, b], @ = infy<x<p f(x), and B = sup,_,p f(x).
Let g be continuous on [«, B]. Show that the composition # = g o f is integrable
on [a, b].
6. Let f be integrable on [a, b], let @ = inf,<x<p f(x) and B = sup,,p f(x), and
suppose that G is continuous on [e, 8]. For each n > 1, let
i —1)(b — (b —
L UmDo—a) L itb-a)

Ujn, Vin < da
—=YYjn, Vyn =
n n

1 <j<n.

Show that

1 n
Jim — > 1G(f(ujn)) = G(f(vjn))| = 0.
j=1

7. Let h(x) = 0 for all x in [a, b] except for x in a set of Lebesgue measure zero.

. b . .
Show that if [’ h(x) dx exists, it equals zero. HINT: Any subset of a set of measure
zero is also of measure zero.

8. Suppose that f and g are integrable on [a, b] and f(x) = g(x) except for x in a set
of Lebesgue measure zero. Show that

/;b fx)dx = /;bg(x)dx.



CHAPTER 4

Infinite Sequences and Series

IN THIS CHAPTER we consider infinite sequences and series of constants and functions
of a real variable.

SECTION 4.1 introduces infinite sequences of real numbers. The concept of a limit of a
sequence is defined, as is the concept of divergence of a sequence to =co. We discuss
bounded sequences and monotonic sequences. The limit inferior and limit superior of a
sequence are defined. We prove the Cauchy convergence criterion for sequences of real
numbers.

SECTION 4.2 defines a subsequence of an infinite sequence. We show that if a sequence
converges to a limit or diverges to +00, then so do all subsequences of the sequence. Limit
points and boundedness of a set of real numbers are discussed in terms of sequences of
members of the set. Continuity and boundedness of a function are discussed in terms of the
values of the function at sequences of points in its domain.

SECTION 4.3 introduces concepts of convergence and divergence to oo for infinite series
of constants. We prove Cauchy’s convergence criterion for a series of constants. In con-
nection with series of positive terms, we consider the comparison test, the integral test, the
ratio test, and Raabe’s test. For general series, we consider absolute and conditional con-
vergence, Dirichlet’s test, rearrangement of terms, and multiplication of one infinite series
by another.

SECTION 4.4 deals with pointwise and uniform convergence of sequences and series of
functions. Cauchy’s uniform convergence criteria for sequences and series are proved, as
is Dirichlet’s test for uniform convergence of a series. We give sufficient conditions for
the limit of a sequence of functions or the sum of an infinite series of functions to be
continuous, integrable, or differentiable.

SECTION 4.5 considers power series. It is shown that a power series that converges on
an open interval defines an infinitely differentiable function on that interval. We define
the Taylor series of an infinitely differentiable function, and give sufficient conditions for
the Taylor series to converge to the function on some interval. Arithmetic operations with
power series are discussed.

178
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4.1 SEQUENCES OF REAL NUMBERS

An infinite sequence (more briefly, a sequence) of real numbers is a real-valued function
defined on a set of integers {n | n> k}. We call the values of the function the ferms of the
sequence. We denote a sequence by listing its terms in order; thus,

{sni = Sk k1, ey

For example,

L™ _f, 11 1
21, |25 el
{(_l)n}(o)o:{lv_lalvv(_l)n’}’

and

L™ _f, L1 1
o] Sl LE T (R by s &

The real number s,, is the nth term of the sequence. Usually we are interested only in the
terms of a sequence and the order in which they appear, but not in the particular value of k
in (1). Therefore, we regard the sequences

1)~ |
il = b
n—2), nj,

We will usually write {s,} rather than {s,}?°. In the absence of any indication to the
contrary, we take k = 0 unless s, is given by a rule that is invalid for some nonnegative
integer, in which case k is understood to be the smallest positive integer such that s, is
defined for all n > k. For example, if

as identical.

1

=D =5)

then k = 6.

The interesting questions about a sequence {s,} concern the behavior of s, for large n.

Limit of a Sequence

Definition 4.1.1 A sequence {s,} converges to a limit s if for every ¢ > 0 there is an
integer N such that
Isn—s| <e if n>N. )

In this case we say that {s,} is convergent and write

lim s, = s.
n—>00

A sequence that does not converge diverges, or is divergent |
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As we saw in Section 2.1 when discussing limits of functions, Definition 4.1.1 is not
changed by replacing (2) with

|sn —s| < Ke if n> N,

where K is a positive constant.

Example 4.1.1 Ifs, = c forn > k, then|s, —c| = Oforn > k, and limy, 00 5, = C.

|
Example 4.1.2 If
{ 2n + 1 }
Sn = k]
n+1

then limy, o §, = 2, since

2n+1 2n+2 1

lsp —2| = — = ;

n+1 n+1 n—+1

hence, if € > 0, then (2) holds withs = 2if N > 1/e. |

Definition 4.1.1 does not require that there be an integer N such that (2) holds for all
€; rather, it requires that for each positive € there be an integer N that satisfies (2) for that
particular €. Usually, N depends on € and must be increased if € is decreased. The constant
sequences (Example 4.1.1) are essentially the only ones for which N does not depend on €
(Exercise 5).

We say that the terms of a sequence {s, }° satisfy a given condition for all n if s, satisfies
the condition for all n > k, or for large n if there is an integer N > k such that s, satisfies
the condition whenever n > N. For example, the terms of {1/n}{° are positive for all n,
while those of {1 — 7/n}{° are positive for large n (take N = 8).

Uniqueness of the Limit
Theorem 4.1.2 The limit of a convergent sequence is unique.

Proof Suppose that

lim s, =s and lim s, =s.
n—o00 n—o0

We must show that s = s’. Let € > 0. From Definition 4.1.1, there are integers N1 and N,
such that
|sp —s| <€ if n>N;

(because lim, o0 5, = 5), and

|sp —s§'| <€ if n>N,
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(because limy, o0 5, = §’). These inequalities both hold if » > N = max(Ny, N»), which
implies that

Is —s'| = |(s —sn) + (sn — )]
<|s—sny|+|sxy—5'| <€+ e=2e.
Since this inequality holds for every € > 0 and |s — 5’| is independent of €, we conclude
that |s — s’| = 0; thatis, s = s’. a
Sequences Diverging to +oo
We say that

lim s, = o0
n—>o0

if for any real number a, s, > a for large n. Similarly,

lim s, = —00
n—>00

if for any real number a, s, < a for large n. However, we do not regard {s, } as convergent
unless lim,_, s 5, 18 finite, as required by Definition 4.1.1. To emphasize this distinction,
we say that {s,} diverges to co (—0o0) if lim,— 0 Sn = 00 (—00).

Example 4.1.3 The sequence {n/2 + 1/n} diverges to 0o, since, if a is any real num-
ber, then

The sequence {n — n?} diverges to —oo, since, if a is any real number, then
—n’+n=-nm—-1)<a if n>14+/lal.

Therefore, we write

and
lim (—n? +n) = —oc.
n—>o00
The sequence {(—1)"n3} diverges, but not to —oc or co. ]

Bounded Sequences

Definition 4.1.3 A sequence {s,} is bounded above if there is a real number b such
that
sn < b foralln,

bounded below if there is a real number a such that
S, >a foralln,
or bounded if there is a real number r such that

|sp| < r forall n. ]
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Example 4.1.4 If s, = [1 + (—1)"]n, then {s,} is bounded below (s, > 0) but
unbounded above, and {—s,} is bounded above (—s;, < 0) but unbounded below. If s, =
(—=1)", then {s,} is bounded. If s, = (—1)"n, then {s,} is not bounded above or below. H

Theorem 4.1.4 A convergent sequence is bounded.
Proof By taking e = 1in (2), we see that if lim,—.o S, = s, then there is an integer N

such that
|sp —s| <1 if n>N.

Therefore,
|sn] = |(sn—8)+s| <|sp—s|+]|s|]<1+]|s|] if n>N,
and
[sn] < max{|so[, [S1],..., [Sn—1], 1 + |s|}
for all n, so {s,} is bounded. 0

Monotonic Sequences

Definition 4.1.5 A sequence {s,} is nondecreasing if s, > s,—1 for all n, or nonin-
creasing if s, < s,—1 for all n. A monotonic sequence is a sequence that is either nonin-
creasing or nondecreasing. If s,, > s,_; for all n, then {s, } is increasing, whileif s, < s,_1
for all n, {s,} is decreasing. ]

Theorem 4.1.6
(a) If{sn} is nondecreasing, then limy_so0 Sp = sup{sn}.

(b) If {sn} is nonincreasing, then limy 00 sy = inf{sy}.
Proof (a). Let B = sup{s,}. If B < oo, Theorem 1.1.3 implies that if € > 0 then
B—e<sy=<p
for some integer N. Since sy < s, < fifn > N, it follows that
B—e<s, <pB if n>N.

This implies that |s, — 8| < € if n > N, so lim,—c0 Sn = B, by Definition4.1.1. If 8 = oo
and b is any real number, then sy > b for some integer N. Then s,, > b forn > N, so
limy, 00 S = 00.

We leave the proof of (b) to you (Exercise 8) a

Example 4.1.5 Ifso = 1 ands, = 1—eS7—1,then 0 < s, < 1 for all n, by induction.
Since
Spt1 —Sp = —(e7 — =) if n>1,
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the mean value theorem (Theorem 2.3.11) implies that

Sn41— Sp = € " (sp —sp—1) if n>1, 3)
where 1, is between s, and s,. Since 51 — s9g = —1/e < 0, it follows by induction from
(3) that s,4+1 — s, < O for all n. Hence, {s,} is bounded and decreasing, and therefore
convergent. |

Sequences of Functional Values

The next theorem enables us to apply the theory of limits developed in Section 2.1 to some
sequences. We leave the proof to you (Exercise 13).

Theorem 4.1.7 Letlimy_.o f(x) = L, where L is in the extended reals, and suppose
that s, = f(n) for large n. Then

lim s, = L.
n—>00
Example 4.1.6 Let
1 1
Sp = 9% and fx) = ng.
X
By L’Hospital’s rule,
. logx o 1/x
lim = lim — = 0.
xX—00 X x—o0 |
Hence, limy, oo logn/n = 0. [ |

Example 4.1.7 Lets, = (1 + 1/n)" and

1 X
=(1 - — xlog(1+1/x)‘
f(x) ( +x) e
By L’Hospital’s rule,

1 log(1 +1
lim x log (1 n —) — i 00+ 1Y)
X—>00 X X—>00 1/x
1 1
——
lim 14+ 1/x — 1.
X—>00 —1/x2

hence,

1\* \"
lim (1+—) =el=¢ and lim (1+—) =e.
X—>00 X n—00 n

The last equation is sometimes used to define e. |
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Example 4.1.8 Suppose that s, = p” with p > 0, and let f(x) = p* = e~*'°2P

0, iflogp<0 (O<p<l),
lim e¥°2? = 11, iflogp=0 (p=1),
X—>00

oo, iflogp>0 (p>1),

it follows that

0, O<p<l,
lim p" =141, p=1,

n—>00

oo, p>1.

Therefore,

0, —-1<r<l,
Iim r" =41, r=1,
n—>00

oo, r>1,

a result that we will use often.

A Useful Limit Theorem

. Since

The next theorem enables us to investigate convergence of sequences by examining simpler

sequences. It is analogous to Theorem 2.1.4.

Theorem 4.1.8 Let

lims,=s and lim t, =t,
n—o00 n—o0

where s and t are finite. Then

lim (cs,) =cs
n—>o0

if ¢ is a constant,
lim (s, + 1) =5 +1,
n—>o00
lim (s, —ty) =5 — ¢,
n—>o00
lim (Spt,) = st,
n—>o00

and
. Sn s
lim — = -
n—>o00 tn

if t, is nonzero foralln and t # 0.

“

&)

(6)
(N
®)

€))

Proof We prove (8) and (9) and leave the rest to you (Exercises 15 and 17). For (8), we

write
Sply — St = Spty — Sty + Sty — St = (S — Sty + s(ty — 1);
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hence,

ISntn — st| < |sn — 5| |tn] + 5] |t — 1]. (10)
Since {#,} converges, it is bounded (Theorem 4.1.4). Therefore, there is a number R such
that |t,| < R for all n, and (10) implies that

|Sutn — st| < Rlsy —s| + |s] |tn —1]. an

From (4), if € > 0O there are integers N1 and N, such that

lsp —s|<e€ if n>N; (12)
and
|t, —t| <e if n>N,. (13)
If N = max(Ny, N), then (12) and (13) both hold when n > N, and (11) implies that
|Sntn —st] < (R +|s))e if n>N.
This proves (8).

Now consider (9) in the special case where s, = 1 for all n and ¢ # 0; thus, we want to
show that
.1 1
lim — = —.
n—o00 tn t
First, observe that since limy, o #, = ¢ # 0, there is an integer M such that |t,| > |¢|/2
if n > M. To see this, we apply Definition 4.1.1 with € = |z|/2; thus, there is an integer
M such that |t, —t| < |t/2| if n > M. Therefore,
1]

mbv+m—MzM—m—Mz71fnzM

If € > 0, choose Ny so that |t,, —t| < € if n > Ny, and let N = max(Ng, M). Then

1 1 t—t 2

LIS ”|5—€2 if n>N;

th 1 ltal 2]~ 2]
hence, limy, 00 1/t, = 1/t. Now we obtain (9) in the general case from (8) with {z,}
replaced by {1/t,}. |

Example 4.1.9 To determine the limit of the sequence defined by
1 . nnm 2(14+3/n
— 4+ (7/)

Sy = —sin

n 4 1+1/n°
we apply the applicable parts of Theorem 4.1.8 as follows:
o L 2tim 3 lim 1/
lim s, = lim —sin — + - -
n—00 n—0o n 4 lim 1 4+ lim (1/n)
n—>o00 n—>o00
2(1+3-0)

—o4 2430,
T 150 .
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Example 4.1.10 Sometimes preliminary manipulations are necessary before applying

Theorem 4.1.8. For example,

. (n/2)+1logn . 1/2+4+ (logn)/n
lim ————= = lim ——"—
n—oco 3n +4./n n—oo 3 4 4p~1/2
lim 1/2 + lim (logn)/n
n—00 n—>o00

lim 3 + 4 lim n~Y/2

n—>o00 n—00
1/2+0
= é ++O (see Example 4.1.6)
1
=<

Example 4.1.11 Suppose that —1 < r < 1 and

so=1, si=14r, so=1+r+r2..., sp=14+r+---+r"
Since

Sp—rsn=0 4714+ = +r2+ 4" =1 -t

it follows that
1= rn+1
Sn = 1—r

From Example 4.1.8, lim, r"t1l =0, so (14) and Theorem 4.1.8 yield

1
lim(l+r+--4+r")=—— if —1l<r<l.
n—>o00 1

(14)

Equations (5)—(8) are valid even if s and ¢ are arbitrary extended reals, provided that
their right sides are defined in the extended reals (Exercises 16, 18, and 21); (9) is valid if

s/t is defined in the extended reals and ¢t # O (Exercise 22).

Example 4.1.12 If -1 < r < 1, then

n lim r" 0
. r n—00
lim — = — =—=0,
n—oo p! lim n! o)
n—>o0

from (9) and Example 4.1.8. However, if r > 1, (9) and Example 4.1.8 yield

n lim r"
r n—00
im — = — = —,
n—oo n! lim n! 00
n—>o0

an indeterminate form. If »r < —1, then lim,,_,o, " does not exist in the extended reals,
so (9) is not applicable. Theorem 4.1.7 does not help either, since there is no elementary

function f such that f(n) = r"/n!. However, the following argument shows that
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n

lim — =0, —oco<r <oo. (15)

There is an integer M such that

Irl 1 .
— <= if n>=M.
n 2
Let K = r™/M!. Then
|| Il il ] "
<K =< K|z , n>M.
n! M+1M+2 n 2

Given € > 0, choose N > M so that K/2¥~M < ¢. Then |r|*/n! < € if n > N, which
verifies (15). |

Limits Superior and Inferior

Requiring a sequence to converge may be unnecessarily restrictive in some situations. Of-
ten, useful results can be obtained from assumptions on the limit superior and limit inferior
of a sequence, which we consider next.

Theorem 4.1.9

(a) If {sn} is bounded above and does not diverge to —oo, then there is a unique real
number s such that, if e > 0,

Sp <S4+ € forlargen (16)

and
Sp > § — € for infinitely many n. a7

(b) If {su} is bounded below and does not diverge to oo, then there is a unique real
number s such that, if e > 0,

Sp > S8 —¢€ forlargen (18)

and
Sp < S + € forinfinitely many n. (19)

Proof We will prove (a) and leave the proof of (b) to you (Exercise 23). Since {s,} is
bounded above, there is a number f such that s, < 8 for all n. Since {s,} does not diverge

to —oo, there is a number « such that s, > « for infinitely many n. If we define

My = SUP{Sk, Skt1s-vv»Skdrs---}»
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theno < My < B, s0 { M} is bounded. Since { M} } is nonincreasing (why?), it converges,
by Theorem 4.1.6. Let
5= lim M. (20)
k—o00

If € > 0, then M} <5 + ¢ for large k, and since s, < My forn > k, 5 satisfies (16).

If (17) were false for some positive €, there would be an integer K such that

However, this implies that
M, <s—e if k>K,

which contradicts (20). Therefore, s has the stated properties.

Now we must show that 5 is the only real number with the stated properties. If # < &, the
inequality

<t+§—z _ 5—t
S =5—
" 2 2

cannot hold for all large 7, because this would contradict (17) withe = (s —1)/2. If 5 < ¢,
the inequality

t—s I )
Sp>1— 7 =5 + 3
cannot hold for infinitely many 7, because this would contradict (16) with e = (¢ —5)/2.
Therefore, s is the only real number with the stated properties. a

Definition 4.1.10 The numbers 5 and s defined in Theorem 4.1.9 are called the limit
superior and limit inferior, respectively, of {s,}, and denoted by

s=lim s, and s = lim s,.

n—>00 n—00
We also define
lim s, = oo if{s,} is not bounded above,
n—>00
lim s, = —o0 if lim s, = —o0,
n—>oo n—>oo
lim s, = —oo if {s,} is not bounded below,
n—>o00
and . -
lim s, = oo if lim s, = oo. ]
n—00 n—>00

Theorem 4.1.11 Every sequence {s,} of real numbers has a unique limit superior, s,
and a unique limit inferior, s, in the extended reals, and

s <5 2y
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Proof The existence and uniqueness of 5 and s follow from Theorem 4.1.9 and Defini-
tion 4.1.10. If 5 and s are both finite, then (16) and (18) imply that

s—e<s+e

for every € > 0, which implies (21). If s = —oo or § = o0, then (21) is obvious. If s = oo
or § = —oo, then (21) follows immediately from Definition 4.1.10. a

Example 4.1.13

oo, |r|>1,

m rn = 1, |r| = 1’
e 0, |rl<1;
and
oo, r>1,
1, r=1,
lim r"* = 0, |r| <1,
n—o00 _1’ r = _1’
—o0, r<-—l1.
Also,
m n2 = ll_m n2 = 00,
n—>00 n—00
n—00 n n—00 n
and_
lim [1+ (=1)"]n* =00, lim [l + (=1)"]n* =0. n
n—>00

n—>o00

Theorem 4.1.12 If{s,} is a sequence of real numbers, then

lim s, = 22)
n—>00
if and only if
lim s, = lim s, = s. (23)
n—o00 n—00

Proof Ifs = doo, the equivalence of (22) and (23) follows immediately from their
definitions. If lim,—c0 5, = s (finite), then Definition 4.1.1 implies that (16)—(19) hold
with § and s replaced by s. Hence, (23) follows from the uniqueness of § and s. For the
converse, suppose that § = s and let s denote their common value. Then (16) and (18)
imply that

s—€e<s, <SsS+e€

for large n, and (22) follows from Definition 4.1.1 and the uniqueness of lim, oo $, (The-
orem 4.1.2). a
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Cauchy’s Convergence Criterion

To determine from Definition 4.1.1 whether a sequence has a limit, it is necessary to guess
what the limit is. (This is particularly difficult if the sequence diverges!) To use Theo-
rem 4.1.12 for this purpose requires finding 5 and s. The following convergence criterion
has neither of these defects.

Theorem 4.1.13 (Cauchy’s Convergence Criterion) A sequence {s,} of
real numbers converges if and only if, for every € > 0, there is an integer N such that

|$n —Sm| <€ if m,n>N. (24)

Proof Suppose that lim, s s, = s and € > 0. By Definition 4.1.1, there is an integer
N such that ¢
|s,—s|<§ if r>N.

Therefore,
ISn —Sm| = [(sn —8) + (s =sm)| < |sn — S|+ |s —sm| <€ if n,m>N.

Therefore, the stated condition is necessary for convergence of {s,}. To see that it is suf-
ficient, we first observe that it implies that {s,} is bounded (Exercise 27), so 5 and s are
finite (Theorem 4.1.9). Now suppose that € > 0 and N satisfies (24). From (16) and (17),

lsn — 5] <, (25)
for some integer n > N and, from (18) and (19),

lsm —s| <€ (26)
for some integer m > N. Since

|§_§| = |(E_Sn) + (Sn — Sm) + (Sm _£)|
< |5=8n| + S0 — Sm| + |Sm — 5|,

(24)~(26) imply that
|s —s| < 3e.

Since € is an arbitrary positive number, this implies that 5 = s, so {s,} converges, by
Theorem 4.1.12. o

Example 4.1.14 Suppose that
| f'(x) <r <1, —oo<x<o0. 27)

Show that the equation

x = f(x) (28)

has a unique solution.
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Solution To see that (28) cannot have more than one solution, suppose that x = f(x)

and x’ = f(x’). From (27) and the mean value theorem (Theorem 2.3.11),
x—x'= fllo)x —x)
for some ¢ between x and x’. This and (27) imply that
|x —x'| <r|lx —x/|.

Sincer < 1, x = x'.

We will now show that (28) has a solution. With x¢ arbitrary, define
Xp = f(Xp—1), n>=1
We will show that {x,} converges. From (29) and the mean value theorem,
Xnt1—Xn = f(xn) = f(xn—1) = f'(cn)(Xn — Xn—1),
where ¢, is between x,_; and x,. This and (27) imply that
|Xnt1 — Xn| S 7|Xn — Xp—1| if n>1

The inequality
|xn+1 _xn| < rn|X1 —X0| if n>0,

follows by induction from (30). Now, if n > m,

|xn _xm| = |(xn — Xp—1) + (xn—l —Xp—2) + -+ (xm+1 _xm)|

< xXn = Xp—1| + [Xn—1 = Xn—2| + - + [Xmt1 — Xm],
and (31) yields
|Xn — Xm| < |x1 = xo| P (1 47 4 - 4 777D,
In Example 4.1.11 we saw that the sequence {sx } defined by
sk=14r 447k

converges to 1 /(1 — r) if |[r| < 1; moreover, since we have assumed here that 0 < r
{s%} is nondecreasing, and therefore s < 1/(1 — r) for all k. Therefore, (32) yields

X1 — X
|xn—xm|<|170|’” if n>m.
—-r
Now it follows that
X1 —X
|xn_Xm|<7|i O|rN if n,m> N,
—-r

(29)

(30)

€19

(32)

<1,

and, since limy o0 Y = 0, {xn} converges, by Theorem 4.1.13. If ¥ = lim,,—, o0 X5, then

(29) and the continuity of f imply that X = f(X).
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4.1 Exercises

10.

11.

12.

13.

Prove: If s, > 0 forn > k and lim,, o0 S, = 5, then s > 0.

(a) Show thatlim,_, e s, = s (finite) if and only if lim,—c0 |sn — 5| = 0.

(b) Suppose that |s, — s| < 1, for large n and lim,—0fx = 0. Show that
limy, o0 Sy = 5.

Find lim,, oo §5. Justify your answers from Definition 4.1.1.

1 o+n 1 nmw
a =24 — b = c = —sin —
(@) sn +n+1 (b) sn Btn (c) sn nsm4
Find lim,, o §5. Justify your answers from Definition 4.1.1.
n n%?+2n+2
a)s,=——+—— (b)sy = ———
(@) s 2n+/n+1 (b) s n?+4n

sinn
(c)snzT (d)sp =vn2+n—n
n
State necessary and sufficient conditions on a convergent sequence {s,} such that
the integer N in Definition 4.1.1 does not depend upon €.

Prove: If limy, o0 5, = s then lim, o |$,] = |5].

Suppose that lim,,_, s, = s (finite) and, for each € > 0, |s, — t,| < € for large n.
Show that lim, o0 1, = 5.

Complete the proof of Theorem 4.1.6.

Use Theorem 4.1.6 to show that {s, } converges.

o+n n!
(a)sn=m (8B >0) (b)S":n_n
r’ 2n)!
(C)Sn=1+rn (r>0) (d)snzm

Let y = Tan™!x be the solution of x = tan y such that —/2 < y < /2. Prove:
If xo > 0and x,4+; = Tan"'x, (n > 0), then {x,} converges.

Suppose that s¢ and A are positive numbers. Let

(s 5)
Snt1 =z sn+—), n=0.
2 Sn

(a) Show thats,y; > ~/Aifn > 0.

(b) Show that s,+1 < s, ifn > 1.

(c) Show thats = lim,—0 Sy exists.

(d) Finds.

Prove: If {s, } is unbounded and monotonic, then either limy, o0 §, = 00 orlimy, 500 S =
—00.

Prove Theorem 4.1.7.



14.

15.

16.

17.

18.

19.

20.

21.

22,

23.
24.
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Use Theorem 4.1.7 to find lim,,—, o0 Sy

(a)sn=;iz (B >0 (b)snzcos%
(c) sn = nsin; (d) s =logn—n

(€) sn = log(n + 1) —log(n — 1)

Suppose that lim, . 5, = s (finite). Show that if ¢ is a constant, then lim,_, 5 (¢s5,) =

CS.

Suppose that lim, o 5 = § where s = £00. Show that if ¢ is a nonzero constant,
then lim,,_, o (cs,) = cs.

Prove: If lim, o 5, = s and lim, o #,, = ¢, where s and ¢ are finite, then

lim (s, +t,) =s+¢ and lim (s, —t,) = s — .
n—>o00 n—>00

Prove: If lim, o0 5, = s and lim, o f, = ¢, where s and ¢ are in the extended
reals, then

lim (s, +1t;,) =s+1¢

n—>o00

if s + ¢ is defined.

Suppose that lim, e, = ¢, Wwhere 0 < || < 0o, and let 0 < p < 1. Show that
there is an integer N such thatz,, > pt forn > N ift > 0,0r¢, < pt forn > N if

t < 0. In either case, |t,| > p|t|ifn > N.

Prove: If s —s
lim == =0, then lim s, =s.
n—o00 §, +§ n—o00

HINT: Define t, = (s, — $)/(Sn + §) and solve for sp.

Prove: if lim, o §, = s and lim, . #;, = ¢, where s and ¢ are in the extended
reals, then
lim s,t, = st
n—>o00
provided that s7 is defined in the extended reals.
Prove: If lim, oo 5, = s and lim, . #,;, = ¢, then
.S s
lim = = / (A)

n—o00 tn

if s/t is defined in the extended reals and ¢t # 0. Give an example where s/¢ is
defined in the extended plane, but (A) does not hold.

Prove Theorem 4.1.9(b).

Find 5 and s.

(@) sp = [(=D" + 1]n? (b) sn = (1 —r") sinn%
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25.

26.

27.

2n
(C)Snzll:i—r” (r #-1) (d) sy =n?>—n
(€) sn = (=1)"1, where limy_o0 1, = ¢
Find s and s.
(@) sn = (=1)" (b) sn = (=1 (2 + %)

nm

d) s, =sin—
(d)s sin —

n+(=1)"Q2n + 1)
n

(c) sn =
Suppose that lim,—, 0 || = y (finite). Show that {s, } diverges unless y = 0 or the
terms in {s,} have the same sign for large n. HINT: Use Exercise 19.

Prove: The sequence {s,} is bounded if, for some positive €, there is an integer N
such that |s, — s;,;| < € whenever n, m > N.

In Exercises 28-31, assume that s, s (or s), t, and t are in the extended reals, and show
that the given inequalities or equations hold whenever their right sides are defined (not

indeterminate).
28. (a) lim (—sn) = —s (b) lim (=sy) = —5
n—>o00 n—o0
29. (@) Iim (sp +1t2) <5+7 (b) lim (sp +1n) > s+1
n—o00 n—00
30. (a)Ifs, >0,t, >0,then (i) lim s,t, <57 and (ii) lim s,t, > st.
n—>o0

31.

32.

33.

34.

n—>o00

(b) If s, < 0,1, > 0,then (i) lim s,t, <5t and (ii) lim st, > st.
n—>o00 n—00

(a) If lim s, = s > O0andt, > 0,then (i) lim s,t, = sfand (ii) lim s,t, = st.
n—>00 n—>o00

n—>o0
(b) If lims, =s < 0andt, > 0,then (i) lim s,t, = stand (ii) lim s,t, = s7.
n—o0 n—o0 n—00

Suppose that {s, } converges and has only finitely many distinct terms. Show that s,
is constant for large n.

Let s¢ and s, be arbitrary, and

Sp + Sn—1
2 9

A%

Sn+1 =

Use Cauchy’s convergence criterion to show that {s,} converges.
S1+ S22+ -+ 5y n
n b

Let ¢, = > 1.

(a) Prove: If limy—o00 $n = s then limy—o0 1, = 5.
(b) Give an example to show that {7, } may converge even though {s,} does not.



Section 4.2 Earlier Topics Revisited with Sequences 195

35. (a) Show that

i (1) (1-5)(1-2) =0 it a0

HINT: Look at the logarithm of the absolute value of the product.
(b) Conclude from (a) that

lim (q>=o it og>—1,
n—oo \ n

where (q> is the generalized binomial coefficient of Example 2.5.3.
n

4.2 EARLIER TOPICS REVISITED WITH SEQUENCES

In Chapter 2 we used €—§ definitions and arguments to develop the theory of limits, con-
tinuity, and differentiability; for example, f is continuous at xg if for each € > 0 there
isa § > 0 such that | f(x) — f(x0)] < € when |x — x¢| < 8. The same theory can be
developed by methods based on sequences. Although we will not carry this out in detail,
we will develop it enough to give some examples. First, we need another definition about
sequences.

Definition 4.2.1 A sequence {t;} is a subsequence of a sequence {s, } if
tk = Snka k 2 Oa

where {ny} is an increasing infinite sequence of integers in the domain of {s,}. We denote
the subsequence {tx} by {sn, }. ]

Note that {s,} is a subsequence of itself, as can be seen by taking ny = k. All other

subsequences of {s, } are obtained by deleting terms from {s, } and leaving those remaining
in their original relative order.

5a) = {%} ={1§§%}

then letting ny = 2k yields the subsequence

PSP B O U S
S2k —_— Zk - 2543“‘32](7”‘ ’

and letting n; = 2k + 1 yields the subsequence

ooy = f ol =12 -
AU TN T3 %k

Example 4.2.1 If



196 Chapter 4 Infinite Sequences and Series

Since a subsequence {s,, } is again a sequence (with respect to k), we may ask whether
{$n, } converges.

Example 4.2.2 The sequence {s,} defined by

Su = (—1)" (1 + l)
n

does not converge, but {s, } has subsequences that do. For example,

1 .
{sok} =14+ — and lim sy = 1,
k—o00

2k
while |
1S2k+1} { 2% + 1} an ki)n;oSZkH

It can be shown (Exercise 1) that a subsequence {s,, } of {s,} converges to 1 if and only if
ny is even for k sufficiently large, or to —1 if and only if ny is odd for k sufficiently large.
Otherwise, {s,, } diverges. ]

The sequence in this example has subsequences that converge to different limits. The
next theorem shows that if a sequence converges to a finite limit or diverges to +oo, then
all its subsequences do also.

Theorem 4.2.2 If

lim s, =5 (—00 <5 < 00), (D
n—0o0
then
lim s, = 2)
k—o0

for every subsequence {s,, } of {sn}.

Proof We consider the case where s is finite and leave the rest to you (Exercise 4). If
(1) holds and € > 0, there is an integer N such that

|sp —s] <e if n>N.

Since {n} is an increasing sequence, there is an integer K such that ny, > N if k > K.
Therefore,
lsn, —L| <€ if k>K,

which implies (2). a
Theorem 4.2.3 If {s,} is monotonic and has a subsequence {sy, } such that
lim s,, =5 (—00 <s < 00),
k—o00
then

lim s, = s.
n—>00
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Proof We consider the case where {s,} is nondecreasing and leave the rest to you (Ex-
ercise 6). Since {s,, } is also nondecreasing in this case, it suffices to show that

sup{sn, } = sup{sn} 3

and then apply Theorem 4.1.6(a). Since the set of terms of {s, } is contained in the set of
terms of {s,},

sup{s,} > sup{sn, }. 4

Since {s,} is nondecreasing, there is for every n an integer ny such that s, < s,,. This
implies that

sup{sn} < sup{sy, }.
This and (4) imply (3). a

Limit Points in Terms of Sequences

In Section 1.3 we defined limit point in terms of neighborhoods: X is a limit point of a set
S if every neighborhood of X contains points of S distinct from X. The next theorem shows
that an equivalent definition can be stated in terms of sequences.

Theorem 4.2.4 A point X is a limit point of a set S if and only if there is a sequence
{xn} of pointsin S such that x, # X forn > 1, and

lim x, = X.
n—>00

Proof For sufficiency, suppose that the stated condition holds. Then, for each ¢ > 0,
there is an integer N such that0 < |x,—x| < € ifn > N. Therefore, every e-neighborhood
of X contains infinitely many points of S. This means that X is a limit point of S

For necessity, let X be a limit point of S. Then, for every integer n > 1, the interval
(* —1/n,x 4+ 1/n) contains a point x, (# X) in S. Since |x,, —X| < 1/n if m > n,
limy 00 Xn = X. a

We will use the next theorem to show that continuity can be defined in terms of se-
quences.

Theorem 4.2.5
(a) If{xn}is bounded, then {x,} has a convergent subsequence.

(b) If {xn} is unbounded above, then {x,} has a subsequence {x,, } such that

lim x,, = oo.
k—o00

(c) If{xn} is unbounded below, then {x,} has a subsequence {x,, } such that

lim x,, = —oo0.
k—o00
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Proof We prove (a) and leave (b) and (c) to you (Exercise 7). Let S be the set of

distinct numbers that occur as terms of {x,}. (For example, if {x,} = {(-1)"}, S =
{(L—1}if ) = {13, L3 ... L 1/n,...5 S ={1,1,....1/n,...}) If S contains

only finitely many points, then some X in S occurs infinitely often in {x,}; that is, {x,}
has a subsequence {x,, } such that x,, = X for all k. Then limg_,, X5, = X, and we are
finished in this case.

If S is infinite, then, since S is bounded (by assumption), the Bolzano—Weierstrass the-
orem (Theorem 1.3.8) implies that S has a limit point X. From Theorem 4.2.4, there is a
sequence of points {y;} in S, distinct from X, such that

lim y; =X. (%)

J—oo
Although each y; occurs as a term of {x,}, {y;} is not necessarily a subsequence of {x,},
because if we write
Yj = Xnj»
there is no reason to expect that {n;} is an increasing sequence as required in Defini-
tion 4.2.1. However, it is always possible to pick a subsequence {n;, } of {n;} that is

increasing, and then the sequence {y;, } = {S”.ik } is a subsequence of both {y;} and {x,}.
Because of (5) and Theorem 4.2.2 this subsequence converges to X. o

Continuity in Terms of Sequences
We now show that continuity can be defined and studied in terms of sequences.

Theorem 4.2.6 Let | be defined on a closed interval [a, b] containing X. Then f is
continuous at X (from the right if X = a, from the left if X = b) if and only if

lim f(x,) = f(x) (6)
n—>o00
whenever {x,} is a sequence of points in [a, b] such that

lim x, =X. (7
n—>o0
Proof Assume thata < X < b; only minor changes in the proof are needed if X = a or
X = b. First, suppose that f is continuous at X and {x,} is a sequence of points in [a, b]
satisfying (7). If € > 0, there is a § > 0 such that

| f(x)— ) <e if |x—X[ <34. ®)

From (7), there is an integer N such that |[x, —X| < § if » > N. This and (8) imply that
| f(xn) — f(X)| < €ifn > N. This implies (6), which shows that the stated condition is
necessary.

For sufficiency, suppose that f is discontinuous at X. Then there is an €y > 0 such that,
for each positive integer n, there is a point x, that satisfies the inequality

_ 1
|xn —X| < —
n
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while

|/ (xn) = f(X)] = €o.
The sequence {x,} therefore satisfies (7) but not (6). Hence, the stated condition cannot
hold if f is discontinuous at X. This proves sufficiency. |

Armed with the theorems we have proved so far in this section, we could develop the
theory of continuous functions by means of definitions and proofs based on sequences and
subsequences. We give one example, a new proof of Theorem 2.2.8, and leave others for
exercises.

Theorem 4.2.7 If f is continuous on a closed interval [a, b], then f is bounded on
la, b].

Proof The proof is by contradiction. If f is not bounded on [a, b], there is for each
positive integer n a point x, in [a, b] such that | f(x,)| > n. This implies that

lim | f(xp)| = oo. €))
n—>o00
Since {x,} is bounded, {x,} has a convergent subsequence {x,, } (Theorem 4.2.5(a)). If
x= kli>nolo Yo
then X is a limit point of [a, b], so X € [a, b]. If f is continuous on [a, b], then
lim f(xn,) = f(X)
k—o00

by Theorem 4.2.6, so
lim | f(xn)| = [/ X)]
k—o00

(Exercise 4.1.6), which contradicts (9). Therefore, f cannot be both continuous and un-
bounded on [a, b] |

4.2 Exercises

1. Lets, = (=1)"(1 4+ 1/n). Show that limg_, 5,, = 1 if and only if ny is even for
large k, limg_, o Sn, = —1 if and only if ng is odd for large k, and {s,, } diverges
otherwise.

2. Find all numbers L in the extended reals that are limits of some subsequence of {s, }
and, for each such L, choose a subsequence {s,, } such that limyg_, 55, = L.

n _ 1 nmw
(a) sp = (—=D)"n (b) sn = (1 + ;) cos —~
(c) sn = (1—’%2)sin% (d) Sn:%
() sn = [(=1)" + 1]n? (f) sn = Z i; (sin% + cos %)
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3.

10.

11.
12.

13.

Construct a sequence {s,} with the following property, or show that none exists: for
each positive integer m, {s,} has a subsequence converging to m.

Complete the proof of Theorem 4.2.2.

Prove: If lim, o 5, = s and {s, } has a subsequence {s,, } such that (—l)ksnk >0,
then s = 0.

Complete the proof of Theorem 4.2.3.

Prove Theorem 4.2.5(b) and (c).

Suppose that {s,} is bounded and all convergent subsequences of {s,} converge to
the same limit. Show that {s,} is convergent. Give an example showing that the
conclusion need not hold if {s,} is unbounded.

(a) Let f be defined on a deleted neighborhood N of X. Show that
lim f(x) = L
X—>X

if and only if lim, . f(x,) = L whenever {x,} is a sequence of pointsin N
such that lim,_, X, = X. HINT: See the proof of Theorem 4.2.6.
(b) State a result like (a) for one-sided limits.

Give a proof based on sequences for Theorem 2.2.9. HINT: Use Theorems 4.1.6,
4.2.2,4.2.5 and 4.2.6.

Give a proof based on sequences for Theorem 2.2.12.

Suppose that f is defined on a deleted neighborhood N of X and { f(x,)} ap-
proaches a limit whenever {x,} is a sequence of points in N and lim,—c0 Xp =
x. Show that if {x,} and {y,} are two such sequences, then lim, oo f(Xn) =
limy— o0 f(¥n)- Infer from this and Exercise 9 that lim,_,5 f(x) exists.

Prove: If f is defined on a neighborhood N of X, then f is differentiable at X if and

only if
o flw) = @)
im ——————

n—o00 Xpn — X
exists whenever {x, } is a sequence of pointsin N such that x, # X and lim,—, 0 X, =
X. HINT: Use Exercise 12.

4.3 INFINITE SERIES OF CONSTANTS

The theory of sequences developed in the last two sections can be combined with the fa-
miliar notion of a finite sum to produce the theory of infinite series. We begin the study of
infinite series in this section.

Definition 4.3.1 If {a, }$° is an infinite sequence of real numbers, the symbol

00
D_an
n=k
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is an infinite series, and a, is the nth term of the series. We say that Y o~ , a, converges to

the sum A, and write
o0
D an = A,
n=k

if the sequence {4, };° defined by
An:ak+ak+1+"'+ana nzka
converges to A. The finite sum Ay, is the nth partial sum of Y ;2 an. If {A,}3° diverges,

we say that Z:o:k ay diverges; in particular, if lim,_,,, A, = 00 or —oco, we say that
> o2 i an diverges to 0o or —oo, and write

00 00
E a, = 00 or E a, = —00.
n=k n=k

A divergent infinite series that does not diverge to 00 is said to oscillate, or be oscillatory.

|
We will usually refer to infinite series more briefly as series.
Example 4.3.1 Consider the series
o0
Z r*, —l<r<l.
n=0
Here a, = r" (n > 0) and
1= rn+1
An=1+r+r2+---+r”=17, (1)
—r
which converges to 1/(1 — r) as n — oo (Example 4.1.11); thus, we write
o0 . 1
Z r'* = 1 , —l<r<l.
n=0 -r
If |r| > 1, then (1) is still valid, but Y o, r" diverges; if r > 1, then
o0
> or" =0, )
n=0

while if r < —1, Y 2, r" oscillates, since its partial sums alternate in sign and their
magnitudes become arbitrarily large for large n. If r = —1, then A, +1 = 0and Ay, = 1
form > 0, while if r = 1, A, = n + 1; in both cases the series diverges, and (2) holds if
r=1. |
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The series Y _po, 1" is called the geometric series with ratio r. It occurs in many appli-
cations.

An infinite series can be viewed as a generalization of a finite sum

N
A= Zan =ar +ag41 +---+an

n=k
by thinking of the finite sequence {ag, dx+1,...,an} as being extended to an infinite se-
quence {an j° witha, = 0 forn > N. Then the partial sums of > o2 i an are

Ap = ax + ag41 +---+an, k<n<N,
and
A, = A, n> N,

that is, the terms of {4, }?° equal the finite sum A for n > k. Therefore, lim, o0 An
= A.

The next two theorems can be proved by applying Theorems 4.1.2 and 4.1.8 to the partial
sums of the series in question (Exercises 1 and 2).

Theorem 4.3.2 The sum of a convergent series is unique.

Theorem 4.3.3 Let

o0 o0
Zan =A and an = B,
n=k n=k
where A and B are finite. Then
(e9)
Z(can) =cA
=k

if ¢ is a constant,
o0

> (@n +bn) = A+ B,

n=k
and

o0

> (an —bp) = A—B.

n=k
These relations also hold if one or both of A and B is infinite, provided that the right sides
are not indeterminate.

Dropping finitely many terms from a series does not alter convergence or divergence,
although it does change the sum of a convergent series if the terms dropped have a nonzero
sum. For example, suppose that we drop the first k terms of a series Y .~ , a,, and consider
the new series Y 2, a,. Denote the partial sums of the two series by

Ap=a9+ay+---+a,, n=>0,
and
A, =ag +ags1+-+an, n=>k.
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Since
Ap = (@0 + a1 + -+ ax—1) + A,, n=>k,

itfollows that A = lim,—, A, exists (in the extended reals) if and only if A’ = lim, 0 A4,

does, and in this case
A= (ap+ay+-+ar)+A4.

An important principle follows from this.

Lemma 4.3.4 Suppose that for n sufficiently large (that is, for n > some integer N)
the terms of Y .- an satisfy some condition that implies convergence of an infinite series.
Then Y .2 . an converges. Similarly, suppose that for n sufficiently large the terms Y p- ;. dn
satisfy some condition that implies divergence of an infinite series. Then Y - . an diverges.

Example 4.3.2 Consider the alternating series test, which we will establish later as a
special case of a more general test:

The series Z,io an converges if (—1)"ay > 0, |ap+1| < |an|, and lim,_,» a, = 0.

The terms of
i 16 + (—2)"

n2n
n=1

do not satisfy these conditions for all n > 1, but they do satisfy them for sufficiently large
n. Hence, the series converges, by Lemma 4.3.4. |

We will soon give several conditions concerning convergence of a series Y »-; dn with
nonnegative terms. According to Lemma 4.3.4, these results apply to series that have at
most finitely many negative terms, as long as a, is nonnegative and satisfies the conditions
for n sufficiently large.

When we are interested only in whether > o . a, converges or diverges and not in its
sum, we will simply say “Y_ a, converges” or <) a, diverges.” Lemma 4.3.4 justifies
this convention, subject to the understanding that ) a, stands for Z:o:k a,, where k is an
integer such that a, is defined for n > k. (For example,

e 1

Z(n_%)z stands for Z

—6)2°
~= (n—06)

where k > 7.) We write > _a, = oo (—00) if Y_ a, diverges to oo (—oo). Finally, let us
agree that

o0 o0
Z a, and Z An+j
n=k n=k—j
(where we obtain the second expression by shifting the index in the first) both represent the

same series.



204 Chapter 4 Infinite Sequences and Series

Cauchy’s Convergence Criterion for Series

The Cauchy convergence criterion for sequences (Theorem 4.1.13) yields a useful criterion
for convergence of series.

Theorem 4.3.5 (Cauchy’s Convergence Criterion for Series) A series
> ay converges if and only if for every € > 0 there is an integer N such that

lan + ani1 + -+ am| <€ if m>n>N. (3
Proof Interms of the partial sums {A,} of }_ a,,
an +an+1 +--+am = Am — An—1.
Therefore, (3) can be written as
|Am — Ap—1] <€ if m>n>N.

Since Y_ a, converges if and only if {A4,} converges, Theorem 4.1.13 implies the conclu-
sion. |

Intuitively, Theorem 4.3.5 means that ) _ a, converges if and only if arbitrarily long sums
an +ap4+1 + -+ am, m=n,

can be made as small as we please by picking n large enough.

Example 4.3.3 Consider the geometric series Y r” of Example 4.3.1. If [r| > 1, then
{r"} does not converge to zero. Therefore > r” diverges, as we saw in Example 4.3.1. If
|r| < 1and m > n, then

|Am_An| — |rn+1+rn+2+___+rm|
SPrP A ] e Y

+1 ®
m—n n
:|r|n+11_|r| < |r| .
1—1r| 1—1r|
If ¢ > 0, choose N so that
|r|N+1
< €.
T
Then (4) implies that
|Am — Anl <€ if m>n>N.
Now Theorem 4.3.5 implies that >_ r" converges if |r| < 1, as in Example 4.3.1. |

Letting m = n in (3) yields the following important corollary of Theorem 4.3.5.

Corollary 4.3.6 Iy a, converges, then lim, o an = 0.
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It must be emphasized that Corollary 4.3.6 gives a necessary condition for convergence;
thatis, ) a, cannot converge unless lim, oo @, = 0. The conditionis not sufficient; >_ a,
may diverge even if lim, . @, = 0. We will see examples below.

We leave the proof of the following corollary of Theorem 4.3.5 to you (Exercise 5).

Corollary 4.3.7 If > a, converges, then for each € > 0 there is an integer K such

that
o0
Z an| <€ if k>K;
n=k
that is,
o0
lim a, = 0.
k—o0 Z;{ "

Example 4.3.4 If |r| < 1, then

S & = Ir[*
n=k n=k n=0 -r
Therefore, if
K
Ir|
<e,
1—r
then
o0
Y or"l<e if k=K,
n=k
which implies that limg 00 Y pep 7" = 0. ™

Series of Nonnegative Terms

The theory of series Y _ a, with terms that are nonnegative for sufficiently large n is simpler
than the general theory, since such a series either converges to a finite limit or diverges to
00, as the next theorem shows.

Theorem 4.3.8 Ifa, > 0 forn > k, then Y_a, converges if its partial sums are
bounded, or diverges to oo if they are not. These are the only possibilities and, in either
case,

Zan = sup{An |n zk},
=k

where
Ay =ax +ags1 +---+a,, n>k.
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Proof Since A, = An—1+a, anda, > 0 (n > k), the sequence {A,} is nondecreasing,
so the conclusion follows from Theorem 4.1.6(a) and Definition 4.3.1.
|
If a, > O for sufficiently large n, we will write Y a, < oo if ) _ a, converges. This con-
vention is based on Theorem 4.3.8, which says that such a series diverges only if Y_ a, =
oo. The convention does not apply to series with infinitely many negative terms, because
such series may diverge without diverging to co; for example, the series Y o ,(—1)" os-
cillates, since its partial sums are alternately 1 and 0.

Theorem 4.3.9 (The Comparison Test) Suppose that

Then
(a) Yan <o0ifdy by < 0.
(b) > bp=o00ifY a, = oo.

Proof (a)If
Ap = ax +ag41 +--+an and By =bg +bgyy +--+ by, n >k,

then, from (5),
An < By. (6)

Now we use Theorem 4.3.8. If b, < oo, then {B,} is bounded above and (6) implies
that {A,} is also; therefore, Y a, < oco. On the other hand, if )" a, = oo, then {A4,} is
unbounded above and (6) implies that { B, } is also; therefore, Y b, = oo.

We leave it to you to show that (a) implies (b). a

Example 4.3.5 Since
n
r <r", n>1,
n

and ) r" < 00if 0 < r < 1, theseries Y r” /n converges if 0 < r < 1, by the comparison
test. Comparing these two series is inconclusive if r > 1, since it does not help to know
that the terms of ) 7" /n are smaller than those of the divergent series > r”. If r < 0, the
comparison test does not apply, since the series then have infinitely many negative terms.

|

Example 4.3.6 Since

r" <nr”
and Y_r" = oo if r > 1, the comparison test implies that Y _nr” = oo if r > 1. Compar-
ing these two series is inconclusive if 0 < r < 1, since it does not help to know that the
terms of ) nr™ are larger than those of the convergent series Y r”. [ ]
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The comparison test is useful if we have a collection of series with nonnegative terms
and known convergence properties. We will now use the comparison test to build such a
collection.

Theorem 4.3.10 (The Integral Test) Let
cn=fm), n=k, 0

where [ is positive, nonincreasing, and locally integrable on [k, 00). Then

S en <o (®)

if and only if
o0
/ f(x)dx < oo. 9)
k
Proof We first observe that (9) holds if and only if
e n+1
Z f(x)dx < o0 (10)
n=k "

(Exercise 9), so it is enough to show that (8) holds if and only if (10) does. From (7) and
the assumption that f is nonincreasing,

chp1=fn+1) < f(x) < fmn)=cp, n<x=<n+1, n=>k.

Therefore,

n+1 n+1 n+1
cn+1=/ cn+1dx§/ f(x)dxf/ chndx =c,, n=>k
n n n

(Theorem 3.3.4). From the first inequality and Theorem 4.3.9(a) with a, = cp4+1 and
b, = fnn+1 f(x)dx, (10) implies that > c,4+1 < oo, which is equivalent to (8). From
the second inequality and Theorem 4.3.9(a) with a, = fn"+1 f(x)dx and b, = cp, (8)
implies (10). a

Example 4.3.7 The integral test implies that the series

1 1 1
— . and
Z nP’ Z n(logn)?’ an Z nlogn [log(log n)]?

converge if p > 1 and diverge if 0 < p < 1, because the same is true of the integrals

/°° dx /°° dx ond /°° dx
« xP7 J. x(ogx)P’ « xlogx [log(log x)]?

if a is sufficiently large. (See Example 3.4.3 and Exercise 3.4.10.) The three series di-
verge if p < 0: the first by Corollary 4.3.6, the second by comparison with the divergent
series Y 1/n, and the third by comparison with the divergent series ) 1/(nlogn). (The
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divergence of the last two series for p < 0 also follows from the integral test, but the
divergence of the first does not. Why not?) These results can be generalized: If

Lotx)=x and Lp(x)=loglLi1(0)], k=1,

then |
Z Lo(n)Ly(n)--- Lg(n)[Lg+1(n)]?

converges if and only if p > 1 (Exercise 11). [ ]

This example provides an infinite family of series with known convergence properties
that can be used as standards for the comparison test.

Except for the series of Example 4.3.7, the integral test is of limited practical value,
since convergence or divergence of most of the series to which it can be applied can be
determined by simpler tests that do not require integration. However, the method used to
prove the integral test is often useful for estimating the rate of convergence or divergence
of a series. This idea is developed in Exercises 13 and 14.

Example 4.3.8 The series

— 1

— 11
2 (1n
converges if ¢ > 1/2, by comparison with the convergent series Y_ 1/n%4, since

1 1

7(n2+n)‘1 < L n>1

This comparison is inconclusive if ¢ < 1/2, since then
1 —_—
2 aq = o
and it does not help to know that the terms of (11) are smaller than those of a divergent

series. However, we can use the comparison test here, after a little trickery. We observe
that

e 1 1
YT = = 4=1/2,
n=k—1 (n+1) ! n=kn 1
and
1 1

n+ 12 2+

Therefore, the comparison test implies that

1
——— = 00, <1/2. |
Z(n2+n)‘1 o 4=l
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The next theorem is often applicable where the integral test is not. It does not require the
kind of trickery that we used in Example 4.3.8.
Theorem 4.3.11 Suppose that a, > 0 and b, > 0 forn > k. Then
(a) Zan <oo if an <oo and n@oa”/b” < 0.

(b) Zanzoo if anzoo and lim a,/b, > 0.

n—>o00

Proof (a) If limy—oo ay/by < oo, then {a,/by} is bounded, so there is a constant M
and an integer k such that
ap, <Mb,, n=>k.

Since ) b, < oo, Theorem 4.3.3 implies that ) (Mb,) < co. Now Y_a, < oo, by the
comparison test.

(b) If lim,_, o an/bs > 0, there is a constant m and an integer k such that
a, > mb,, n=>k.

Since ) b, = oo, Theorem 4.3.3 implies that ) _(mb,) = co. Now Y_a, = oo, by the
comparison test. a

Example 4.3.9 Let

1 2 +sinnw/6
anzznp-l-q and ZanZZm

Then
an 2 +sinnn/6
b, (A+1/n)P(1—1/n)2’
SO . a
lim = =3 and lim — =1.
n—o00 by n—oo0 On

Since ) b, < oo if and only if p + g > 1, the same is true of > _ a,, by Theorem 4.3.11.
|

The following corollary of Theorem 4.3.11 is often useful, although it does not apply to
the series of Example 4.3.9.

Corollary 4.3.12 Suppose that a,, > 0 and b, > 0 forn > k, and
A= L

where 0 < L < oo. Then )_ a, and ) _ by, converge or diverge together.
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Example 4.3.10 With this corollary we can avoid the kind of trickery used in the
second part of Example 4.3.8, since

1 1
im ——/ —=1lm —— =1,
n—00 (n2 +n)4 n2a n—00 (1 + 1/n)q

1 1
Zm and Zan

converge or diverge together. [ ]

SO

The Ratio Test

It is sometimes possible to determine whether a series with positive terms converges by
comparing the ratios of successive terms with the corresponding ratios of a series known to
converge or diverge.

Theorem 4.3.13 Suppose that a, > 0, b, > 0, and

Ans1 _ buy1

a, < b, " (12)
Then
(a) Yan <o0ifdy by < 0.
(b) X bp=00if) a, = oo.
Proof Rewriting (12) as
An+1 < an
bny1 = by

we see that {a, /b, } is nonincreasing. Therefore, lim, oo @, /b, < 00, and Theorem 4.3.11 (a)
implies (a).

To prove (b), suppose that Y a, = oo. Since {a,/bn} is nonincreasing, there is a
number p such that b, > pa, for large n. Since ) (pa,) = oo if )" a, = oo, Theo-
rem 4.3.9(b) (with a, replaced by pay,) implies that Y _ b, = oo. a

We will use this theorem to obtain two other widely applicable tests: the ratio test and
Raabe’s test.

Theorem 4.3.14 (The Ratio Test) Suppose that a, > 0 forn > k. Then

() Y an < ooif limyeo dnt1/an < 1.
(b) X an = oo if lim, o ant1/an > 1.

If
lim &L <1 < fm 2L (13)

n—oo dpn n—oo  dp

then the test is inconclusive; that is, Y a, may converge or diverge.
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Proof (a)If
— dp+1
lim
n—>o00 @,

<1,

there is a number 7 such that 0 < r < 1 and

an+1
<
An

for n sufficiently large. This can be rewritten as

an+1 rtl

an rn

Since Y r" < oo, Theorem 4.3.13(a) with b, = r” implies that ) a, < co.
(b) If

an+1

lim

n—>00 an

> 1,

there is a number r such that » > 1 and

an+1
>
An

for n sufficiently large. This can be rewritten as

an+1 rtl
>

an rn

Since Y r" = oo, Theorem 4.3.13(b) with a, = r" implies that }_ b, = oc. a

To see that no conclusion can be drawn if (13) holds, consider

1

ay = —.
2: n np

This series converges if p > 1 or diverges if p < 1; however,

— dn+1 . an+1
lim = lim

n—o0 dp n—oo dpn

=1

for every p.

Example 4.3.11 If

a, = 2 + sin nr r’,
then

. (m+Drm
anp1 2 + sin ——
an - 2+sinﬂ

2

which assumes the values 3r/2, 2r/3, r/2, and 2r, each infinitely many times; hence,

— dn+1 . an+1 r
lim =2r and lim = —.
n—o00 @y, n—oo Qpn 2

Therefore, Y a, converges if 0 < r < 1/2 and diverges if » > 2. The ratio test is
inconclusive if 1/2 <r < 2. [ |
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The following corollary of the ratio test is the familiar ratio rest from calculus.

Corollary 4.3.15 Suppose that a, > 0 (n > k) and

. apn+1
lim

n—>00 dp

=L.

Then
(a) Yan<ooifL <1,
(b) Y an=ocifL > 1.

The test is inconclusive if L = 1.

Example 4.3.12 The series Y a, = Y nr""! converges if 0 < r < 1 or diverges if

r > 1, since
An+1 n+ r” 1
n = ( 1 = 1 + - r,
an nrt— n
SO
. an+1
lim =r.

n—>oo  qp

Corollary 4.3.15 is inconclusive if r = 1, but then Corollary 4.3.6 implies that the series
diverges. [ ]
The ratio test does not imply that ) a, < oo if merely

an+1
An

<1 (14)

for large n, since this could occur with lim,_,c ap+1/a, = 1, in which case the test is
inconclusive. However, the next theorem shows that Y a, < oo if (14) is replaced by the
stronger condition that

an+1 <1_p

an n

for some p > 1 and large n. It also shows that >_a, = oo if

an+1 >l—g

an n

for some ¢ < 1 and large n.

Theorem 4.3.16 (Raabe’s Test) Suppose that a, > 0 for large n. Let

M:mn(an+l_l) and m:li_mn(anH—l).

n—>00 An n—o0
Then
(a) Yan<ooifM < —1.
(b) Y an=ocifm>—1.

The test is inconclusive if m < —1 < M.
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Proof (a) We need the inequality
1
—_ >
(1 +x)?
This follows from Taylor’s theorem (Theorem 2.5.4), which implies that

1 plp+1) ,
. - _AFT )
1 +x)7 Yt i ot

where 0 < ¢ < x. (Verify.) Since the last term is positive if p > 0, this implies (15).

1—px, x>0, p>0. (15)

Now suppose that M < —p < —1. Then there is an integer k such that

7
) a
o B, n>k.
an n
Hence,
an+1 1

< ., n>
an 1+ 1/n)P
as can be seen by letting x = 1/n in (15). From this,

1 1
iiad < —, n>k.
an (n+1)P /) nP

Since Y 1/n? < oo if p > 1, Theorem 4.3.13(a) implies that ) a, < oo.
(b) Here we need the inequality

1-x)7<1—¢gx, 0<x<l1, 0<g<l. (16)

This also follows from Taylor’s theorem, which implies that

2
(1—x)" = 1=gx +qlg = D1 -0 =,

where 0 < ¢ < x.
Now suppose that —1 < —g < m. Then there is an integer k such that

n(an+1 —1) >—q, n>k,
7

an+1 q
an n

SO

If ¢ < 0, then Y_ a, = oo, by Corollary 4.3.6. Hence, we may assume that 0 < ¢ < 1, so

the last inequality implies that
1 q
iiad > (1——) , n>k,
an n
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as can be seen by setting x = 1/n in (16). Hence,

1 1
an+1 L
an nid/ (n—1)4

Since Y~ 1/n? = 0o if ¢ < 1, Theorem 4.3.13(b) implies that ) a, = oo. a

Example 4.3.13 If

n!
2 an =Za(a+1)(a+2)---(a+n—1)’ >0,

then
. apn+1 . n+1
lim = lim =
n—>00 dp n—-oo ¥ +n

so the ratio test is inconclusive. However,

1
lim n(a”“ —1) = lim n(”+ —1)
n—o00 dn n—o00 o +n

. on(l—a)
= lim ——— =
n—-oo o +n

1’

1—q,

so Raabe’s test implies that ) ~a, < coifa > 2and ) a, = 00 if 0 < o < 2. Raabe’s
test is inconclusive if &« = 2, but then the series becomes

1

n!
Z(n+1)!:Zn+1’

which we know is divergent. [ ]

Example 4.3.14 Consider the series Y_ a,, where
_ (m!)*
S a1 (@ +m)BB 1) (B+m)

a2m

and
(m"2(m + 1)
alg+ 1) (a+mpBB+1D---(B+m+1)

aAzm+1 =

with 0 < « < . Since
1 2
zm(m—H_l)zzm(L_l)z_Lﬂ
azm B+m+1 B+m+1

1 2 1
(ZmH)(aZm_H_l):(Zmﬂ)(L_l):_w,
a2m+1 oa+m-+1 oa+m-+1

and

we have

lim n (an+1 - 1) =20 and lim n (an+1 - 1) = -28.

ap n—o00 ap

Raabe’s test implies that ) "a, < coif @ > 1/2and Y_a, = oo if B < 1/2. The test is
inconclusive if 0 <o < 1/2 < . ]
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The next theorem, which will be useful when we study power series (Section 4.5), con-
cludes our discussion of series with nonnegative terms.

Theorem 4.3.17 (Cauchy’s Root Test) Ifa, > 0 forn > k, then
(a) Y a, < oo iflimy oo ap’™ < 1.

(b) Y an = oo iflimye0 a;/" > 1.

The test is inconclusive ifmn_wo a;/" = 1.

Proof (a) If limy—co a;/" < 1, there is an r such that 0 < r < 1 and a;/" < r for

large n. Therefore, a, < r™ forlarge n. Since Y r" < oo, the comparison test implies that
> an < o0.
1/n

(b) If limy— 00 al/™ > 1, then al/" > 1 for infinitely many values of n, s0 Y_ a, = oo,
by Corollary 4.3.6. |

Example 4.3.15 Cauchy’s root test is inconclusive if

1
Ya=¥

because then

1im 1/n _ 1; 1 l/n_ . p _
ima,"” = lim { — = lim exp —;logn =1

n—o00 n—oo \ n? n—o00

for all p. However, we know from the integral test that Y 1/n? < oo if p > 1 and
Y 1/n? =c0ifp < 1. ]

Example 4.3.16 If
Zan = Z (2 + sin %)n r’,

o —_— nimw
fim a!/" = Tim (z + sin T) =3

n—>o00 n—>o00

then

and so Y a, < ocoifr < 1/3 and ) a, = oo if r > 1/3. The test is inconclusive if
r = 1/3, but then |agm+2| = 1 form > 0,50 > a, = oo, by Corollary 4.3.6.
Absolute and Conditional Convergence

We now drop the assumption that the terms of ) a, are nonnegative for large n. In this
case, Y a, may converge in two quite different ways. The first is defined as follows.

Definition 4.3.18 A series Y _ a, converges absolutely, or is absolutely convergent, if
> lan| < oo. ]
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Example 4.3.17 A convergent series _ a, of nonnegative terms is absolutely conver-
gent, since Y a, and Y |a,| are the same. More generally, any convergent series whose
terms are of the same sign for sufficiently large n converges absolutely (Exercise 22). M

Example 4.3.18 Consider the series

sinnf
> : (17)

np?

where 0 is arbitrary and p > 1. Since

np np

sinn@‘ 1
=

and )" 1/n? < oo if p > 1, the comparison test implies that

sinn6
Z <oo, p>1.
np?
Therefore, (17) converges absolutely if p > 1. [ ]

Example 4.3.19 If 0 < p < 1, then the series

=D”
2

does not converge absolutely, since
ERRD
R I
np? np?

However, the series converges, by the alternating series test, which we prove below. [ ]

Any test for convergence of a series with nonnegative terms can be used to test an arbi-
trary series Y a, for absolute convergence by applyingitto Y |a,|. We used the compar-
ison test this way in Examples 4.3.18 and 4.3.19.

Example 4.3.20 To test the series

n n!
Zan :Z(_l) afg+1)---(x+n—-1) @>0,

for absolute convergence, we apply Raabe’s test to

n!
Zan :Za(a+l)---(a+n—l)‘

From Example 4.3.13, )" |an| < coife > 2 and ) |a,| = oo if &« < 2. Therefore, > _ a,
converges absolutely if « > 2, but not if & < 2. Notice that this does not imply that >_ a,
diverges if ¢ < 2. [ ]
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The proof of the next theorem is analogous to the proof of Theorem 3.4.9. We leave it to
you (Exercise 24).

Theorem 4.3.19 IfY" a, converges absolutely, then Y a, converges.
For example, Theorem 4.3.19 implies that
sinnf
2.

converges if p > 1, since it then converges absolutely (Example 4.3.18).

The converse of Theorem 4.3.19 is false; a series may converge without converging abso-
lutely. We say then that the series converges conditionally, or is conditionally convergent;
thus, > (—1)" /nP converges conditionallyif 0 < p < 1.

Dirichlet’s Test for Series

Except for Theorem 4.3.5 and Corollary 4.3.6, the convergence tests we have studied so
far apply only to series whose terms have the same sign for large n. The following theo-
rem does not require this. It is analogous to Dirichlet’s test for improper integrals (Theo-
rem 3.4.10).

Theorem 4.3.20 (Dirichlet’s Test for Series) The series > o\ anbn con-
verges if limy o0 an = 0,

> lant1 — an| < 0, (18)

and
bk + bgy1+ -+ ba| <M, n=>k, (19)

for some constant M.
Proof The proof is similar to the proof of Dirichlet’s test for integrals. Define
B, =bp +bxy1+---+by, n>k

and consider the partial sums of Y p>; a@by:

Sy = apbr + ax+1bg+1 + -+ anby, n>k. (20)
By substituting

by =By and b,=B,—B,_1, n>k+1,
into (20), we obtain

Sn = ax Bk + ar41(Bk41 — Bi) + -+ + an(Bp — Bu-1),

which we rewrite as

Sp = (ax — ag+1)Br + (g1 — ag42) By + -+

21
+ (an—l —an)Bu—1 + anBy. @h
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(The procedure that led from (20) to (21) is called summation by parts. It is analogous to
integration by parts.) Now (21) can be viewed as

Sy = Tu—1 + an Bn, (22)
where
Th—1 = (ak — ak41)Br + (k41 — ak42)Bry1 + -+ + (@n—1 — an) Bu—1:

that is, {7}, } is the sequence of partial sums of the series

o0

Y (aj —aj+1)B;. (23)

Jj=k

Since
l(aj —aj+1)Bj| < Mla; —ajt1]

from (19), the comparison test and (18) imply that the series (23) converges absolutely.
Theorem 4.3.19 now implies that {7, } converges. Let T = lim,—o 7. Since {B,} is
bounded and lim,, o a, = 0, we infer from (22) that

lim S, = lim 7,1 + lim a,B, =T +0=T.
n—>o00 n—>o00 n—>o00

Therefore, Y anb, converges. a

Example 4.3.21 To apply Dirichlet’s test to

Z Ty # kn (k = integer),

n=2 n+ (_1)71
we take |
anp = m and b, = sinn6.
Then limy, o a, = 0, and
3
— < —_—
|@n+1 — an| n(n—1)

(verify), so
Z |an+1 —an| < oo.

Now
B, =sin26 + sin360 + --- + sinné.

To show that {B,} is bounded, we use the trigonometric identity
cos(r—%)@—cos(r+ %)9

.
e 25in(6/2) ’

0 # 2k,
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to write

_ (cos %9 — cos %9) + (cos %9 — cos %9) + -4 (cos (n — %) 0 — cos(n + %)9)

n

2sin(6/2)
cos %9 —cos(n + %)9
2sin(0/2) ’
which implies that
1
By < |———|. >2
|Bal = sin(0/2) "=

Since {a,} and {b,} satisfy the hypotheses of Dirichlet’s theorem, ) a,b, converges. M
Dirichlet’s test takes a simpler form if {a,} is nonincreasing, as follows.

Corollary 4.3.21 (Abel’s Test) The series Y anby converges if an4+1 < an for

n >k, lim,_so an =0, and
bk + bgy1 + -+ bal <M, n=>k,

for some constant M.

Proof Ifa,.1 <a,,then

m m
Z |ans1 —an| = Z(an —Qn+1) = Ak — Am+1.
=k

n=k

Since limy, 00 @m+1 = 0, it follows that

o0
> lant1 —an| = a < oo.
n=k
Therefore, the hypotheses of Dirichlet’s test are satisfied, so Y_ a, b, converges. a

Example 4.3.22 The series

sinnf
Z np ’
which we know is convergent if p > 1 (Example 4.3.18), also converges if 0 < p < 1.
This follows from Abel’s test, with a, = 1/n? and b, = sinnf (see Example 4.3.21). H

The alternating series test from calculus follows easily from Abel’s test.

Corollary 4.3.22 (Alternating Series Test) The series Y (—1)"ay converges
if0 <aupt+1 < a,andlim,_ a, = 0.



220 Chapter 4 Infinite Sequences and Series

Proof Let b, = (—1)"; then {|B,|} is a sequence of zeros and ones and therefore
bounded. The conclusion now follows from Abel’s test. a

Grouping Terms in a Series

The terms of a finite sum can be grouped by inserting parentheses arbitrarily. For example,
A4+7ND+O6+5+4=004+74+6)+06+4H =0+ +(O6+5+4).
According to the next theorem, the same is true of an infinite series that converges or

diverges to £oo0.

Theorem 4.3.23 Suppose that Y pe i an = A, where —0o < A < oco. Let {n;}5° be
an increasing sequence of integers, withny > k. Define
by=ax+:+an,.

by = an,+1 + -+ any,

by =dn,_14+1 + -+ an,.

Then

Y ba, = A
=1

Proof 1If T, is the rth partial sum of Zj-o:l bn,; and {A,} is the nth partial sum of
> ook ds. then
T, =bi+by+---+ b
= (a1 4+ an) + @41+ A any) o+ (@nyy b1+ )

Thus, {7} is a subsequence of {4, }, so lim, o, Ty = lim, o0 A, = A by Theorem 4.2.2.
|

Example 4.3.23 If ) 72 (—1)"a, satisfies the hypotheses of the alternating series
test and converges to the sum S, Theorem 4.3.23 enables us to write

k [eS)
S = Z(—l)”an + (=DFH! Z(ak+2j—1 —Qgy2j)

n=0 j=1

k 00
S = Z(—l)nan + (DR aggy — Z(ak+2j —Qry2j-1) |-
=0 =1

Since 0 < an+1 < ay, these two equations imply that S —Sy is between 0 and (—1)]‘_1 Ak41-
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Example 4.3.24 Introducing parentheses in some divergent series can yield seem-
ingly contradictory results. For example, it is tempting to write

o0
DEDT ==+ (A =D+ =040+
n=1

and conclude that Y >2 | (—1)" = 0, but equally tempting to write

Yyt =1-0-D-(1-1)—--
n=1

=1-0—-0—---
and conclude that Z:il(—l)’”'l = 1. Of course, there is no contradiction here, since
Theorem 4.3.23 does not apply to this series, and neither of these operations is legitimate.

Rearrangement of Series

A finite sum is not changed by rearranging its terms; thus,
1+434+7=14+7+3=34+1+7=3+7+1=7+14+3=7+3+1.

This is not true of all infinite series. Let us say that ) _ b, is a rearrangement of ) a, if
the two series have the same terms, written in possibly different orders. Since the partial
sums of the two series may form entirely different sequences, there is no apparent reason
to expect them to exhibit the same convergence properties, and in general they do not.

We are interested in what happens if we rearrange the terms of a convergent series. We
will see that every rearrangement of an absolutely convergent series has the same sum, but
that conditionally convergent series fail, spectacularly, to have this property.

Theorem 4.3.24 If Y 2 | b, is a rearrangement of an absolutely convergent series
Z;il an, then Z;il by also converges absolutely, and to the same sum.

Proof Let
Ap = la1| + |az| + -+ |an| and By, = |b1| + |ba| + -+ + |bnl.

For each n > 1, there is an integeikn such that by, by, . s by, are included among a1, as,
vees Ak, SO By < Ag,. Since {A,} is bounded, so is {B}, and therefore ) |b,| < oo
(Theorem 4.3.8).

Now let

Apn=a1+ar+---+an, By=bi+by+---+by,

o0 o0
A:Zan, and B=an.
n=1 n=1
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We must show that A = B. Suppose that € > 0. From Cauchy’s convergence criterion for
series and the absolute convergence of ) a,, there is an integer N such that

lan+1]| + lan+2| + -+ lansr ] <€, k> 1.

Choose N so that ay, az, ..., ay are included among by, by, ..., by,. If n > Ny,

then A, and B,, both include the terms a1, a», ..., ay, which cancel on subtraction; thus,
|A,, — By | is dominated by the sum of the absolute values of finitely many terms from ) _ aj,
with subscripts greater than N. Since every such sum is less than €,

|An — By| <€ if n> Nj.
Therefore, lim,,—, (4, — B,) = 0and A = B. a

To investigate the consequences of rearranging a conditionally convergent series, we
need the next theorem, which is itself important.

Theorem 4.3.25 If P = {a,, }5° and Q = {am, }$° are respectively the subsequences
of all positive and negative terms in a conditionally convergent series y_ ay,, then

o0 o0
Zanl_ =00 and Zamj = —00. 24)

i=1 j=1

Proof If both series in (24) converge, then Y a, converges absolutely, while if one
converges and the other diverges, then ) a, diverges to oo or —oco. Hence, both must
diverge. a

The next theorem implies that a conditionally convergent series can be rearranged to
produce a series that converges to any given number, diverges to 00, or oscillates.

Theorem 4.3.26 Suppose that y .- | an is conditionally convergent and y and v are
arbitrarily given in the extended reals, with jt < v. Then the terms of Y o, an can be

rearranged to form a series Y oo by with partial sums

Bn:b1+b2+"'+bna nzla

such that L
lim B, =v and lim B, = u. (25)

n—>o00 n—00

Proof We consider the case where 1 and v are finite and leave the other cases to you
(Exercise 36). We may ignore any zero terms that occur in Y .- | a,. For convenience, we
denote the positive terms by P = {c; }3° and and the negative terms by Q = {—f;}°. We
construct the sequence

{bn}?o = {ala”‘aam13_ﬂla”‘a_ﬂnlaam1+la”‘aam23_ﬂnl‘l'la”‘a_ﬂnza”‘}a
(26)
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with segments chosen alternately from P and Q. Let mg = ng = 0. If k > 1, let my and
ny be the smallest integers such that my > my_1, ng > ng_q,

ng—1

my mg ng
Zai—Zﬂjzv, and Zai—Zﬂjfu.
Jj=1 Jj=1

i=1 i=1

Theorem 4.3.25 implies that this construction is possible: since Y a; = > f; = oo, we
can choose my, and ny so that

my ng
Z «; and Z B

i=mg_1 J=ng—1

are as large as we please, no matter how large my_; and nyx_; are (Exercise 23). Since my
and ny are the smallest integers with the specified properties,

VS Bugnp_, <V+om, k=>2, 27
and
W= B < Bumgan <1, k=2, (28)
From (26), b, < 0if mg + ng_y <n < my + ng, so
Bimgtny < Bn < Bmptng_y» M +np_1 <n < myg +ng, (29)
while b, > 0if my + ng <n < mg4q + ng, so
Bmy+ni < Bn < Bmy\4ny, Mg +ng Sn < mpyq + ng. (30
Because of (27) and (28), (29) and (30) imply that
=B, <Bp <v4om, mp+ng_; <n=<mg+ng, 3D
and

ﬂ_ﬂnk<Bn<U+amk+la mk+nk§n§mk+l+nk (32)

From the first inequality of (27), B,, > v for infinitely many values of n. However, since
lim; ,» o; = 0, the second inequalities in (31) and (32) imply thatife > O then B, > v+e¢
for only finitely many values of n. Therefore, lim, oo B, = v. From the second inequality
in (28), B, < u for infinitely many values of n. However, since lim; .o B8; = 0, the first
inequalities in (31) and (32) imply that if € > O then B, < pu — € for only finitely many

values of n. Therefore, lim, , B, = u. |

Multiplication of Series

The product of two finite sums can be written as another finite sum: for example,
(ao + a1 + a2)(bo + b1 + b2) = aobo + aob1 + aobz
+ai1by +a1by + ai1by
+azbg + axby + azb,,
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where the sum on the right contains each product a;b; (i, j = 0, 1, 2) exactly once. These
products can be rearranged arbitrarily without changing their sum. The corresponding
situation for series is more complicated.

Given two series

o0 o0
Z a, and Z by,
n=0 n=0

(because of applications in Section 4.5 it is convenient here to start the summation index
at zero), we can arrange all possible products a;b; (i, j > 0) in a two-dimensional array:

aobo a0b1 aobz aOb3
a1b0 a1b1 a1b2 alb3
azbo axby axby axbz --- (33)
a3b0 a3b1 a3b2 a3b3

where the subscript on a is constant in each row and the subscript on b is constant in each
column. Any sensible definition of the product

[55) (52

clearly must involve every product in this array exactly once; thus, we might define the
product of the two series to be the series Y o, pn, Where {p,} is a sequence obtained by
ordering the products in (33) according to some method that chooses every product exactly
once. One way to do this is indicated by

aobo —> a0b1 aobz —> a0b3
! 1 !
a1b0 <~ a1b1 albz a1b3
! 1 !
arby — axb1y — axby a1b3 ce (34)

a3b0 <~ a3b1 <~ a3b2 <~ a3b3
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and another by

a()b() —> aob1 aobz —> a0b3 a()b4
v / v /
a1b0 a1b1 albz a1b3
Vo v /
azbo azbl azbz a2b3 s (35)
v /
asbo asb, azby asbs
VS
a4b0

There are infinitely many others, and to each corresponds a series that we might consider
to be the product of the given series. This raises a question: If

o0 o0
Zan =A and an =B
n=0 n=0

where A and B are finite, does every product series > .-, pn constructed by ordering the
products in (33) converge to AB?

The next theorem tells us when the answer is yes.

Theorem 4.3.27 Let

o0 o0
ZanzA and anzB,
n=0 n=0

where A and B are finite, and at least one term of each series is nonzero. Then Z:o:() Pn =
AB for every sequence { p,} obtained by ordering the products in (33) if and only if 3 _ an
and )" b, converge absolutely. Moreover, in this case, Y pn converges absolutely.

Proof First, let { p,} be the sequence obtained by arranging the products {a;b; } accord-
ing to the scheme indicated in (34), and define
An=ao+ai+-+an, Ay = lao| + lar| + -+ lanl,

By =bo+ b1+ + by, = |bo| + [b1| 4 - + |bnl,

By
Pp=po+pi+-+pa Pu=Ipol+Ipil+--+|pal
From (34), we see that

Py = AoBo, P3=A1B1, Ps= A2B,,

and, in general,
P(m+1)2—1 = AmBm. (36)
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Similarly,
?(m+1)2—1 = Zm§m~ (37)

If Y |an| < coand Y |b,| < 00, then {A,, By} is bounded and, since P < P (1 1)2_1,
(37) implies that { P, } is bounded. Therefore, }_ | pn| < 00, 50 Y p, converges. Now

n—>00

o0
> pu= lim P, (by definition)
=0

= lim P12 (by Theorem 4.2.2)

m—00

= lim A, Bn (from (36))

m—00

=( lim A4, lim B, (by Theorem 4.1.8)
(i, An) (,Jim, 2)

m—00

= AB.

Since any other ordering of the products in (33) produces a a rearrangement of the abso-
lutely convergent series Y - pn, Theorem 4.3.24 implies that Y || < oo for every
such ordering and that Y > ) ¢, = AB. This shows that the stated condition is sufficient.

For necessity, again let Y - p, be obtained from the ordering indicated in (34), and
suppose that Y > o p, and all its rearrangements converge to AB. Then ) p, must con-
verge absolutely, by Theorem 4.3.26. Therefore, {P,,>_,} is bounded, and (37) implies
that {A,,} and {B,,} are bounded. (Here we need the assumption that neither }_ a, nor
> by consists entirely of zeros. Why?) Therefore, Y |a,| < oo and ) |b,| < oo. a0

The following definition of the product of two series is due to Cauchy. We will see the
importance of this definition in Section 4.5.

Definition 4.3.28 The Cauchy product of Y pe o an and Y ne o bp i8> vy Cn, Where
cn = agby + a1by—1 + -+ + an—1b1 + auby. (38)

Thus, ¢, is the sum of all products a;b;, where i > 0, j > 0,and i + j = n; thus,

Cn = Zarbn—r = Zbran—r- (39)
r=0 r=0

Henceforth, (Z:o:() an) (Z:o:() bn) should be interpreted as the Cauchy product. Notice

(55e) (52 = (%) ()

and that the Cauchy product of two series is defined even if one or both diverge. In the case
where both converge, it is natural to inquire about the relationship between the product of
their sums and the sum of the Cauchy product. Theorem 4.3.27 yields a partial answer to
this question, as follows.
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Theorem 4.3.29 If Y 72 a, and Y .o, by converge absolutely to sums A and B,
then the Cauchy product of Y pe an and y o~ by converges absolutely to AB.

Proof Let C, be the nth partial sum of the Cauchy product; that is,
Cho=co+c1+-+cn

(see (38)). Let Y -2 pn be the series obtained by ordering the products {a;, b;} according
to the scheme indicated in (35), and define P, to be its nth partial sum; thus,

Py =po+p1+-+ pn

Inspection of (35) shows that ¢, is the sum of the n 4 1 terms connected by the diagonal
arrows. Therefore, C,, = P, , where

n(n + 3)
—

From Theorem 4.3.27, limy o0 P, = AB, s0 limy_00 C, = AB. To see that ) _ |c,| <

00, we observe that
n mp
Z ler] < Z | ps|
r=0 s=0

and recall that ) _ | ps| < oo, from Theorem 4.3.27. 0

my=1424---4+m+1)—1=

Example 4.3.25 Consider the Cauchy product of Y oo, r”* with itself. Here a, =
b, = r" and (39) yields

1 n—1_1

e =r" 4+ T 0 = (o D

SO

o0 2 o0
(Z r”) = Z(n + Dr™.
n=0

n=0

Since
> 1
Z:r”z—1 . rl <1,
=0 =T

and the convergence is absolute, Theorem 4.3.29 implies that

— 1
=0

Example 4.3.26 If

n

o) ooa e8] ooIBn
Sa=3% wa Yh=>L
n=0 " n=0 n=o "

n=0
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then (39) yields
3 n O[n_m,Bm _ 1 n n _— m_(a_’_ﬂ)n.
o= S 5 ) =S
thus,
(«+B)"
(£5)(55) -5

You probably know from calculus that Y >, x™/n! converges absolutely for all x to e*.
Thus, (40) implies that

aeﬁ — ea+ﬁ’
a familiar result. [ ]

The Cauchy product of two series may converge under conditions weaker than those of
Theorem 4.3.29. If one series converges absolutely and the other converges conditionally,
the Cauchy product of the two series converges to the product of the two sums (Exer-
cise 40). If two series and their Cauchy product all converge, then the sum of the Cauchy
product equals the product of the sums of the two series (Exercise 4.5.32). However, the
next example shows that the Cauchy product of two conditionally convergent series may
diverge.

Example 4.3.27 If

then Y o2 o an and Y oo b, converge conditionally. From (39), the general term of their
Cauchy product is

_1)r+1 _1)n—r+1 n 1 1
=y C D ,
N+ In—r+1 S Sr+ T n—r+1
SO
n+1
len| = Z =
cvn+ldn+1 n+1
Therefore, the Cauchy product diverges, by Corollary 4.3.6. |

4.3 Exercises

1. Prove Theorem 4.3.2.
2. Prove Theorem 4.3.3.

3. (a) Prove: Ifa, = b, except for finitely many values of n, then Y a, and Y b,
converge or diverge together.
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(b) Let by, = ay for some increasing sequence {ny}5° of positive integers, and
b, = 0if n is any other positive integer. Show that

o0

o0
Z b, and Z an
n=1

n=1

diverge or converge together, and that in the latter case they have the same sum.
(Thus, the convergence properties of a series are not changed by inserting zeros
between its terms.)

(a) Prove: If ¥ a, converges, then

lim (an +an+1+"'+an+r):O, V‘EO.
n—oo

(b) Does (a) imply that Y a, converges? Give a reason for your answer.
Prove Corollary 4.3.7.

(a) Verify Corollary 4.3.7 for the convergent series Y 1/n? (p > 1). HINT: See
the proof of Theorem 4.3.10.

(b) Verify Corollary 4.3.7 for the convergent series Y (—1)" /n.
Prove: If 0 < b, < a, < by+1,then Y a, and _ b, converge or diverge together.

Determine convergence or divergence.

(@) Y Yt ) 5 T
(6) 3o = (@3 s —
(e) Zsin:—z ()Y
@Y % cot = (h) > k:fzn

Suppose that f(x) > 0 for x > k. Prove that fkoo f(x)dx < oo ifand only if

e n+1
Z f(x)dx < oo.

n=k "
HINT: Use Theorems 3.4.5 and 4.3.8.

Use the integral test to find all values of p for which the series converges.

n n? sinhn
(a) Z n2—1)r (b) Z (n3 + 4)p (c) Z (coshn)?
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11. Let L, be the nth iterated logarithm. Show that

1
2 Lo()Ly(n)- -+ L(n) [Lg+1(m)]”

converges if and only if p > 1. HINT: See Exercise 3.4.10.
12. Suppose that g, g’, and (g')?> — gg” are all positive on [R, 00). Show that

/
g _
g(n)
if and only if limy 00 g(x) < 00.
13. Let
|
Sy =3 —. p>1
n=1
Show that
! < S(p) i < !
(p—DW + Drt =T L S Nt

HINT: See the proof of Theorem 4.3.10.
14. Suppose that f is positive, decreasing, and locally integrable on [1, oo], and let

n n
=Y 10~ [ rwax
k=1 !
(a) Show that {a,} is nonincreasing and nonnegative, and
0 < lim a, < f(1).
n—>o00
(b) Deduce from(a) that

, 11 1
y=lim {14+ >+ 5+ + - —logn
n

n—oo 2 3

exists,and 0 < y < 1. (y is Euler’s constant; y ~ 0.577.)

15. Determine convergence or divergence.

2 + sinnf n+1 ,
(a)zn2+smn9 (b)z n roeo
B n + logn

(c) Y e ™ coshnp (p > 0) (D) 2 aiognr n2(logn)?

(e )Zn+10gn (f)z(l +21/n)n

n?logn
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17.

18.

19.

20.

21.

22,

23.

24.
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Let L, be the nth iterated logarithm. Prove that

1
2. [Lo@)]?* [Ly)] T - [Lon ()] 9 F!

converges if and only if there is at least one nonzero number in {qo, 41, - . . , ¢m} and
the first such is positive. HINT: See Exercises 11 and 2.4.42(b).

Determine convergence or divergence.

2 + sin? 4 1
e L
—sin(nw n—+ n
()Z nn+1) ()Zn(n+1)

Determine convergence or divergence, with r > 0.

@Y% (b) Y n7r” (Y=
(d) 2 (zrn F 1) () 2 (;n)!

Determine convergence or divergence.

2n)! (3n)!
@2 22" (nt)? (B) 2 33pl(n + D)!(n + 3)!
2"n! al@+1)---(@a+n-—1)
(c)Zm (d )Zﬂ(ﬂ+1) G D @0

Determine convergence or divergence.

(@ZW (b)Z(ﬂ)n
(€)Y (n+1) (M) @3 (1 ) %)nz

Give counterexamples showing that the following statements are false unless it is

assumed that the terms of the series have the same sign for n sufficiently large.

(a) Y ay converges if its partial sums are bounded.

(b) Ifb, # 0forn > k and limy—s00 an /by = L, where 0 < L < oo, then ) _ ay
and )_ b, converge or diverge together.

(c) Ifa, # 0andlimy— e ant1/an < 1, then Y a, converges.

(d) Ifa, # 0and limy—oo 1 [(an+1/an) — 1] < —1, then 3" a,, converges.

Prove: If the terms of a convergent series ) _ a,, have the same sign for n > k, then

> a, converges absolutely.

Suppose that a, > 0 forn > m and ) _ a, = co. Prove: If N is an arbitrary integer
> m and J is an arbitrary positive number, then Zf:”}(,c an > J for some positive

integer k.
Prove Theorem 4.3.19.
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25.

26.

27.

28.

29.
30.

31.

32.

Show that the series converges absolutely.

n 1 sinnf
(a) Z(_l) n(logn)? (b) Z

(© L1 Jzsin (d) 3o =m0

Show that the series converges.

@ ¥ iy (Coo<t <00 (0) L (94 2kork = integer)

Determine whether the series is absolutely convergent, conditionally convergent, or
divergent.

bn
(a) Z NG (bam = bam+1 =1, bamyr = bamysz = —1)
1 nim
(b) Z—sm— (€) oz c0s =

1.3.5.Qn+1) .
(d) Z4-6-8---(2n+4) sinnf

Let g be a rational function (ratio of two polynomials). Show that ) g(n)r" con-

verges absolutely if |r| < 1 or diverges if |r| > 1. Discuss the possibilities for
Irl = 1.

Prove: If }" a2 < oo and ) b2 < oo, then " anb, converges absolutely.

(a) Prove: If Y a, converges and Y a2 = oo, then Y a, converges condition-
ally.
b) Give an example of a series with the properties described in (a).
p prop

Suppose that 0 < a,4+1 < a, and

. b +by+-+ by
lim > 0,
n—o00 Wy

where {w, } is a sequence of positive numbers such that

Z Wy (an — Apg1) = 00

Show that Y anb, = oco. HINT: Use summation by parts.
(a) Prove: If 0 < 2e < 6 < 7 — 2¢, then

. |sinB| 4+ |sin20| 4 --- 4 |sinnf| _ sine
lim > .

n—>oo n 2

HINT: Show that |sinnf| > sine at least “half the time”; more precisely,
show that if | sinm@| < sin € for some integer m then | sin(m + 1)8| > sine.
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34.

35.

36.

37.

38.

39.

40.
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(b) Show that

sinnf
2.
converges conditionally if 0 < p < 1 and 8 # kx (k = integer). HINT: Use
Exercise 31 and see Example 4.3.22.

Show that
i (_1)n+1 B 1 i 1
— _2n=1n(2n—1)‘
Let b3m+1, b3m+2 = —2, and b33 = 1 for m > 0. Show that
i by 2 i 1
—on 3= (m+ 1)Bm+1D)GBm+2)

Let Y b, be obtained by rearranging finitely many terms of a convergent series
Z ay. Show that the two series have the same sum.

Prove Theorem 4.3.26 for the case where (&) p is finite and v = oo; (b) u = —o0
and v = o0; (€) = v = oo.

Give necessary and sufficient conditions for a divergent series to have a convergent
rearrangement.

A series diverges unconditionallyto oo if every rearrangement of the series diverges
to co. State necessary and sufficient conditions for a series to have this property.

Suppose that f and g have derivatives of all orders at 0, and let 7 = fg. Show

formally that
— /0 L) [+ "0 , — h™(0) ,
(Z n! x)(z n :Z T

n=0 n=0 n=0

in the sense of the Cauchy product. HINT: See Exercise 2.3.12.

Prove: If )" |a,| < coand }_ b, converges (perhaps conditionally), with Y o2, a, =
Aand ) 2, b, = B, then the Cauchy product

S (5) (5

converges to AB. HINT: Let {A,}, {Bn}, and {C,} be the partial sums of the series.
Show that

Co— AnB =) ar(By—r — B)
=0

and apply Theorem 4.3.5t0 Y _ |ay|.
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41. Suppose thata, > 0 forall r > 0 and and Y o° a, = A < 0o. Show that

1 n—1 1 n—1
lim — E ar+s =0 and lim — E ar—s = 2A — ay.
n—oo n n—oo n
r,s=0 r,s=0

5.") =a; (j > 1)and |a<§.i)| <oj (i,j > 1), where Zj-o:l o <

00, then lim; o0 Zj-il ag-l) = Zj'o=1 aj.

42. Prove: If lim; o0 a

4.4 SEQUENCES AND SERIES OF FUNCTIONS

Until now we have considered sequences and series of constants. Now we turn our attention
to sequences and series of real-valued functions defined on subsets of the reals. Throughout
this section, “subset” means “nonempty subset.”

If Fx, Fy41, ..., Fn, ... are real-valued functions defined on a subset D of the reals,
we say that { F,,} is an infinite sequence or (simply a sequence) of functions on D. If the
sequence of values { F;, (x)} converges for each x in some subset S of D, then { F,,} defines
a limit function on S. The formal definition is as follows.

Definition 4.4.1 Suppose that { F;,} is a sequence of functions on D and the sequence
of values { F,(x)} converges for each x in some subset S of D. Then we say that {F,}
converges pointwise on S to the limit function F, defined by

F(x) = ILm F,(x), xeld. |

Example 4.4.1 The functions

nx \"?
F,,(x):(l—n+1) L on=1,

define a sequence on D = (—o0, 1], and

oo, x<0,
lim F,(x) =41, x=0,
e 0, 0<x<l.

Therefore, { F;,} converges pointwise on S = [0, 1] to the limit function F defined by

1, x=0,
FO) =10 0<x=<1. u

Example 4.4.2 Consider the functions
F,(x) =x"e™, x>0, n=>1,

(Figure 4.4.1).
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y
A
_________________________ y= e
y =F, (x)=x"e™
> x
Figure 4.4.1
Equating the derivative
Fl(x) = nx"'e™(1 — x)
to zero shows that the maximum value of F,(x) on [0, 00) is e, attained at x = 1.

Therefore,
|Fa(x)] <e™, x>0,

0 lim, o0 Fy,(x) = 0 for all x > 0. The limit function in this case is identically zero on
[0, 00). [ |

Example 4.4.3 Forn > 1, let F,, be defined on (—o0, 0o) by

0, x<—2
2 1
—n@2+nx), —2=<x<-5,
Fu(x) = {n? 1 1
n - X, _n_x<na
n(2 —nx), %fx < %,
0, x> 2

(Figure 4.4.2, page 236),

Since F,(0) = 0 for all n, limy, o0 F,,(0) = 0. If x # 0, then F,,(x) = 0ifn > 2/|x|.
Therefore,

lim F,(x) =0, —o00<x < o0,
n—>o00
so the limit function is identically zero on (—o0, c0). [ ]

Example 4.4.4 For each positive integer n, let S, be the set of numbers of the form
X = p/q, where p and g are integers with no common factors and 1 < g < n. Define

1, xes,,

Fu(x) = 0, x&S,.
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If x is irrational, then x & S, for any n, so F,(x) = 0,n > 1. If x is rational, then x € S,
and F,(x) = 1 for all sufficiently large n. Therefore,

1 if x is rational,

nli>rgo Falx) = F(x) = 0 if x is irrational.

__________ —— — —_——— — — —=Yy=n
|
| y=F,(x)
2 1 |
n n | .
' 1 2 g
| n n
|
|
——————— _tr——--— — — — — —y=-n

Figure 4.4.2

Uniform Convergence

The pointwise limit of a sequence of functions may differ radically from the functions
in the sequence. In Example 4.4.1, each F, is continuous on (—oo, 1], but F is not. In
Example 4.4.3, the graph of each F,, has two triangular spikes with heights that tend to
oo as n — oo, while the graph of F' (the x-axis) has none. In Example 4.4.4, each F}, is
integrable, while F' is nonintegrable on every finite interval. (Exercise 3). There is nothing
in Definition 4.4.1 to preclude these apparent anomalies; although the definition implies
that for each x¢ in S, F,(xo) approximates F(xo) if n is sufficiently large, it does not
imply that any particular F;, approximates F well over all of S. To formulate a definition
that does, it is convenient to introduce the notation

lglls = sup |g(x)]
xX€ES

and to state the following lemma. We leave the proof to you (Exercise 4).
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Lemma 4.4.2 If g and h are defined on S, then

g + hlls < liglls + lI2lls
and

lghlls < liglslhls-

Moroever, if either g or h is bounded on S, then

lg =hlls = lliglls = A ls -

237
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Definition 4.4.3 A sequence {F,} of functions defined on a set S converges uniformly
to the limit function F on S if

lim ||F, — F|ls =0.
n—>00
Thus, { F,} converges uniformly to F on S if for each € > 0 there is an integer N such that

|Fn— Flls <e if n>N. (1)
|

If S = [a,b] and F is the function with graph shown in Figure 4.4.3, then (1) implies
that the graph of
y=F(x), as=x=b,

lies in the shaded band
F(x)—e<y<F(x)4+e€, a=<x<b,

ifn > N.
From Definition 4.4.3, if { F;, } converges uniformly on S, then { F}, } converges uniformly
on any subset of S (Exercise 6).

y=F(x)+e
y=F(x)
y=F(x)—¢

Qb——
[N

Figure 4.4.3

Example 4.4.5 The sequence {F,} defined by
F,(x)=x"e™, n>1,

converges uniformly to F = 0 (that is, to the identically zero function) on S = [0, c0),
since we saw in Example 4.4.2 that

| Fn = Flls = I Falls =™,
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o)
| Fn— Flls <e€
if n > —loge. For these values of n, the graph of
Yy =Fy(x), 0=<x<o0,

lies in the strip
—€<y=<e x20

(Figure 4.4.4). |

The next theorem provides alternative definitions of pointwise and uniform convergence.
It follows immediately from Definitions 4.4.1 and 4.4.3.

Theorem 4.4.4 Let {F,} be defined on S. Then

(a) {Fn} converges pointwise to F on S if and only if there is, for each € > 0 and x € S,
an integer N (which may depend on x as well as €) such that

|[Fa(x) — F(x) <€ if n=N.

(b) {Fu} converges uniformly to F on S if and only if there is for each € > 0 an integer
N (which depends only on € and not on any particular x in S) such that

|F(x) — F(x)| <€ forallxinSifn> N.

>
>

Figure 4.4.4

The next theorem follows immediately from Theorem 4.4.4 and Example 4.4.6.
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Theorem 4.4.5 If{F,} converges uniformlyto F on S, then { F,,} converges pointwise
to F on S. The converse is false; that is, pointwise convergence does not imply uniform
convergence.

Example 4.4.6 The sequence {F,} of Example 4.4.3 converges pointwise to F = 0
on (—o0, 00), but not uniformly, since
()
F,l— )| =n,
n

lim || Fy — Fll(—00,00) = 00
n—o00

1
I = Pl = £ (7) =

SO

However, the convergence is uniform on
Sp = (=00, p] U [p, 00)

for any p > 0, since

2
|Fo—Flls, =0 if n>=. n
P

Example 4.4.7 If F,(x) = x", n > 1, then {F,} converges pointwise on S = [0, 1]
to
1, x=1,

FX) =10 0<x<1.

The convergence is not uniform on S. To see this, suppose that 0 < ¢ < 1. Then
|Fu(x) — F(x)| >1—¢ if (1—e)/"<x<1.

Therefore,
l—e<|Fn—F|s =1

for all n > 1. Since € can be arbitrarily small, it follows that
[ Fn—Flls =1

foralln > 1.

However, the convergence is uniform on [0, p] if 0 < p < 1, since then
I Fn = Fllfo,0) = 0"

and lim, .o p” = 0. Another way to say the same thing: {F,} converges uniformly on
every closed subset of [0, 1). |

The next theorem enables us to test a sequence for uniform convergence without guessing
what the limit function might be. It is analogous to Cauchy’s convergence criterion for
sequences of constants (Theorem 4.1.13).
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Theorem 4.4.6 (Cauchy’s Uniform Convergence Criterion) A sequence
of functions { F,,} converges uniformly on a set S if and only if for each € > 0 there is an

integer N such that
|Frn — Fnlls <€ if n,m>N. 2)

Proof For necessity, suppose that { F,} converges uniformly to F on S. Then, if € > 0,
there is an integer N such that

||Fk—F||s<§ if k> N.

Therefore,

”Fn_Fm“S:||(Fn_F)+(F_Fm)”S
<||Fn—Flls + ||F — Fulls (Lemma 4.4.2)

< §+§=e if m,n>N.

For sufficiency, we first observe that (2) implies that
|[Fn(x) = F(x)] <€ if n.m =N,

for any fixed x in S. Therefore, Cauchy’s convergence criterion for sequences of constants
(Theorem 4.1.13) implies that { F;, (x)} converges for each x in S; that is, { F,,} converges
pointwise to a limit function F on S. To see that the convergence is uniform, we write

| Fin(x) — F(xX)| = [[Fin(x) = Fa(X)] + [Fa(x) — F(x)]]
< |Fm(x) = Fa(x)] + [ Fa(x) — F(x)|
< 1 Fm = Falls + [Fa(x) — F(x)].

This and (2) imply that
|Fin(x) — F(x)| <€+ |Fy(x)— F(x)| if n,m> N. 3)
Since lim, 00 Fp (x) = F(x),
|[Fa(x) — F(x)| <€
for some n > N, so (3) implies that
|Fn(x) — F(x)] <2 if m> N.
But this inequality holds for all x in S, so
| Frn — Flls <2¢ if m>N.

Since € is an arbitrary positive number, this implies that {F},} converges uniformly to F
onS. o

The next example is similar to Example 4.1.14.
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Example 4.4.8 Suppose that g is differentiable on S = (—00, c0) and
lg(x)|<r<1, —oo<x<o0. (4)
Let Fy be bounded on S and define
Fu(x) = g(Fu-1(x)), n=1 &)

We will show that { F}, } converges uniformly on S. We first note that if u and v are any two
real numbers, then (4) and the mean value theorem imply that

lg(u) —g)| < rlu—vl. (6)

Recalling (5) and applying this inequality with u = F,_;(x) and v = 0 shows that

|Fn(0)] = [(0) + (g(Fu-1(x)) — g0)] = g(0)] + [g(Fn—1(x)) — g(0)]
< 18O + r|Fa—1(x)];

therefore, since Fy is bounded on S, it follows by induction that F}, is bounded on S for
n > 1. Moreover, if n > 1, then (5) and (6) withu = F,(x) and v = F,—;(x) imply that

| Fat1(X) = Fo (0)] = |g(Fn (X)) = g(Fp—1 (0))| < r[Fn(x) = Fam1 (X)], —00 < x < o0,

SO
| Fat1 — Fulls < 7[[Fn— Fa-1lls.

By induction, this implies that
| Fnt1 — Falls < r"|F1 — Fols. 7
If n > m, then

| Fn — Fulls = |(Fo — Fa—1) + (Fu—1 — Fy—2) + -+ (Ft1 — Fu)lls
= ||Fn _Fn—IHS + ||Fn—1 _Fn—2||S + e+ ||Fm+1 —Fm“S,

from Lemma 4.4.2. Now (7) implies that

1Fn = Fulls < 1 F1 = Folls(L 47 472 4o 4 r"7m

m

-
1—r

< ||[F1 = Fols

Therefore, if
N

-
| Fi — Folls
1—r

then ||F, — Fm|s < € if n, m > N. Therefore, {F,} converges uniformly on S, by
Theorem 4.4.6. |

<€,
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Properties Preserved by Uniform Convergence

We now study properties of the functions of a uniformly convergent sequence that are
inherited by the limit function. We first consider continuity.

Theorem 4.4.7 If {F,} converges uniformly to F on S and each F, is continuous at
a point xg in S, then so is F. Similar statements hold for continuity from the right and left.

Proof Suppose that each F), is continuous at xo. If x € S and n > 1, then

|F(x) — F(xo)| < [F(x) = Fa(x)] + [Fa(x) = Fu(x0)| + | Fn(x0) — F(x0)| ®)
< |Fu(x) — Fu(xo0)| + 2|| Fn — Fs.-

Suppose that € > 0. Since {F,} converges uniformly to F on S, we can choose 7 so that
| Fn — F|ls < €. For this fixed n, (8) implies that

|F(x) — F(xo)| <|Fn(x) — Fa(xo)| +2¢, x€S. ©)
Since F,, is continuous at xg, there is a § > 0 such that
|Fr(x) — Fu(xo)| <€ if |x—xo] <§,

so, from (9),
|F(x) — F(xo)| <3¢, if |x—xo| <3$.

Therefore, I is continuous at xo. Similar arguments apply to the assertions on continuity
from the right and left. |

Corollary 4.4.8 If{F,} converges uniformly to F on S and each F, is continuous on
S, then so is F; that is, a uniform limit of continuous functions is continuous.

Now we consider the question of integrability of the uniform limit of integrable func-
tions.

Theorem 4.4.9 Suppose that {F,} converges uniformly to F on S = [a, b]. Assume
that F and all F,, are integrable on [a, b]. Then

b b
/ F(x)dx = lim/ F,(x)dx. (10)
Proof Since

b b b
/ Fn(x)dx—/ F(x)dx 5/ | F(x) — F(x)|dx

s(b-allF—Fls

and lim,,_, || F;, — F||s = 0, the conclusion follows. a
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In particular, this theorem implies that (10) holds if each F}, is continuous on [a, b],
because then F is continuous (Corollary 4.4.8) and therefore integrable on [a, b].

The hypotheses of Theorem 4.4.9 are stronger than necessary. We state the next theorem
so that you will be better informed on this subject. We omit the proof, which is inaccessible
if you skipped Section 3.5, and quite involved in any case.

Theorem 4.4.10 Suppose that {F,} converges pointwise to F and each F, is inte-
grable on [a, b].

(a) Ifthe convergence is uniform, then F is integrable on [a, b] and (10) holds.

(b) Ifthe sequence {|| Fy|\[a,p]} is bounded and F is integrable on [a, b], then (10) holds.

Part (&) of this theorem shows that it is not necessary to assume in Theorem 4.4.9 that F
is integrable on [a, b], since this follows from the uniform convergence. Part (b) is known
as the bounded convergence theorem. Neither of the assumptions of (b) can be omitted.
Thus, in Example 4.4.3, where {|| F;,||[0,17} is unbounded while F is integrable on [0, 1],

1 1
/ F,(x)dx=1, n>1, but / F(x)dx = 0.
0 0

In Example 4.4.4, where || Fy,||[a,5) = 1 for every finite interval [a, b], F, is integrable for
alln > 1, and F is nonintegrable on every interval (Exercise 3).

After Theorems 4.4.7 and 4.4.9, it may seem reasonable to expect that if a sequence { F}, }
of differentiable functions converges uniformly to F on S, then F’ = lim,—o F,, on S.
The next example shows that this is not true in general.

Example 4.4.9 The sequence {F,} defined by

F,(x) = x"sin por

converges uniformly to F = 0 on [r1, 73] if 0 < r; < ra < 1 (or, equivalently, on every
compact subset of (0, 1)). However,

1
—(n—1)cos —,

/ _ n—1 _:
F,(x) =nx"""sin oo

xn—l

so {F, (x)} does not converge for any x in (0, 1). ]

Theorem 4.4.11 Suppose that F, is continuous on [a,b] for all n > 1 and {F)}
converges uniformly on [a, b]. Suppose also that { F,,(x0)} converges for some x in [a, b].
Then { F,} converges uniformly on [a, b] to a differentiable limit function F, and

F'(x) = lim F,(x), a<x<b, (11)
n—>00

while
Fi(a) = lim F,(a+) and F’(b)= lim F,(b—). (12)
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Proof Since F) is continuous on [a, b], we can write

F,(x) = Fy(x0) + /x F,(t)dt, a<x<b (13)

X0

(Theorem 3.3.12). Now let
L = lim F,(xo)
n—00

and
G(x) = lim F;(x). (14)

Since F,, is continuous and {F,,} converges uniformly to G on [a, b], G is continuous on
[a, b] (Corollary 4.4.8); therefore, (13) and Theorem 4.4.9 (with F and F,, replaced by G
and F) imply that { F,,} converges pointwise on [a, b] to the limit function

X
F(x)=1L +/ G(t)dt. (15)
X0
The convergence is actually uniform on [a, b], since subtracting (13) from (15) yields

|F(x) = Fa(x)| < |L — Fu(xo)| +

/X|G(r>—F,:(r)|dz

0

< |L = Fa(xo)| + [x = xol |G = Fyll[a.5).

SO
| F — Fulllap) < |IL — Fa(x0)| + (b —a) |G — Fy ll{a.5]-

where the right side approaches zero as n — oco.

Since G is continuous on [a, b], (14), (15), Definition 2.3.6, and Theorem 3.3.11 imply
(11) and (12). O

Infinite Series of Functions

In Section 4.3 we defined the sum of an infinite series of constants as the limit of the
sequence of partial sums. The same definition can be applied to series of functions, as
follows.

Definition 4.4.12 If { f;}2° is a sequence of real-valued functions defined on a set D

of reals, then Z;’ik fj is an infinite series (or simply a series) of functions on D. The
partial sums of ) 52 f; are defined by

Fa=Y_fj. nxk
=k

If { F,}3° converges pointwise to a function F on a subset S of D, we say that Z;’ik fi
converges pointwise to the sum F on S, and write

F=Yfi. xeb.
=k
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If { F,,} converges uniformly to F on S, we say that Z;’ik [ converges uniformly to F on
S. [ |

Example 4.4.10 The functions
fity=x'. j=0

define the infinite series
o0
>
j=0
on D = (—o0, 00). The nth partial sum of the series is

Fo(x)=14x4+ x>+ -+ x",

or, in closed form,

1= xn+1

7’ 1’
F="T-x " *7
n—+1, x=1

(Example 4.1.11). We have seen earlier that { F;,} converges pointwise to
1
F(x) = ——
1 —x
if |x| < 1 and diverges if |x| > 1; hence, we write

o0
. 1

Exf: , —l<x<l.

= 1—x

Since the difference
n+1

F) = Fa(x) = =

can be made arbitrarily large by taking x close to 1,

I F = Full(-1,1) = o0,
so the convergence is not uniform on (—1, 1). Neither is it uniform on any interval (—1, r]
with —1 < r < 1, since

1

IF = Fall(-1r) = 5
for every n on every such interval. (Why?) The series does converge uniformly on any
interval [—r, 7] with 0 < r < 1, since

rn+1

”F_Fn”[—r,r] = 1—r

and lim, o 7" = 0. Put another way, the series converges uniformly on closed subsets of
(-1,1). ]
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As for series of constants, the convergence, pointwise or uniform, of a series of functions
is not changed by altering or omitting finitely many terms. This justifies adopting the
convention that we used for series of constants: when we are interested only in whether a
series of functions converges, and not in its sum, we will omit the limits on the summation
sign and write simply > f5.

Tests for Uniform Convergence of Series

Theorem 4.4.6 is easily converted to a theorem on uniform convergence of series, as fol-
lows.

Theorem 4.4.13 (Cauchy’s Uniform Convergence Criterion) A series
> fu converges uniformly on a set S if and only if for each € > 0 there is an integer N
such that

1 fo + fas1 +--+ fulls <€ if m=n=N. (16)

Proof Apply Theorem 4.4.6 to the partial sums of Y f,,, observing that

fn+fn+1+"'+fm:Fm_Fn—l‘ il

Setting m = n in (16) yields the following necessary, but not sufficient, condition for
uniform convergence of series. It is analogous to Corollary 4.3.6.

Corollary 4.4.14 If)_ f, converges uniformly on S, then lim,_ || fu|ls = 0.

Theorem 4.4.13 leads immediately to the following important test for uniform conver-
gence of series.

Theorem 4.4.15 (Weierstrass’s Test) The series Y fu converges uniformly
on S if
| falls < Mn, n >k, (17)

where Y M, < oo.
Proof From Cauchy’s convergence criterion for series of constants, there is for each
€ > 0 an integer N such that
My +Myp1+--+My<e if m>n>N,
which, because of (17), implies that
Ifnlls + | fat1lls + -+ [ fmlls <€ if m.n=N.

Lemma 4.4.2 and Theorem 4.4.13 imply that ) f, converges uniformly on S. |
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Example 4.4.11 Taking M,, = 1/n? and recalling that

1
YL

we see that

1 .
Z m and Z SII’;ZX

converge uniformly on (—o0, 00). [ ]

Example 4.4.12 The series

INASOE Z(lj_x)n

converges uniformly on any set S such that

<r<l1, xe8, (18)

‘1+x

because if S is such a set, then
| falls = 7"

and Weierstrass’s test applies, with

ZM,, :Zr” < 00.

Since (18) is equivalent to
—r r

<
1+r —

this means that the series converges uniformly on any compact subset of (—1/2,00).
(Why?) From Corollary 4.4.14, the series does not converge uniformly on S = (—1/2,b)
withh < cooron § = [a,00) witha > —1/2, because in these cases || f»||s = 1 for all
n. |

Weierstrass’s test is very important, but applicable only to series that actually exhibit a
stronger kind of convergence than we have considered so far. We say that ) f, converges
absolutely on S if Y | f,| converges pointwise on S, and absolutely uniformly on S if
> | fu| converges uniformly on S. We leave it to you (Exercise 21) to verify that our proof
of Weierstrass’s test actually shows that Y f, converges absolutely uniformly on S. We
also leave it to you to show that if a series converges absolutely uniformly on S, then it
converges uniformly on S (Exercise 20).

The next theorem applies to series that converge uniformly, but perhaps not absolutely
uniformly, on a set S.
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Theorem 4.4.16 (Dirichlet’s Test for Uniform Convergence) The se-

ries
o0
> fngn
n=k

converges uniformly on S if { f} converges uniformly to zero on S, > (fu+1 — fu) con-
verges absolutely uniformly on S, and

gk + gr+1+ -+ gnlls =M, n=k, (19)
for some constant M.
Proof The proof is similar to the proof of Theorem 4.3.20. Let

Gn = 8k + 8k+1+ -+ &n.

and consider the partial sums of Y o> . fngn:

Hp = fi&k + fer18k+1 + -+ fu&n- (20)
By substituting

gk =Gk and g, =Gy —Gp1, n=k+1,
into (20), we obtain
Hy = fikGr + fet1(Gk+1 — G) + -+ + fu(Gn — Gp—),
which we rewrite as
Hy = (fk = fi+ )Gk + (Ji1 — fe42)Grt1 + -+ (fn—1 — fa)Gn—1 + fuGn,

or
Hy=Jy1+ fnGna (21)

where

Jn—1 = (fk = fi+1)Gk + (fk+1 — fe+2)Gig1 + -+ (fu—1 — fu)Gn-1. (22)

That is, {J,} is the sequence of partial sums of the series
o0
2 fj = f140G;. (23)
=k

From (19) and the definition of G,

D) = firIG )| <MY | fi(x) = finn(x)]. x€S.

Jj=n Jj=n
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DU = fi0Gi| =MD 1f = finl
j=n j=n

S S

Now suppose that € > 0. Since > (f; — fj+1) converges absolutely uniformly on S, The-
orem 4.4.13 implies that there is an integer N such that the right side of the last inequality
is less than € if m > n > N. The same is then true of the left side, so Theorem 4.4.13
implies that (23) converges uniformly on S.

We have now shown that {J,,} as defined in (22) converges uniformly to a limit function
J on S. Returning to (21), we see that

H,—J =Jy-1—J + f,Gy.
Hence, from Lemma 4.4.2 and (19),

1Hn = Jlls < Vo1 = Jlls + | /ullsGnlls
< o1 = Jlis + M| fuls.

Since {J,—1—J } and { f,,} converge uniformly to zero on S, it now follows that lim, . || Hn—
J|ls = 0. Therefore, { H, } converges uniformly on S 0

Corollary 4.4.17 The series Y po i [ugn converges uniformly on S if
fot1(x) = fa(x), x €S8, n=zk,
{ fu} converges uniformlyto zero on S, and
gk + gk+1+ -+ gnlls =M. n=k,

for some constant M.

The proof is similar to that of Corollary 4.3.21. We leave it to you (Exercise 22).

Example 4.4.13 Consider the series

o0 .
Z smnx
n

n=1

with f, = 1/n (constant), g,(x) = sinnx, and
Gn(x) = sinx + sin2x + -+ + sinnx.

We saw in Example 4.3.21 that

1
|Gr(x)] < m, n>1, n#2kmn (k = integer).
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Therefore, {||Gr| s} is bounded, and the series converges uniformly on any set S on which
sinx /2 is bounded away from zero. For example, if 0 < § < 7, then

.X .6

‘sm —‘ > sin =

2 2

if x is at least § away from any multiple of 277; hence, the series converges uniformly on

S= | Rkr+8.2(k + D — 6]

k=—o0
Since ]
sinnx
Z =00, Xx#knm
(Exercise 4.3.32(b)), this result cannot be obtained from Weierstrass’s test. ]
Example 4.4.14 The series
i (=1
2
it +x
satisfies the hypotheses of Corollary 4.4.17 on (—o0, 00), with
1
fn(x) = ’H_—xz, gn = (—1)", sz = O, and G2m+1 = —1

Therefore, the series converges uniformly on (—oo, 0o). This result cannot be obtained by
Weierstrass’s test, since
1
= 00
Z n+ x2

for all x. ]

Continuity, Differentiability, and Integrability of Series

We can obtain results on the continuity, differentiability, and integrability of infinite series
by applying Theorems 4.4.7, 4.4.9, and 4.4.11 to their partial sums. We will state the
theorems and give some examples, leaving the proofs to you.

Theorem 4.4.7 implies the following theorem (Exercise 23).

Theorem 4.4.18 If > 77, fu converges uniformly to F on S and each fy is contin-
uous at a point xg in S, then so is F. Similar statements hold for continuity from the right

and left.

Example 4.4.15 In Example 4.4.12 we saw that the series

Fey = Z(lj—x)

n=0
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converges uniformly on every compact subset of (—1/2, c0). Since the terms of the series
are continuous on every such subset, Theorem 4.4.4 implies that F is also. In fact, we can
state a stronger result: F is continuous on (—1/2, 00), since every point in (—1/2, 0co) lies
in a compact subinterval of (—1/2, 00).

The same argument and the results of Example 4.4.13 show that the function

o0

Glx) = Z sinnx

n

n=1
is continuous except perhaps at xx = 2k (k = integer).
From Example 4.4.14, the function
— 1
H(x) =) (-1)"

n=1

n+ x2
is continuous for all x. [ |

The next theorem gives conditions that permit the interchange of summation and inte-
gration of infinite series. It follows from Theorem 4.4.9 (Exercise 25). We leave it to you
to formulate an analog of Theorem 4.4.10 for series (Exercise 26).

Theorem 4.4.19 Suppose that Y .- fa converges uniformly to F on S = [a,b].
Assume that F and f,, n > k, are integrable on [a, b]. Then

b o b
/;F(x)dngc/; Ja(x)dx.

We say in this case that Y 2, f, can be integrated term by term over [a, b].

Example 4.4.16 From Example 4.4.10,

1 o0
=Zx”, —-1l<x<l1.
1—x !

The series converges uniformly, and the limit function is integrable on any closed subinter-

val [a, b] of (—1, 1); hence,
b d 0 b
/ o Z/ x"dx,
a 1—Xx —Ja

e bn+1 _an+1
log(1 —a) —log(l —b) = Z _

n=0

SO

n+1
Lettinga = 0 and b = x yields

e n+1

log(l—x)z—z al

n=0
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The next theorem gives conditions that permit the interchange of summation and differ-
entiation of infinite series. It follows from Theorem 4.4.11 (Exercise 28).

Theorem 4.4.20 Suppose that f, is continuously differentiable on [a, b] for each n >
k, 302k fn(x0) converges for some x¢ in [a,b], and Y ney [, converges uniformly on
la,b]. Then Y 2, fn converges uniformly on [a, b] to a differentiable function F, and

F'(x) = an’(x), a<x<b,
=k

while

Fi(a)=Y_ fila+) and F.(b)=)_ fi(b-).
n=k

n=k

We say in this case that Y n-, f» can be differentiated term by term on [a, b]. To apply
Theorem 4.4.20, we first verify that Y »> , f,(xo) converges for some X in [a, b] and then
differentiate Y >, f, term by term. If the resulting series converges uniformly, then term
by term differentiation was legitimate.

Example 4.4.17 The series
> 1 X
> (=)= cos = (24)
= n n
converges at xo = 0. Differentiating term by term yields the series
> 1 X
> (=1 = sin = (25)
— n n

of continuous functions. This series converges uniformly on (—oo, 00), by Weierstrass’s
test. By Theorem 4.4.20, the series (24) converges uniformly on every finite interval to the
differentiable function

o0
1
F(x) = ;(-1)";cos %, —00 < X < 00,
and
> 1 X
F’(x):Z(—l)”Hn—zsin;, —00 < X < 00. -
n=1
Example 4.4.18 The series
X .n 2 3
X X X
E(x)zzn—!=1+x+2—!+§+--- (26)

n=0
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converges uniformly on every interval [—r, r] by Weierstrass’s test, because

and

for all r, by the ratio test. Differentiating the right side of (26) term by term yields the
series

—1 1’
— (n—1)! = n!

which is the same as (26). Therefore, the differentiated series is also uniformly convergent
on [—r, r] for every r, so the term by term differentiation is legitimate and

E'(x) = E(x), —00<x < o00.
This is not surprising if you recognize that E(x) = e*. [ ]

Example 4.4.19 Failure to verify that the given series converges at some point can
lead to erroneous conclusions. For example, differentiating

> X
S cos = 27)
n

term by term yields

which converges uniformly on [—r, r] for every r, since

1
“sinl| < @ (Exercise 2.3.19)
n n n
r .
< 2 if x| <r,

and ) 1/n? < co. We cannot conclude from this that (27) converges uniformly on [—r, r].
In fact, it diverges for every x. (Why?) |

4.4 Exercises

1. Find the set S on which {F,,} converges pointwise, and find the limit function.
(a) Fu(x) = x"(1 —x?) (b) Fu(x) = nx"(1 — x?)



10.

11.

12.
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() F(x) = x7(1 — x7) (d) Fp(x) = sin(l + %)x
(&) Falo) = 1= (£) Fa) = xsin

() Falx) = n? (1 - cos %) (h) Fy(x) = nxe ¥

(i) F(x) = %

Prove: If { F;,} converges to F on [a, b] and F, is nondecreasing for each n, then F
is nondecreasing.

Show that the functions { F;, } of Example 4.4.4 are integrable and F' = lim, o Fp(x)
is nonintegrable on every finite interval.

Prove Lemma 4.4.2.

Find F(x) = limy—eo Fy(x) on S. Show that { F,,} converges uniformly to F on
closed subsets of S, but not on S.

(a) Fu(x) = x"sinnx, S =(-1,1)

(b) Fn(x)zm, S={x|x#=xl}
n?sin x .
(c) Fu(x)= P S = (0, co) HINT: See Exercise 2.3.19.

(a) Show thatif {F,,} converges uniformly on S, then {F,} converges uniformly
on every subset of S.

(b) Show that if {F,} converges uniformly on Sy, S2, ..., Sm, then {F,} con-
verges uniformly on [ J;_, Sk.

(c) Give an example where {F,} converges uniformly on each of an infinite se-
quence of sets Si, Sz, ..., but not on U,io:l Sk.

Describe the sets on which the sequences of Exercise 1 converge uniformly. Restrict
your attention to sets that are the union of finitely many intervals and singleton sets.

Suppose that {F;,} converges pointwise on [a, b] and, for each x in [a, b], there is
an open interval /, containing x such that { F;,} converges uniformly on I, N [a, b].
Show that { F;,} converges uniformly on [a, b].

Prove: If { F;,} converges uniformly to F on S, then lim, o || Frlls = | F|s.

Prove: If { F;,} converges uniformly to F on S, then F' is bounded on S if and only
if limy oo f{|| Fulls} < o0.

Prove: If {F,} and {G,} converge uniformly to F and G on S, then {F, + G,}
converges uniformly to F + G on S.

(a) Prove: If {F,} and {G,} converge uniformly to bounded functions F and G
on S, then { F,,G,} converges uniformly to FG on S.
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13.

14.

15.

16.

17.

18.

19.

20.

(b) Give an example showing that the conclusion of (a) may fail to hold if F or
G is unbounded on S.

(a) Suppose that { F,,} converges uniformly to F on (a, b). Prove: If xo <a < b
and L, = limy_,x, F,(x) exists (finite) for every n, then L = lim, .o Ly
exists (finite) and

lim F(x) =L

X—>X0

(b) State similar results for limits from the right and left.

Find the limits.

4 2

(a) lim T sin dx (b) lim dx
n—oo [ X n n—00 01 1 4 x2n

(c) lim [ nxe™™ dx (d) lim (1 + i)n dx
n—o0 [ n—o0 [ n

Prove (without using Theorem 4.4.10): If each F, is integrable and { F}, } converges
uniformly on [a, b], then lim,,_, fab F,(x) dx exists.

Prove (without using Theorem 4.4.10): If each F}, is nondecreasing and {F;,} con-
verges uniformly to F on [a, b], then

b b
lim Fn(x)dx:/ F(x)dx.

Use Weierstrass’s test to determine sets on which the series converges absolutely
uniformly.

@ %5 (r55) ) ()
(©) Y nx"(1 — x)" (d) )’ n(xz%n)

1 (a-
(e) Zn—x () Z T 2)n sinnx
Show that if " |a,| < oo, then Y_a, cosnx and Y_a, sinnx define continuous
functions on (—oo, 00).

(a) Give an example showing that the following “comparison test” is invalid: If
> fu converges uniformly on S and ||gn|ls < || fx|ls, then >_ g, converges
uniformly on S.

(b) This “comparison test” can be corrected by adding one word to its hypothesis
and conclusion. What is the word?

(a) Explain the difference between the following statements: (i) Y f, converges
absolutely and uniformly on S; (ii) }_ f, converges absolutely uniformly on
S.



21.

22,
23.
24.

25.
26.
27.

28.
29.

30.

31.
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(b) Show thatif )" f, converges absolutely uniformly on S, then > f, converges
uniformly on S.

Show that the hypotheses of Weierstrass’s test imply that ) . f,, converges absolutely
uniformly on S.

Prove Corollary 4.4.17.
Prove Theorem 4.4.18.

Suppose that {a, }7° is monotonic and lim, o @, = 0. Show that

o0 o0
E apsinnx and E a, COSnX
n=1 n=1

define functions continuous for all x # 2kn (k = integer).
Prove Theorem 4.4.19.

Formulate an analog of Theorem 4.4.10 for series.

In Section 4.5 we will see that

2n 2n+1

2N, X . N, o X
e = Z(—l) and sinx = Z(—l) _—
=0

n! @n + 1)

n=0

for all x, and in both cases the convergence is uniform on every finite interval. Find
series that converge to

(a) F(x) :/ e~ dt and (b) G(x)z/ Sltitdt
0 0
for all x.

Prove Theorem 4.4.20.

Show from Example 4.4.17 that ) .-, (—1)" sin(x/n) converges uniformly on any
finite interval.

Prove: If 0 < ay+1 < ap and Zalg < oo for some positive integer k, then
> (=1)" sina,x converges uniformly on any finite interval.

For n > 2, define
n*(x—n+1/n%, n—1/n3<x<n,
fu@)={-n*(x—n—-1/n%, n<x<n+1/n3

Oa |‘x_n|>l/n3’

and let F(x) = Y22, fu(x). Show that [;° F(x)dx < oo, and conclude that ab-

solute convergence of an improper integral fooo F(x) dx does notimply that limy, o F(x) =

0, even if F is continuous on [0, 00).
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4.5 POWER SERIES

We now consider a class of series sufficiently general to be interesting, but sufficiently
specialized to be easily understood.

Definition 4.5.1 An infinite series of the form
o0
Y an(x —xo)", (1)
=0

where x¢ and ayp, a1, ..., are constants, is called a power series in x — xo. |
The following theorem summarizes the convergence properties of power series.

Theorem 4.5.2 In connection with the power series (1), define R in the extended reals
by

1 Tim 1/n
== T Ja,|"/", )
In particular, R = 0 iflim,_ o |an|"/" = o0, and R = o0 if limy 00 |an|" = 0. Then
the power series converges

(a) onlyforx = xoif R =0;

(b) forall x if R = oo, and absolutely uniformly in every bounded set;

(c) forxin(xo— R,xo+ R)if0 < R < oo, and absolutely uniformly in every closed
subset of this interval.

The series diverges if |x — xo| > R. No general statement can be made concerning conver-
gence at the endpoints x = xo + R and x = xo — R : the series may converge absolutely
or conditionally at both, converge conditionally at one and diverge at the other, or diverge
at both.

Proof In any case, the series (1) converges to ag if x = xg. If

Y lanr" < oo 3)

for some r > 0, then Y_ a,(x — x0)" converges absolutely uniformly in [xo — r, xo +
r], by Weierstrass’s test (Theorem 4.4.15) and Exercise 4.4.21. From Cauchy’s root test
(Theorem 4.3.17), (3) holds if

lim (|a,|rM)Y" <1,
n—>o00

which is equivalent to

1/n

rlim |a,|V" < 1
n—>o00

(Exercise 4.1 .30(a)). From (2), this can be rewritten as r < R, which proves the assertions
concerning convergence in (b) and (c).

If0 < R < oo and |x — xo| > R, then
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1 1

JR— > _— s
R |x —xol
so (2) implies that

|an|1/n >
|x — xol

and therefore |a,(x — xo)"| > 1

for infinitely many values of n. Therefore, Y a,(x — x¢)" diverges (Corollary 4.3.6) if
|x — xo| > R. In particular, the series diverges for all x # x¢ if R = 0.

To prove the assertions concerning the possibilitiesat x = xo + R and x = x9 — R
requires examples, which follow. (Also, see Exercise 1.) a

The number R defined by (2) is the radius of convergence of Y an(x — x)". If R > 0,
the open interval (xg — R, xo + R), or (—00, 00) if R = o0, is the interval of convergence
of the series. Theorem 4.5.2 says that a power series with a nonzero radius of convergence
converges absolutely uniformly in every compact subset of its interval of convergence and
diverges at every point in the exterior of this interval. On this last we can make a stronger
statement: Not only does Y a,(x —xo)" diverge if |x —xo| > R, but the sequence {a, (x —
xo)"} is unbounded in this case (Exercise 3(b)).

Example 4.5.1 For the series
Z sin;:/6(x _ay

we have

n—00 n—00 n

. . . 6 1/n
lim |a,|"/" = Tim (7| sinnr/ )

1 —
= — Iim (|sinnw/6))"/" (Exercise 4.1.30(a))
2 n—o00
1 1
= — 1 = —.
2( ) 2
Therefore, R = 2 and Theorem 4.5.2 implies that the series converges absolutely uniformly
in closed subintervals of (—1, 3) and diverges if x < —1 or x > 3. Theorem 4.5.2 does not

tell us what happens when x = —1 or x = 3, but we can see that the series diverges in both
these cases since its general term does not approach zero. [ ]

Example 4.5.2 For the series
xn
2
_— —(\'"" 11
im |a,|Y" = Tim (—) = lim exp (—log—) =e'=1.
n—00 n—>oo \ n n—00 n n
Therefore, R = 1 and the series converges absolutely uniformly in closed subintervals

of (—1,1) and diverges if |x| > 1. For x = —1 the series becomes > (—1)"/n, which
converges conditionally, and at x = 1 the series becomes ) _ 1/n, which diverges. |
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The next theorem provides an expression for R that, if applicable, is usually easier to use
than (2).

Theorem 4.5.3 The radius of convergence of > an(x — xo)" is given by

an+1
ap

if the limit exists in the extended reals.

Proof From Theorem 4.5.2, it suffices to show that if

L= lim |2 “)
n—>o00 | dp
exists in the extended reals, then
L= Tim |a,|"V/". 5
n—00

We will show that this is so if 0 < L. < oo and leave the cases where L = 0 or L = oo to
you (Exercise 7).

If (4) holds with0 < L < oo and 0 < € < L, there is an integer N such that

am+1
L—e<

<L+4+e if m=>N,

am

SO
lam|(L — €) < |am+1| < lam|(L +€) if m=N.

By induction,
lan|(L — )" N < |a,| < lan|(L + )"V if n>N.
Therefore, if
Ky =lay|(L—€e)™ and K =lay|(L +€)7V,

then
K{/™M(L —€) < |an)" < KY™(L + ¢). ©6)

Since lim, 0o K'/" = 1if K is any positive number, (6) implies that

L —e¢< lim |an|1/n Hn

n—>o00

< lim |an| <L +e.
n—>oo

Since € is an arbitrary positive number, it follows that
lim |a,|"" =L,
n—>o00

which implies (5). a
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Example 4.5.3 For the power series

n

X
n!’
. lan+1 n! .
lim = lim —— = lim =0.
n—oo | a, n—oo (n 4+ 1)!  n—oon+1

Therefore, R = o0; that is, the series converges for all x, and absolutely uniformly in every
bounded set. [ ]

Example 4.5.4 For the power series

Zn!x",

a n+1)!
lim | = = lim ( ) = lim (n + 1) = oo.
n—>oo | ap n—00 n! n—o00
Therefore, R = 0, and the series converges only if x = 0. |

Example 4.5.5 Theorem 4.5.3 does not apply directly to

Z (_;)n x2n (p = constant), ™

which has infinitely many zero coefficients (of odd powers of x). However, by setting

2
=" ,
Z 4npp Yy (8)

y = x*, we obtain the series
which has nonzero coefficients for which

an+1
7

lim
n—>o0

. 4" n? 1 . . I\? 1
= lim ——— = - lim — =-.
n—>00 4”+1(n + 1)? 4 n—o0 n 4

2

Therefore, (8) converges if |y| < 4 and diverges if |y| > 4. Setting y = x*, we conclude
that (7) converges if |x| < 2 and diverges if |x| > 2. Atx = %2, (7) becomes Y (—1)"/n?,
which diverges if p < 0, converges conditionally if 0 < p < 1, and converges absolutely
if p> 1. ]

Properties of Functions Defined by Power Series

We now study the properties of functions defined by power series. Henceforth, we consider
only power series with nonzero radii of convergence.

Theorem 4.5.4 A power series

f@) =) an(x —x0)"
n=0



262 Chapter 4 Infinite Sequences and Series

with positive radius of convergence R is continuous and differentiable in its interval of
convergence, and its derivative can be obtained by differentiating term by term; that is,

1) =) nan(x—xo)" ", ©)

n=1

which can also be written as

oo

f'(x) =) (1 + Dang1 (x = x0)". (10)

n=0
This series also has radius of convergence R.

Proof First, the series in (9) and (10) are the same, since the latter is obtained by shifting
the index of summation in the former. Since

lim ((n + D]as)'/" = Tim (n + )"/ "|a,|"/"
n—o00 n—o0

= ( lim (n + 1)1/") ( lim |an|1/”) (Exercise 4.1.30(a))
n—o00 n—o0

. log(n + 1) S 1/n el 1
= [JE&“P (f (Jim laal'") = % = %
the radius of convergence of the power series in (10) is R (Theorem 4.5.2). Therefore,

the power series in (10) converges uniformly in every interval [xo — 7, xo + r] such that
0 < r < R, and Theorem 4.4.20 now implies (10) for all x in (xg — R, xo + R). a

Theorem 4.5.4 can be strengthened as follows.

Theorem 4.5.5 A power series

f@) =) an(x —x0)"
=0

with positive radius of convergence R has derivatives of all orders in its interval of convergence,
which can be obtained by repeated term by term differentiation; thus,

o0

SO@ = nn =11 =k + Dan(x —x0)"*. (11)

n=k

The radius of convergence of each of these series is R.

Proof The proof is by induction. The assertion is true for k = 1, by Theorem 4.5.4.
Suppose that it is true for some k£ > 1. By shifting the index of summation, we can rewrite
(11) as

F®Ox) = Z(n + k) +k—=1)--(n+ Dayre(x —x0)", |x—x0| <R.
=0
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Defining
bp=m+k)n+k—1)-(n+ Dapir, (12)

we rewrite this as
o0
f®x) = Z bn(x —x0)", |x—x0| <R.
=0

By Theorem 4.5.4, we can differentiate this series term by term to obtain

oo

FEED () = ann(x —x0)" ', |x —xo| <R.

n=1
Substituting from (12) for b,, yields

FEED (x) = Z(n +hk)n+k—1)--(m+ Dnappre(x —x0)" L, |x—xo| <R.

n=1

Shifting the summation index yields

o0
FED@) = > nm =1 (n—k)an(x —x0)" ¥, |Jx —xo| <R,
n=k+1
which is (11) with k replaced by k + 1. This completes the induction. 0

Example 4.5.6 In Example 4.4.10 we saw that
1 o0
_ n
m = Z X, |X| < 1.
=0
Repeated differentiation yields
k! =

=Y k@ +k—1-@+Dx", |x[ <1,

n=0
o)
1 2 [(n+k n
— = x", |x] < L
(1) v "
Example 4.5.7 By the method of Example 4.5.5, it can be shown that the series
o0 x2n+1 o0 x2n
S(x) = ' —— d Cx) = "
() ,;,( Ve M4 € ,;,( Y G
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converge for all x. Differentiating yields

n

§'(x) = ;)(— Y G = €@

and
2n—1 2n+1

C'(x) = Z( Vo Z( "oy = S

These results should not surprise you if you recall that
S(x) =sinx and C(x) = cos x.

(We will soon prove this.) |
Theorem 4.5.5 has two important corollaries.

Corollary 4.5.6 If

o0
fx) = Zan(x —x0)", |x—xo0| <R,
n=0
then

_ £ (xo)

" n!

Proof Setting x = x¢ in (11) yields
1 ® (xo) = Klay. 0

Corollary 4.5.7 (Uniqueness of Power Series) If
Y an(x —x0)" = Y ba(x — x0)" (13)
n=0 n=0

for all x in some interval (xo —r, xo + 1), then
ay =b,, n=>0. (14)
Proof Let

flx) = Z an(x —x0)" and g(x) = Z by (x — x0)".

From Corollary 4.5.6,

(n) (n)
SO 8P

T p (15)

a, =
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From (13), f = gin (xg — r, xo + r). Therefore,
P (x0) = g™ (x0), n=0.

This and (15) imply (14). a

Theorems 4.4.19 and 4.5.2 imply the following theorem. We leave the proof to you
(Exercise 15).

Theorem 4.5.8 If x| and x, are in the interval of convergence of
o0
f(x) =" an(x —x0)",
n=0

then

X2 S

n n+1 n+1

x)dx = X2 — Xo — (X1 —Xo ;

| rear = 30 S [ = xo) (o1 = 0]
1 n=0

that is, a power series may be integrated term by term between any two points in its interval

of convergence.

Example 4.5.16 presents an application of this theorem.

Taylor’s Series

So far we have asked for what values of x a given power series converges, and what are
the properties of its sum. Now we ask a related question: What properties guarantee that a
given function f can be represented as the sum of a convergent power series in x — x¢? A
partial answer to this question is provided by what we already know: Theorem 4.5.5 tells us
that / must have derivatives of all orders in some neighborhood of x¢, and Corollary 4.5.6
tells us that the only power series in x — x¢ that can possibly converge to f in such a
neighborhood is

X rm
>y (16)
n=0 :

This is called the Taylor series of f about x¢ (also, the Maclaurin series of f,if xo = 0).
The mth partial sum of (16) is the Taylor polynomial

m  r(n)
Tty = 32 L200 (o,
= n!
defined in Section 2.5.

The Taylor series of an infinitely differentiable function f may converge to a sum dif-
ferent from f. For example, the function

ey £ 0,

f(x)={0 70
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is infinitely differentiable on (—o0, 00) and f ™ (0) = 0 for n > 0 (Exercise 2.5.1), so its
Maclaurin series is identically zero.

The answer to our question is provided by Taylor’s theorem (Theorem 2.5.4), which
says thatif f is infinitely differentiable on (a, b) and x and x¢ are in (a, b) then, for every
integer n > 0,

f(n+1)(cn)

CEEN (x —x0)" !, (17

fx) =Ta(x) =

where ¢, is between x and x¢. Therefore,
o0
1™ (x0)
foy =3 L0 gy
n=0 :

for an x in (a, b) if and only if

f(n+1)(cn)

_ n+1 —
nl)rgo Y (x — x0) 0.

It is not always easy to check this condition, because the sequence {c,} is usually not pre-
cisely known, or even uniquely defined; however, the next theorem is sufficiently general
to be useful.

Theorem 4.5.9 Suppose that f is infinitely differentiable on an interval I and

rn
lim —|| f™|; =o. (18)
Then, if xo € 10, the Taylor series
O £ (y
S E 0)(x — xo)"
n=0 :

converges uniformly to f on
I, =1N[xg—r,xo+r].

Proof From (17),

n+1 n+1

.
I/ =Tullz, < L0y, < ——— | F L,
(n + 1) (n + 1)

so (18) implies the conclusion. a

Example 4.5.8 If f(x) = sinx, then || f®||(_o0.00) = 1, k > 0. Since

n

Iim —=0, 0<r<o
n—oo p!
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(Example 4.1.12), (18) holds for all r. Since
e =0 and fE"V©0) = (1", m =0,
we see from Theorem 4.5.9, with I = (—o0, 00), x¢9 = 0, and r arbitrary, that

2n+1

smx_Z( (2n+1)‘ —00 < X < 00,

and the convergence is uniform on bounded sets.

A similar argument shows that

ol 2n
n X
cosx = E (-1 , —00 <X <00,
2n)!
n=0
with uniform convergence on bounded sets. [ ]

Example 4.5.9 If f(x) = e*, then f®(x) = e and | f®|; = e, k > 0, if

I = [—r,r]. Since
n

ot
lim —e =0,
we conclude as in Example 4.5.8 that
o0
x"
Z —, —00<X <00,
— n!
with uniform convergence on bounded sets. [ ]

Example 4.5.10 If f(x) = (1 + x)4, then

(n) (n)
f"m:@%+wf wf"@:G> (19)

n! n! n
o0
Z (4>xn
n=0 n

is called the binomial series. We saw in Example 2.5.3 that this series equals (1 + x)? for
all x if g is a nonnegative integer. We will now show that if ¢ is an arbitrary real number,
then

(Example 2.5.3). The Maclaurin series

o0

Z(:>x":f(x):(l+x)q, 0<x<l. (20)

n=0

Since
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L2)/C)

the radius of convergence of the series in (20) is 1. From (19),

||f(") ||[0,1] q
n
r

n!
n
£ 0.1y < [max(1,29)] lim
n: n—o00

lim
n—>o0

< [max(1,29)] , n>0.

¢

where the last equality follows from the absolute convergence of the series in (20) on
(—1,1). Now Theorem 4.5.9 implies (20). [ ]

Therefore, if 0 < r < 1,

lim
n—>o0

r" =0,

We cannot prove in this way that the binomial series converges to (1 + x)? on (—1, 0).
This requires a form of the remainder in Taylor’s theorem that we have not considered, or
a different kind of proof altogether (Exercise 20). The complete result is that

(1 +x)7 = Z(Z)x” l<x<l, Q1)

n=0
for all g, and, as we said earlier, the identity holds for all x if ¢ is a nonnegative integer.
Arithmetic Operations with Power Series

We now consider addition and multiplication of power series, and division of one by an-
other.

We leave the proof of the next theorem to you (Exercise 21).

Theorem 4.5.10 If

f(x)zZan(x—xo)", |x —xo| < R1, (22)
=0

gx) = Z bu(x —x0)", |x —x0] < Ra, (23)
=0

and a and B are constants, then

af (x) + Bg(x) = Y _(@an + Bby)(x —x0)", |x —xo| < R,

n=0

where R > min{ Ry, R;}.
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Theorem 4.5.11 If f and g are given by (22) and (23), then

f(x)gx) = Z cn(x —x0)",  |x—xo| <R, (24)
=0
where Cn = Z arbp—y = Zan—rbr
=0 =0

and R > min{Rl, Rz}.

Proof Suppose that Ry < R,. Since the series (22) and (23) converge absolutely to
f(x) and g(x) if |[x —x¢| < R, their Cauchy product converges to f(x)g(x) if |x —xo| <
R, by Theorem 4.3.29. The nth term of this product is

n n D
Z ar(x —x0) bp—r(x —x0)"" = Z arbp—r | (x —x0)" = cn(x — x0)".
r=0 r=0
Example 4.5.11 If
1 o0
f(x):T:anv |X|<1,
n=0
and
g =Y bux", |x| <R,
=0
then
f(_xl = ’;snx", |x|] < min{l, R},
where
sn = ()b + (1)by + -+ + (1)by,
=bo+bi+- -+ by -

Example 4.5.12 From the paragraph following Example 4.5.10,

(1+x)? = Z (5))&?", x| <1,

n=0
and

1+07=3" (Z)x”, x| < 1.

n=0
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Since

A+x)?0+x)97=1+x)PH = Z (P +q>xn’

n=0

while the Cauchy productis Y oo ¢, x", with

=506

Corollary 4.5.7 implies that

This yields the identity

valid for all p and gq. [ ]
The quotient
h(x)
fx) = (25)
g(x)
of two power series
o0
h(x) = calx —x0)". |x —xo| <Ry,
=0
and
o0
g(x) =) bu(x —x0)". |x—xo| < Ra,
=0
can be represented as a power series
o0
() =" an(x = x0)" (26)
n=0

with a positive radius of convergence, provided that

bo = g(xo) # 0.

This is surely plausible. Since g(xo) # 0 and g is continuous near Xy, the denominator of
(25) differs from zero on an interval about xo. Therefore, f has derivatives of all orders on
this interval, because g and & do. However, the proof that the Taylor series of f about xg
converges to f near xo requires the use of the theory of functions of a complex variable.
Therefore, we omit it. However, it is straightforward to compute the coefficients in (26) if
we accept the validity of the expansion. Since

f(x)g(x) = h(x).
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Theorem 4.5.11 implies that

n
E arby_r =c,, n=>0.
r=0

Solving these equations successively yields

1 n—1
ap = b_ (Cn - an—rar , n>1
0 r=0

It is not worthwhile to memorize these formulas. Rather, it is usually better to view the
procedure as follows: Multiply the series f* (with unknown coefficients) and g according
to the procedure of Theorem 4.5.11, equate the resulting coefficients with those of &, and
solve the resulting equations successively for ag, a1, ....

Example 4.5.13 Suppose that we wish to find the coefficients in the Maclaurin series
tanx = a0+a1x+a2x2+...

We first observe that since tan x is an odd function, its derivatives of even order vanish at
xo = 0,s0as,; = 0,m > 0. Therefore,

tanx = a1x+a3x3 +a5x5 + ...

Since )
sin x
tanx = ,
cos X
it follows from Example 4.5.8 that
3 %5
-+ —+-
arx +azx® +asx® 4+ - = 62 1240
X X
1— — + =
2 + 24 +
SO
2 4 3 5
3 5 X X X X
RUR N I A = T ,
(a1 x + aszx” 4+ asx> + )( 2+24+ ) 6+120
or, according to Theorem 4.5.11,
arx+ (a3 =50+ (as = 2 4+ 1) T 4= x - A
! ) T2 T4 B 6 ' 120

From Corollary 4.5.7, coefficients of like powers of x on the two sides of this equation
must be equal; hence,

1 l ! +

ay =1, az — — =, A TAN?
! ) 6 2 24 120
SO

1 1 1/1 1 2
:1, —_— 1 = - = — — — ——1 frd —_—
ay as = + () as O+2() 24()
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Therefore,
t - X PRI
anx =x + — + —x
3 15

Example 4.5.14 To find the reciprocal of the power series
o0 xn
— x _ r
gx)y=1+e —2+Z:1 o
n=

we let h = 1 in (25). If

then

2 X3

x
lz(ao+a1x+a2x2+a3x3+---)(2+x+7+F+---

a
=2ag9 + (ap + 2a1)x + (70 +ai + 2a2) x?

a a
+(€0+71+az+2a3)x3+----

From Corollary 4.5.7,
2a0 = 1,
aop +2a; =0,
ao
) +a; +2a, =0,

a a
?0+?1+a2+2a3=0.

Solving these equations successively yields

SO
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Example 4.5.15 To find the reciprocal of

o0 xn
gy =e" =) =,
n!

n=0

we again let 2 = 1in (25). If
o0
(e)C)—l — Zanxn’
n=0

then

o0 o0 xn o0
1= (Z anx"> (Z F) = chx",
n=0 n=0 n=0

where
n

ar
Cp = E —_—
—7r)
= (n—r)!
From Corollary 4.5.7, co = ap = 1 and ¢, = 0 if n > 1; hence,

n—1
ar
I .
" (n—r)! -
r=0

Solving these equations successively for ag, ay, ... yields

1
ar=—(1) = -1,

1

1 1
a2 == 50+ 0] =3

1 1 1 /1 1
i T T T (5)} =76

1 1 1 /1 1 1 1
i PTA R T T (5) 4Tl (_6)} =

From this, we see that

(—DF
k!

ap =

273

27)

(28)

for 0 < k < 4 and are led to conjecture that this holds for all k. To prove this by induction,

we assume that it is so for 0 < k < n — 1 and compute from (28):
n—1
1 =nr
= _; n—n! rl

n—1
- _% 3 -1y (’;) (Exercise 1.2.19(a))
" r=0
1y

n!

(Exercise 1.2.19(b)).
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Thus, we have shown that

o0 xn
x\—1 _ 1y
@)=
n=0
Since this is precisely the series that results if x is replaced by —x in (27), we have verified
a fundamental property of the exponential function: that

()t =e7*

This also follows from Example 4.3.26. |

Abel’s Theorem

From Theorem 4.5.4, we know that a function f defined by a convergent power series
o0
f(x) = an(x—x0)". |x—xo| <R, (29)
=0

is continuous in the open interval (xo— R, xo+ R). The next theorem concerns the behavior
of f as x approaches an endpoint of the interval of convergence.

Theorem 4.5.12 (Abel’s Theorem) Let f be defined by a power series (29)

with finite radius of convergence R.
(a) IfY o o anR"™ converges, then

lim  f(x) =) a,R".
n=0

x—>(xo+R)—

(b) 1> 02 (—=1)"a, R" converges, then

oo

f@) =) (=D"anR".

x—>(xo—R)+
n=0

Proof We consider a simpler problem first. Let

gy) =) bny"
n=0

and

s (finite).

> b
n=0

We will show that
lir{1 g(y) =s. (30)
y—=>1-
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From Example 4.5.11,

o0
gy) ==y sy, 31)
n=0
where
Spn =bo+ b1+ -+ by.
Since
1 o0 o0
= Zy" and therefore 1= (1-—y) Zy", Iyl <1, (32)
-y =0 n=0

we can multiply through by s and write

o0
s=(1-y Y sy |yl<L

n=0

Subtracting this from (31) yields

gy)—s=0-y) Z(Sn =)y, Iyl <L

n=0
If ¢ > 0, choose N so that
|sp —s| <e if n>N+1.

Then, if 0 < y < 1,

N 00
g0 =sl< A=) Isa—sly" + A=) Y lsn—sh"
=0 n=N+1

N 00
<=y lsn—sly" + 1= y)eyV Y " y"

n=0 n=0
N

<=y lsn—sl+e
n=0

because of the second equality in (32). Therefore,

lg(y) —s| < 2e
if
N
A=Y lsn—sl<e.

n=0
This proves (30).
To obtain (a) from this, let b, = a, R" and g(y) = f(xo + Ry); to obtain (b), let
by = (=1)"anR" and g(y) = f(xo — Ry). a
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Example 4.5.16 The series

1 o0
= — = —1 nyn
f) =7 = (D"
n=0
diverges at x = 1, while limy_,;— f(x) = 1/2. This shows that the converse of Abel’s
theorem is false. Integrating the series term by term yields

xn+1

n+1’

x| <1,

log(1 4+ x) = ) (=1)"
n=0

where the power series converges at x = 1, and Abel’s theorem implies that

ad (_1)n+1
log2 = _— |
8 nz=;) n+1

Example 4.5.17 If ¢ > 0, the binomial series

)

converges absolutely for x = =+1. This is obvious if g is a nonnegative integer, and it
follows from Raabe’s test for other positive values of ¢, since

dn+1| _ q q\|_n—¢
= = , n>gq,
an n—+1 n n+1
and
1imn(a”+1 —1)= limn(n_q—l)
n—00 an n—00 n+1
n
= i —q—1)=—q—1.
nggonﬂ(q ) q

Therefore, Abel’s theorem and (21) imply that

i (Z) =29 and i(—l)" (Z) =0, ¢>0. n

n=0 n=0

4.5 Exercises

1. The possibilities listed in Theorem 4.5.2(c) for behavior of a power series at the
endpoints of its interval of convergence do not include absolute convergence at one
endpoint and conditional convergence or divergence at the other. Why can’t these
occur?
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Find the radius of convergence.

(@) > (n : 1) 2+ D" (b)) Y 2Vi(x — 1)

() 3 (2+sin %) (x +2)" %
@)

(a) Prove: If {a,r"} is bounded and |x; — xo| < r, then }_an(x1 — x0)" con-
verges.

(b) Prove: If Y an(x — xo)" has radius of convergence R and |x; — xo| > R,
then {a, (x1 — x¢)"} is unbounded.

Prove: If g is a rational function defined for all nonnegative integers, then Y a, x"

and Y_ a, g(n)x™ have the same radius of convergence. HINT: Use Exercise 4.1.30(a).

Suppose that f(x) = > a,(x — x0)" has radius of convergence R and 0 < r <
R; < R. Show that there is an integer k such that

p k+1 R,
<|—
R1 R1 —r

fx) - Z an (x — x0)"

if [x —xo| <randk > k.

Suppose that k is a positive integer and

) =) anx"
n=0

has radius of convergence R. Show that the series

gx) = f(xF) =) anxkr

n=0
has radius of convergence R'/*.
Complete the proof of Theorem 4.5.3 by showing that
(a) R=0iflimy oo |ans1l/lan| = oo;
(b) R = ociflimyoo lant1]/lan] = 0.

Find the radius of convergence.

(a) X(logn)x" (b) X 2"nP(x + 1)"
2
(c) Y (=1 (znn>x” (d) Z(—l)"” LIV
n" n oz(oc+1) (oc+n—1)
(2 550+ O L 5En—gran

(o, B # negative integer)
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9.

10.

11.

12.

13.

14.

15.
16.

Suppose that a, # 0 for n sufficiently large. Show that

Qn an+1

An

Un < {im
n—>o0

(a) lim

n—>o00

< lim |a,|"" and (b) lim |a,|
n—00 n—>o00

7
Show that this implies Theorem 4.5.3.

Given that
1

o0
= Zx”, [x] <1,
1—x
n=0

2

use Theorem 4.5.4 to express Y .-, n2x" in closed form.

The function

ad —1)" 2n+
Iy = Y P (5 = integer = 0)

n=0
is the Bessel function of order p. Show that
(a) Jj=—J.
(b) J,=3Up-1=Jp+1), p= 1.
(c) x2J)+xJ,+ (x> = p?)J, =0.
Given that the power series f(x) = Y o2 ) a,x™ satisfies

fix) ==2xf(x), fO0)=1,

find {a,}. Do you recognize f?
Let

o0
=0

and g(x) = f(x*), where k is a positive integer. Show that
(kn)!

n!

gP0)=0 if r#kn and g% (0) = f™©), n=>o.

Let
o0
f(x) = an(x —x0)", |x—xo| <R,
=0

and f(t,) = 0, where t, # x¢ and lim, o0, = x¢. Show that f(x) = 0
(J]x — x0| < R). HINT: Rolle’s theorem helps here.

Prove Theorem 4.5.8.
* logt
/ o8 dt
1 t—1

Express
as a power series in x — 1 and find the radius of convergence of the series.




17.

18.

19.

20.

21.
22,

23.

24.

25.

26.
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By substituting —x? for x in the geometric series, we obtain

1 o0
i DDt x| < L
n=0

Use this to express f(x) = Tan !x (f(0) = 0) as a power series in x. Then
evaluate all derivatives of f at xo = 0, and find a series of constants that converges
to /6.

Prove: If
o0
fx) = Zan(x —x0)", [x —x0| <R,
=0

and F is an antiderivative of f on (xg — R, xo + R), then

a
_:1()6—)60)"“, |x —xo| < R,

n

Fx)=C+ Z
n=0

where C is a constant.

Suppose that some derivative of f can be represented by a power series in x — xg
in an interval about xo. Show that f and all its derivatives can also.

Verify Eqn. (21) by showing that

o0
1+ (Z)x” =1, |x|<1,

n=0

HINT: Differentiate.
Prove Theorem 4.5.10.

Find the Maclaurin series of cosh x and sinh x from the definition in Eqn. (16), and

also by applying Theorem 4.5.10 to the Maclaurin series for e* and e™*.

Give an example where the radius of convergence of the product of two power series
is greater than the smaller of the radii of convergence of the factors.

Use Theorem 4.5.11 to find the first four nonzero terms in the Maclaurin.

(a) e* sinx (b)li—xx2 (€) 25 (@) sin)log + )

Derive the identity
2sinx cosx = sin2x

from the Maclaurin series for sin x, cos x, and sin 2x.

(a) Given that

o0
(A=2xt +x3)7 V2 =" Py(0)x", |x] <1, (A)
=0
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if —1 <t < 1, show that Py(t) = 1, Pi(t) = ¢, and

2n+1
Pn+1(t): n+1

n
tPn(t)_mPn—l(t)v n>1.

HINT: First differentiate (A) with respect to x.

b) Show from (a) that P, is a polynomial of degree n. It is the nth Legendre
poly g 8
polynomial,and (1 —2xt + x2)~'/2 is the generating function of the sequence

{Pn}.

27. Define (if necessary) the given function so as to be continuous at xo = 0, and find
the first four nonzero terms of its Maclaurin series.

xe* cos X
b) ——
(a) sin x (b) 1+ x+ x2 () secx
in2
(d) xcsex (e) Sslinn;

28. Letag=ay =5anday+; = ap —6ay—1, n > 1.
(a) Express F(x) =Y 2 anx™ in closed form.
(b) Write F as the difference of two geometric series, and find an explicit formula
foray,.

29. Starting from the Maclaurin series
L n+1

X
log(l—x)z—z
n=0n+1

. x] <1,

use Abel’s theorem to evaluate

Z=: n+1)(n+2)

30. In Example 4.5.17 we saw that
o0
Z(q) =291, ¢g=>0.
n
n=0

Show that this also holds for —1 < g < 0, but not for ¢ < —1. HINT: See Exer-
cise 4.1.35.

31. (a) Prove: If Y2, b, converges, then the series g(x) = Y .~ byx" converges
uniformly on [0, 1]. HINT: If € > 0, there is an integer N such that

|by + buy1 + -+ bm| <€ if n,m=>N.
Use summation by parts to show that then
|bpx™ + by x" Vo bpx™ <2 if 0<x<1, n,m=>N.

This is also known as Abel’s theorem.



32.

33.

34.
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(b) Show that (a) implies the restricted form of Theorem 4.5.12 (concerning g)
proved in the text.

Use Exercise 31 to show that if Z:io an, Z:io by, and their Cauchy product
Y02 o Cn all converge, then

()50 £
n=0 n=0 n=0
Prove: If

o0
gr) = > bax", x| <1,
=0

and b, > 0, then

o0
an = lir{1 g(x) (finite or infinite).
x—>1—

n=0

Use the binomial series and the relation

to obtain the Maclaurin series for sin™! x (sin™! 0 = 0). Deduce from this series

and Exercise 33 that
o0
n|22n2n+1) 2°

n=0



CHAPTER 5

Real-Valued Functions

of Several Variables

IN THIS CHAPTER we consider real-valued function of n variables, where n > 1.

SECTION 5.1 deals with the structure of R”, the space of ordered n-tuples of real numbers,
which we call vectors. We define the sum of two vectors, the product of a vector and a
real number, the length of a vector, and the inner product of two vectors. We study the
arithmetic properties of R”, including Schwarz’s inequality and the triangle inequality. We
define neighborhoods and open sets in R”, define convergence of a sequence of points in
R”, and extend the Heine-Borel theorem to R”. The section concludes with a discussion
of connected subsets of R”.

SECTION 5.2 deals with boundedness, limits, continuity, and uniform continuity of a func-
tion of n variables; that is, a function defined on a subset of R”.

SECTION 5.3 defines directional and partial derivatives of a real-valued function of n
variables. This is followed by the definition of differentiablity of such functions. We define
the differential of such a function and give a geometric interpretation of differentiablity.

SECTION 5.4 deals with the chain rule and Taylor’s theorem for a real-valued function of
n variables.

5.1 STRUCTURE OF R®

In this chapter we study functions defined on subsets of the real n-dimensional space R”,
which consists of all ordered n-tuples X = (x1, x2, ..., Xx,) of real numbers, called the
coordinates or components of X. This space is sometimes called Euclidean n-space.

In this section we introduce an algebraic structure for R”. We also consider its fopologi-
cal properties; that is, properties that can be described in terms of a special class of subsets,
the neighborhoods in R”. In Section 1.3 we studied the topological properties of R, which
we will continue to denote simply as R. Most of the definitions and proofs in Section 1.3
were stated in terms of neighborhoods in R. We will see that they carry over to R” if the
concept of neighborhood in R” is suitably defined.

281
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Members of R have dual interpretations: geometric, as points on the real line, and alge-
braic, as real numbers. We assume that you are familiar with the geometric interpretation
of members of R? and R3 as the rectangular coordinates of points in a plane and three-
dimensional space, respectively. Although R” cannot be visualized geometrically if n > 4,
geometric ideas from R, R?, and R3 often help us to interpret the properties of R” for
arbitrary n.

As we said in Section 1.3, the idea of neighborhood is always associated with some
definition of “closeness” of points. The following definition imposes an algebraic structure
on R”, in terms of which the distance between two points can be defined in a natural way.
In addition, this algebraic structure will be useful later for other purposes.

Definition 5.1.1 The vector sum of

XZ(Xl,Xz,...,xn) and Y:(ylvyZv”‘vyn)
is
X+Y=0(x1+y1,X24+V2,...,Xn+ Yn)- (1)

If a is a real number, the scalar multiple of X by a is

aX = (axy,axz,...,axy). 2)
|

Note that “+” has two distinct meanings in (1): on the left, “+” stands for the newly
defined addition of members of R” and, on the right, for addition of real numbers. However,
this can never lead to confusion, since the meaning of “+4” can always be deduced from
the symbols on either side of it. A similar comment applies to the use of juxtaposition to
indicate scalar multiplication on the left of (2) and multiplication of real numbers on the
right.

Example 5.1.1 InR*, let
X=(1,-2,6,5 and Y= (3,-5.4, %) )

Then
X+Y=(4,-7104%)

and
6X = (6,—12, 36, 30). ]

We leave the proof of the following theorem to you (Exercise 2).
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Theorem 5.1.2 IfX,Y, and Z are in R" and a and b are real numbers, then

(a) X+ Y =Y + X (vector addition is commutative).

(b) X+Y)+Z =X+ (Y + Z) (vector addition is associative).

(c) There is a unique vector 0, called the zero vector, such that X + 0 = X for all X in
R”.

(d) Foreach X in R" there is a unique vector —X such that X + (=X) = 0.

(e) a(X) = (ab)X.

(f) (@+b)X=aX+DX.

(g) aX+Y)=aX+aY.

(h) 1X=X.

Clearly, 0 = (0,0, ...,0) and, if X = (x1, X2, ..., X,), then
—X = (—xl, —X2, .., —Xn).

We write X + (—Y) as X — Y. The point 0 is called the origin.

Anonempty set V = {X,Y,Z, ...}, together with rules such as (1), associating a unique
member of V' with every ordered pair of its members, and (2), associating a unique member
of V' with every real number and member of V/, is said to be a vector space if it has the
properties listed in Theorem 5.1.2. The members of a vector space are called vectors.
When we wish to emphasize that we are regarding a member of R” as part of this algebraic
structure, we will speak of it as a vector; otherwise, we will speak of it as a point.

Length, Distance, and Inner Product

Definition 5.1.3 The length of the vector X = (x1, X2, ..., Xp) is
X| = (x2 4+ x2 4+ 22,

The distance between points X and Y is |X — Y|; in particular, |X] is the distance between
X and the origin. If |X| = 1, then X is a unit vector. ]

If n = 1, this definition of length reduces to the familiar absolute value, and the distance
between two points is the length of the interval having them as endpoints; for n = 2 and
n = 3, the length and distance of Definition 5.1.3 reduce to the familiar definitions for the
plane and three-dimensional space.

Example 5.1.2 The lengths of the vectors

X =(1,-2,6,5) and Y= (3,-5,4,1)

IX| = (12 + (=2)2 + 6> + 5512 = V66
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and

/201
2 2 2 1\241/2
Y| =3+ (5> + 4+ ()N =
The distance between X and Y is
/149

X=¥|=((1-37+ (245 + (647 + (- pH'/? = ——.

Definition 5.1.4 The inner product X-Y of X = (x1,x2,...,x,)and Y = (y1, y2, ..., Yn)
is
X-Y=x1y1 +x2Y2+ -+ Xnyn. |

Lemma 5.1.5 (Schwarz’s Inequality) If X and Y are any two vectors in R",
then
IX- Y| < [X]]Y], 3)

with equality if and only if one of the vectors is a scalar multiple of the other.

Proof If Y = 0, then both sides of (3) are 0, so (3) holds, with equality. In this case,
Y = 0X. Now suppose that Y # 0 and 7 is any real number. Then

0< Z(Xi —1y;)?

i=1

n n n
=D xP-2) xiyi+12) ¥} “)

i=1 i=1 i=1
=|X|2 —2(X-Y)t +2|Y|%

The last expression is a second-degree polynomial p in ¢. From the quadratic formula, the
zeros of p are

XY+ /(X Y)2 - [XPIY]?
= Y ‘

Hence,
(X-Y)? < [X]?|Y)%, (5)

because if not, then p would have two distinct real zeros and therefore be negative between
them (Figure 5.1.1), contradicting the inequality (4). Taking square roots in (5) yields (3)
if Y # 0.

If X = ¢Y, then |X-Y| = |X]||Y| = |¢||Y|? (verify), so equality holds in (3). Conversely,
if equality holds in (3), then p has the real zero to = (X - Y)/|Y||?, and

n

Z(Xi —10yi)>* =0

i=1

from (4); therefore, X = #yY. a
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y=p(@)

Y

rl\_/rz

Figure 5.1.1

Theorem 5.1.6 (Triangle Inequality) IfX and Y are in R", then
X+ Y| = [X|+ Y], (6)

with equality if and only if one of the vectors is a nonnegative multiple of the other.

Proof By definition,

n

n n n
X+ Y= (i +y)> =) X2 +2) xiyi+ ) ¥}

i=1 i=1 i=1 i=1

= XP?+2X-Y) + Y[ %
< |X]? +2X||Y| + |Y|> (by Schwarz’s inequality)
= (IX| + [Y])?.
Hence,
X+ Y[* = (X] + Y]
Taking square roots yields (6).

From the third line of (7), equality holds in (6) if and only if X - Y = |X]|Y|, which is
true if and only if one of the vectors X and Y is a nonnegative scalar multiple of the other
(Lemma 5.1.5). a

Corollary 5.1.7 IfX,Y, and Z are in R", then
X-Z| < |X-Y|+|Y-Z|

Proof Write
X-Z=X-Y)+ (Y-2Z),

and apply Theorem 5.1.6 with X and Y replaced by X — Y and Y — Z. a
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Corollary 5.1.8 If X and Y are in R", then
IX—=Y[ = [[X]-[Y]].
Proof Since
X=Y+(X-Y),

Theorem 5.1.6 implies that
X| < Y]+ [X-Y],

which is equivalent to
IX| =Y = [X-Y]|

Interchanging X and Y yields
Y[ = IX] =Y - X]|.

Since | X — Y| = |Y — X]|, the last two inequalities imply the stated conclusion. 0

Example 5.1.3 The angle between two nonzero vectors X = (x1,X2,x3) and Y =
(»1. y2. y3) in R3 is the angle between the directed line segments from the origin to the
points X and Y (Figure 5.1.2).

X

IX-YI

Figure 5.1.2

Applying the law of cosines to the triangle in Figure 5.1.2 yields
IX - Y2 =|X]? + |Y|? = 2]X]||Y| cos 6. )
However,
X —Y|? = (x1 = y1)> + (x2 = y2)* + (x3 — y3)?
= (0} + 3 +x3) + OF + 53 +3) = 20011 + X2y2 + x3y3)

= X2+ ]YP?-2X Y.
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Comparing this with (8) yields
XY = |X]||Y]|cosb.
Since | cos 6| < 1, this verifies Schwarz’s inequality in R3. ]

Example 5.1.4 Connecting the points 0, X, Y, and X + Y in R? or R? (Figure 5.1.3)
produces a parallelogram with sides of length |X| and |Y| and a diagonal of length | X + Y]|.

X
~N
~N
~N
IXI S
~N
N
~N
IX+Y! b
0 + > X+Y
e
e
b
7
1Y _ 71Xl
e
e
7
Y

Figure 5.1.3

Thus, there is a triangle with sides |X|, |Y|, and |X + Y|. From this, we see geometrically
that

X+ Y| <X+ Y|

in R? or R3, since the length of one side of a triangle cannot exceed the sum of the lengths
of the other two. This verifies (6) for R? and R3 and indicates why (6) is called the triangle
inequality. [ ]

The next theorem lists properties of length, distance, and inner product that follow di-
rectly from Definitions 5.1.3 and 5.1.4. We leave the proof to you (Exercise 6).

Theorem 5.1.9 IfX, Y, and Z are members of R" and a is a scalar, then
(@) laX]| = lalIX].

(b) |X| > 0, with equality if and only if X = 0.

(c) |X—=Y| >0, with equality if and only if X = Y.

(d) X-Y=Y-X

(e) X-(Y+Z)=X-Y+X-Z

() (X)) Y=X-(cY)=c(X-Y).
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Line Segments in R"

The equation of a line through a point Xo = (xo, Yo, Zo) in R? can be written parametri-
cally as

X =Xxo+ut, y=yo+ust, zZ=20+ust, —o0o<t<oo,
where u1, Uy, and u3 are not all zero. We write this in vector form as
X=Xp+1tU —-o0<t<o0, )

with U = (u1, uz, u3), and we say that the line is through Xy in the direction of U.

There are many ways to represent a given line parametrically. For example,
X=Xy+sV, —o0<s<o00, (10)

represents the same line as (9) if and only if V = aU for some nonzero real number a.
Then the line is traversed in the same direction as s and ¢ vary from —oo to co if a > 0, or
in opposite directions if a < 0.

To write the parametric equation of a line through two points X and X; in R3, we take
U = X; —0in (9), which yields

X=X0+Z(X1—X0)ZZX1+(1—Z)X0, —00 <t < 00.

The line segment from Xj to X; consists of those points for which0 <7 < 1.

Example 5.1.5 The line L defined by
x=—-142t, y=3-4t, z=-1, —oco<t <o,
which can be rewritten as
X=(-13-1)+12,-4,0), —oco<t < o0, (11

is through Xy = (—1,3, —1) in the direction of U = (2, —4,0). The same line can be
represented by
X=(-L3-1)+s(1,-2,0), —o0o<s <00, (12)

or by
X=(13-1)+1(-4,8,0), —oc0o<71<o00. (13)
Since |
(17_230) = 5(23_47 O)a

L is traversed in the same direction as ¢ and s vary from —oo to oo in (11) and (12).
However, since
(—4.8,0) = —2(2,—4,0),
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L is traversed in opposite directions as ¢ and 7 vary from —oo to oo in (11) and (13).

Setting ¢t = 11in (11), we see that X; = (1, —1, —1) is also on L. The line segment from
X to X consists of all points of the form

X=11,-1,-D)+ 1 —-1)(-1,3,-1), 0<t<1. [ ]
These familiar notions can be generalized to R”, as follows:

Definition 5.1.10 Suppose that Xy and U are in R” and U # 0. Then the line through
X in the direction of U is the set of all points in R” of the form

X=Xp+1tU —-o0o<t<o0.
A set of points of the form
X=Xo+1tU, 11 =<t=1t,

is called a line segment. In particular, the line segment from Xy to X is the set of points of
the form
X=X0+Z(X1—X0)=lX1+(1—l)Xo, 0<tr<Il. |

Neighborhoods and Open Sets in R"

Having defined distance in R”, we are now able to say what we mean by a neighborhood
of a point in R”.

Definition 5.1.11 If € > 0, the e-neighborhood of a point X in R” is the set

Ne(Xo)| = {X| X — Xo| < €} . [

An e-neighborhood of a point X in RZ? is the inside, but not the circumference, of the
circle of radius € about Xg. In R3 it is the inside, but not the surface, of the sphere of radius
€ about X.

In Section 1.3 we stated several other definitions in terms of e-neighborhoods: neigh-
borhood, interior point, interior of a set, open set, closed set, limit point, boundary point,
boundary of a set, closure of a set, isolated point, exterior point, and exterior of a set. Since
these definitions are the same for R” as for R, we will not repeat them. We advise you to
read them again in Section 1.3, substituting R” for R and X for x¢.

Example 5.1.6 Let S be the set of points in R? in the square bounded by the lines
x = £1, y = =+£1, except for the origin and the points on the vertical lines x = +1
(Figure 5.1.4, page 290); thus,

S={( )|y #00), -l<x<l, -1<y=<1}.
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Every point of S not on the lines y = %1 is an interior point, so
S0 = {(x,y) | (x,y) #(0,0), -1 <x,y < 1}.
S is a deleted neighborhood of (0, 0) and is neither open nor closed. The closure of S is
S={x.»|-1=xy=1},

and every point of S is a limit point of S. The origin and the perimeter of S form 9.5, the
boundary of S. The exterior of S consists of all points (x, y) such that |x| > 1 or |y| > 1.
The origin is an isolated point of S€. [ ]

(L-1)

Figure 5.1.4

Example 5.1.7 If X, is a point in R" and r is a positive number, the open n-ball of
radius r about Xy is the set B,(Xp) = {X | X —Xp| < r}. (Thus, e-neighborhoods are
open n-balls.) If X is in S, (Xp) and

X —X;| <e=r—|X-Xol,

then X is in S, (Xo). (The situation is depicted in Figure 5.1.5 for n = 2.)

Thus, S;(Xp) contains an e-neighborhood of each of its points, and is therefore open.
We leave it to you (Exercise 13) to show that the closure of B,(Xy) is the closed n-ball of
radius r about Xy, defined by
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Sr(Xo) = {X|IX—Xo| <r}. [ |

r—1X,-X,|

Figure 5.1.5

Open and closed n-balls are generalizations to R” of open and closed intervals.

The following lemma will be useful later in this section, when we consider connected
sets.

Lemma 5.1.12 IfX; and X, are in S;(Xo) for some r > 0, then so is every point on
the line segment from X to Xj.

Proof The line segment is given by
X=X, +(1-0)X;, 0<t<l.
Suppose that r > 0. If
X1 —Xo|l <1, [Xo—Xo| <r,

and 0 <t < 1, then

X —Xo| = [1X2 + (1 = )X —1Xo — (1 = 1)Xo|
= [t(X2 — Xo) + (1 = 1)X1 — Xo)|
< 11Xo — Xo| + (1 = 1)[X1 — Xo|
<tr+(0—-tr=r.

The proofs in Section 1.3 of Theorem 1.3.3 (the union of open sets is open, the intersec-
tion of closed sets is closed) and Theorem 1.3.5 and its Corollary 1.3.6 (a set is closed if
and only if it contains all its limit points) are also valid in R”. You should reread them now.
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The Heine—Borel theorem (Theorem 1.3.7) also holds in R”, but the proof in Section 1.3
is valid only for n = 1. To prove the Heine-Borel theorem for general n, we need some
preliminary definitions and results that are of interest in their own right.

Definition 5.1.13 A sequence of points {X,} in R” converges to the limit X if
lim |X, — X| = 0.
r—00
In this case we write .
lim X, =X. ]

r—>00

The next two theorems follow from this, the definition of distance in R”, and what we
already know about convergence in R. We leave the proofs to you (Exercises 16 and 17).

Theorem 5.1.14 Let
i:(fl,fz,...,fn) and Xr :(xlr’xzr’”"xnr)’ rz 1

Then lim, oo X, = X if and only if

that is, a sequence {X,} of points in R" converges to a limit X if and only if the sequences
of components of {X;} converge to the respective components of X.

Theorem 5.1.15 (Cauchy’s Convergence Criterion) A sequence {X,} in
R” converges if and only if for each € > 0 there is an integer K such that

X, —Xs| <€ if r,s>K.
The next definition generalizes the definition of the diameter of a circle or sphere.
Definition 5.1.16 If S is a nonempty subset of R”, then
d(S) =sup{IX-Y||X,Y € S}
is the diameter of S. If d(S) < oo, S is bounded; if d(S) = 0o, S is unbounded. [ ]

Theorem 5.1.17 (Principle of Nested Sets) IfS1, Sa,... are closed nonempty
subsets of R" such that

S1D8 D28 D--- (14)
and
lim d(S,) =0, (15)

then the intersection

(s,
r=1

contains exactly one point.
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Proof Let {X,} be a sequence such that X, € S, (r > 1). Because of (14), X, € S if
r>k,so

X, —X5| <d(Sx) if r,s>k.
From (15) and Theorem 5.1.15, X, converges to a limit X. Since X is a limit point of every

Sk and every Sy is closed, X isin every Si (Corollary 1.3.6). Therefore, Xel,sol #* 0.
Moreover, X is the only point in 7, since if Y € I, then

X-Y|<d(Sy), k=1,

and (15) implies that Y = X. a

We can now prove the Heine-Borel theorem for R”. This theorem concerns compact
sets. Asin R, a compact set in R” is a closed and bounded set.

Recall that a collection H of open sets is an open covering of a set S if
SCU{H|HeH]}.

Theorem 5.1.18 (Heine—Borel Theorem) If H is an open covering of a com-
pact subset S, then S can be covered by finitely many sets from H .

Proof The proof is by contradiction. We first consider the case where n = 2, so that
you can visualize the method. Suppose that there is a covering H for S from which it is
impossible to select a finite subcovering. Since S is bounded, S is contained in a closed
square

T ={(x,y)a1 <x<ar+L,ap <x<a+ L}

with sides of length L (Figure 5.1.6).

Figure 5.1.6
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Bisecting the sides of 7" as shown by the dashed lines in Figure 5.1.6 leads to four closed
squares, T(l), T(Z), T(3), and T(4), with sides of length L /2. Let

SO =snT® 1<i<4.

Each S¢ ), being the intersection of closed sets, is closed, and

4
s=Js®.

i=1

Moreover, H covers each S, but at least one S@ cannot be covered by any finite sub-
collection of H, since if all the S could be, then so could S. Let S; be a set with this
property, chosen from S W, §@ §G and S®. We are now back to the situation we
started from: a compact set S; covered by H, but not by any finite subcollection of H.
However, S is contained in a square 7 with sides of length L /2 instead of L. Bisecting
the sides of 77 and repeating the argument, we obtain a subset S, of S; that has the same
properties as S, except that it is contained in a square with sides of length L /4. Continuing
in this way produces a sequence of nonempty closed sets So (= §), S1, S2, ..., such that
Sk D Sk41 and d(Sx) < L/257Y/2 (k > 0). From Theorem 5.1.17, there is a point X in
ﬂlio=1 Sk. Since X e S, there is an open set H in H that contains i, and this H must also
contain some e-neighborhood of X. Since every X in Sy satisfies the inequality

|X _X| < 2_k+1/2L,

it follows that Sy C H for k sufficiently large. This contradicts our assumption on H,
which led us to believe that no Si could be covered by a finite number of sets from H.
Consequently, this assumption must be false: H must have a finite subcollection that covers
S'. This completes the proof for n = 2.

The idea of the proof is the same for n > 2. The counterpart of the square 7 is the
hypercube with sides of length L:

T = {(xl,xz,...,xn)|a,~ <xi<a+L,i=12,...n}.

Halving the intervals of variation of the n coordinates xi, Xz, ..., X, divides T into 2"
closed hypercubes with sides of length L /2:

T(i)z{(xl,xz,...,xn)|b,~fxifbi+L/2,1§i fn},

where b; = a; or b; = a; + L/2. If no finite subcollection of H covers S, then at least
one of these smaller hypercubes must contain a subset of S that is not covered by any finite
subcollection of S. Now the proof proceeds as forn = 2. a

The Bolzano—Weierstrass theorem is valid in R”; its proof is the same as in R.

Connected Sets and Regions

Although it is legitimate to consider functions defined on arbitrary domains, we restricted
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our study of functions of one variable mainly to functions defined on intervals. There are
good reasons for this. If we wish to raise questions of continuity and differentiability at
every point of the domain D of a function f, then every point of D must be a limit point

of DO. Intervals have this property. Moreover, the definition of f ab f(x)dx is obviously
applicable only if f is defined on [a, b].

It is not productive to consider questions of continuity and differentiability of functions
defined on the union of disjoint intervals, since many important results simply do not hold
for such domains. For example, the intermediate value theorem (Theorem 2.2.10; see also
Exercise 2.2.25) says that if f is continuous on an interval / and f(x1) < u < f(x2)
for some x; and x5 in /, then f(X) = p for some X in /. Theorem 2.3.12 says that f is
constant on an interval I if f/ = 0 on I. Neither of these results holds if I is the union of
disjoint intervals rather than a single interval; thus, if f is defined on / = (0, 1) U (2, 3)
by

1, 0<x<1,
JY=10, 2<x<3.

then f is continuous on I, but does not assume any value between 0 and 1, and f/ = 0 on
I, but f is not constant.

It is not difficult to see why these results fail to hold for this function: the domain of f
consists of two disconnected pieces. It would be more sensible to regard f as two entirely
different functions, one defined on (0, 1) and the other on (2, 3). The two results mentioned
are valid for each of these functions.

As we will see when we study functions defined on subsets of R”, considerations like
those just cited as making it natural to consider functions defined on intervals in R lead
us to single out a preferred class of subsets as domains of functions of n variables. These
subsets are called regions. To define this term, we first need the following definition.

Definition 5.1.19 A subset S of R” is connected if it is impossible to represent S as
the union of two disjoint nonempty sets such that neither contains a limit point of the other;
that is, if S cannot be expressed as S = A U B, where

A#0, B#0, ANB=¢, and ANB=0. (16)

If S can be expressed in this way, then S is disconnected. [ ]

Example 5.1.8 The empty set and singleton sets are connected, because they cannot
be represented as the union of two disjoint nonempty sets. [ ]

Example 5.1.9 The space R” is connected, because if R”” = AU B with AN B = @
and ANB = 0, then A C A and B C B; thatis, A and B are both closed and therefore
are both open. Since the only nonempty subset of R” that is both open and closed is R”
itself (Exercise 21), one of A and B is R” and the other is empty. [ ]
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y
A

(3,3)

(1,2) 3,2)

(1, 1
> X
Figure 5.1.7
If Xy, Xs, ..., Xk are points in R” and L; is the line segment from X; to X; 41,1 <i <

k — 1, we say that Ly, L, ..., Lx_1 form a polygonal path from X; to Xy, and that X;
and X, are connected by the polygonal path. For example, Figure 5.1.7 shows a polygonal
path in R? connecting (0,0) to (3,3). A set S is polygonally connected if every pair of
points in S can be connected by a polygonal path lying entirely in S

Theorem 5.1.20 An open set S in R" is connected if and only if it is polygonally
connected.

Proof For sufficiency, we will show that if S is disconnected, then S is not polygonally
connected. Let S = A U B, where A and B satisfy (16). Suppose that X; € A and
X5 € B, and assume that there is a polygonal path in S connecting X; to X,. Then some
line segment L in this path must contain a point Y; in A and a point Y, in B. The line
segment

X=tY+(1-1Y;, 0=<1t<1,

is part of L and therefore in S. Now define
p:sup{t|tY2+(l—t)Y1 €A, 0<t<t< 1},

and let
X, =pY2+(1—-p)Y;.

Then X, € AN B. However, since X, € AUB and ANB = AN B = @, this is impossible.
Therefore, the assumption that there is a polygonal path in S from X; to X, must be false.
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For necessity, suppose that S is a connected open set and Xo € S. Let A be the set
consisting of X and the points in S can be connected to X¢ by polygonal paths in S. Let
B be set of points in S that cannot be connected to X¢ by polygonal paths. If Yo € S, then
S contains an e-neighborhood N¢(Yy) of Yo, since S is open. Any point Y; in N (Yo can
be connected to Yo by the line segment

X=tYi+(1—-0)Yy, 0<t<I,

which lies in N¢(Yo) (Lemma 5.1.12) and therefore in S. This implies that Yy can be
connected to Xo by a polygonal path in S if and only if every member of N.(Y) can also.
Thus, Nc(Yg) C Aif Yo € A, and N.(Yy) € B if Yo € B. Therefore, A and B are
open. Since A N B = @, this implies that AN B = AN B = @ (Exercise 14). Since A4 is
nonempty (Xo € A), it now follows that B = @, since if B # @, S would be disconnected
(Definition 5.1.19). Therefore, A = S, which completes the proof of necessity. a

We did not use the assumption that S is open in the proof of sufficiency. In fact, we
actually proved that any polygonally connected set, open or not, is connected. The converse
is false. A set (not open) may be connected but not polygonally connected (Exercise 29).

Our study of functions on R” will deal mostly with functions whose domains are regions,
defined next.

Definition 5.1.21 A region S in R” is the union of an open connected set with some,
all, or none of its boundary; thus, S is connected, and every point of S is a limit point of
SO, |

Example 5.1.10 Intervals are the only regions in R (Exercise 31). The n-ball B, (Xo)
(Example 5.1.7) is a region in R", as is its closure S, (Xo). The set
S={(x,y)|x2+y2§1 or x*+4y? >4}

(Figure 5.1.8(a), page 298) is not a region in R?, since it is not connected. The set S;
obtained by adding the line segment

Li: X=1¢0,2)4+(1-1¢)(0,1), 0<t<l,

to S (Figure 5.1.8(b)) is connected but is not a region, since points on the line segment are
not limit points of S¥. The set S, obtained by adding to S; the points in the first quadrant
bounded by the circles x? + y? = 1 and x2 + y? = 4 and the line segments L; and

Lr: X =12,00+(1—1)(1,0, 0<t<1
(Figure 5.1.8(c)), is a region. ]
More about Sequences in R"

From Definition 5.1.13, a sequence {X,} of points in R” converges to a limit X if and only
if for every € > 0 there is an integer K such that

X, —X|<e if r>K.
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The R” definitions of divergence, boundedness, subsequence, and sums, differences, and
constant multiples of sequences are analogous to those given in Sections 4.1 and 4.2 for
the case where n = 1. Since R” is not ordered for n > 1, monotonicity, limits inferior and
superior of sequences in R”, and divergence to +oo are undefined for n > 1. Products and
quotients of members of R” are also undefined if n > 1.

—

(a) (b)

(c)

Figure 5.1.8

Several theorems from Sections 4.1 and 4.2 remain valid for sequences in R", with proofs
unchanged, provided that “| |" is interpreted as distance in R”. (A trivial change is re-
quired: the subscript n, used in Sections 4.1 and 4.2 to identify the terms of the sequence,
must be replaced, since n here stands for the dimension of the space.) These include The-
orems 4.1.2 (uniqueness of the limit), 4.1.4 (boundedness of a convergent sequence), parts
of 4.1.8 (concerning limits of sums, differences, and constant multiples of convergent se-
quences), and 4.2.2 (every subsequence of a convergent sequence converges to the limit of
the sequence).
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5.1 Exercises

With R replaced by R", the following exercises from Section 1.3 are also suitable for this
section: 1.3.7-1.3.10, 1.3.12-1.3.15, 1.3.19, 1.3.20 (except (e)), and 1.3.21.

1. Find aX + bY.
(a) X=(1,2,-3.1), Y=(0.-1,2,0,a=3.b=6
(b) X=(1.-1,2), Y=, 13)a=—1,b=2

(C) X:(%,%,%,é, _( 2’ ’ ’%)’az%’b:é
2. Prove Theorem 5.1.2.
3. Find X].
(a) (1327_3’ 1) (b) (%a%a%aé)
(c) (1,2,-1,3,4) (d) 0,1,0,-1,0,-1)

4. Find [X—-Y|.
(a) X=(3.4.5-4), Y=(.0.-1.2)
(b) X = (_%a %a %a _%)’ Y= (%a _éa éa _%)
(c) X=(0.0,0), Y=(2.-1.2)
(d) X=(3,-1,4,0,—1), Y=(2,0,1,—4,1)

5. FindX-Y.
(a) X=(3,4,5-4), =(3,0,3,3)
(b) X_(%l_z%% _(_5’2’4’ 4)
(c) X=(1,2,-3,1,4), Y=(1,2,-1,3,4)

6. Prove Theorem 5.1.9.
7. Find a parametric equation of the line through X in the direction of U.
(a) Xo=(1,2,-3,1), U= (3,4,5—4)
(b) Xo = (2, O 12 4), U=(— 10,1,3 2)
(c) Xo= (- 2’2’4’ 4) U_(3’ 6 6’ 3)
8. Suppose that U # 0 and V # 0. Complete the sentence: The equations
X=Xp+1tU —-o0o<t<o0o,
and
X=X;+s5V, —oc0<s<o00,
represent the same line in R” if and only if ...
9. Find the equation of the line segment from Xg to Xj.
(a) Xo=(1,-3,4,2), X;=(2,0,—1,5)
(b) Xo=(3,1-2,1,4), X;=(2,0,—1,4,-3)
(c) Xo=(1,2,-1), X;=(0,-1,-1)
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10. Find sup {e | Ne(Xo) C S}.
(a) Xo = (1,2,-1,3); S = the open 4-ball of radius 7 about (0, 3, -2, 2)
(b) Xo=(1,2,-1,3); § = {(x1., X2, x3, x4) | Ixil <5.1<i<4}
(c) Xo=(3.32); S = the closed triangle with vertices (2,0), (2,2), and (4, 4)
11. Find (i) 8S; (ii) S; (iii) S (iv) exterior of S.
(@) S ={(x1.x2.x3,x4) | |xi| <3,i =1,2,3}
(b) S={(x.y.D|x>+y2=<1}
12. Describe the following sets as open, closed, or neither.
(a) S = {(xl,xz,x3,x4) | |X1| > 0, Xy < I,X3 75 —2}
(b) S ={(x1,x2,x3,x4) | x1 =1, x3 # —4}
(¢) S={(x1,x2.x3.x4) | x1 =1,-3<x2 < x4 =5}

13. Show that the closure of the open n-ball
B, (Xo) = {X| X —Xo| < r}

is the closed n-ball .
B, (Xo) = {X||X—Xo| <r}.

14. Prove: If Aand B are openand AN B = @,then AN B=ANB = .
15. Show that if lim,_,o X, exists, then it is unique.

16. Prove Theorem 5.1.14.

17. Prove Theorem 5.1.15.

18. Find lim; 00 X;.

oo T o,
(a) X, = (r sin —, cos —, e )
r r

1 r+1 1\"
b) X,=|1-—,loge——, |1+ -
) %= (1= o 5 (147) )
19. Find d(S).

(a) S={(xy.x)|lx|<2 |yl <1 |z-2/<2}

12 2
(b) S={(x,y)|(x 91) LU 42) =1}

(c) S = the triangle in R? with vertices (2, 0), (2, 2), and (4, 4)
(d) S={(xl,xz,...,xn)||xi|§L,i=1,2,...,n}
() S={x.y.2)|x#0]y<1.z>2}
20. Prove that d(S) = d(S) for any set S in R”.
21. Prove: If a nonempty subset S of R” is both open and closed, then S = R”.
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23.

24.
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26.
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Use the Bolzano—Weierstrass theorem to show that if Sy, S», ..., S, ... is an
infinite sequence of nonempty compact sets and S; O S, D --- D S, D ---, then
(o1 Sm is nonempty. Show that the conclusion does not follow if the sets are
assumed to be closed rather than compact.

Suppose that a sequence U;, Ua, ... of open sets covers a compact set S. Without
using the Heine-Borel theorem, show that S C U,I,\{:l Up for some N. HINT:
Apply Exercise 22 to the sets S, = S N (Ufn=1 Um)c .

(This is a seemingly restricted version of the Heine—Borel theorem, valid for the
case where the covering collection H is denumerable. However, it can be shown
that there is no loss of generality in assuming this.)

The distance from a point X¢ to a nonempty set S is defined by
dist(Xo, ) = inf {|X — Xo| | X € S}.
(a) Prove: If S is closed and Xo € R", there is a point X in S such that
IX — Xo| = dist(Xop, S).
HINT: Apply Exercise 22 to the sets
Cm = {X|X € S and |X—Xo| < dist(Xo, S) +1/m}, m=>1.

(b) Show thatif S is closed and Xo ¢ S, then dist(Xo, S) > 0.
(c) Show that the conclusions of (a) and (b) may fail to hold if S is not closed.

The distance between two nonempty sets S and T is defined by
dist(S,T) = inf {|X - Y||X € S, Ye T}.

(a) Prove: If S is closed and T is compact, there are points X in S and Y in T
such that o
X —Y| =dist(S, 7).
HINT: Use Exercises 22 and 24.
(b) Under the assumptions of (a), show that dist(S, T) > 0if S N T = 4.
(c) Show that the conclusions of (a) and (b) may fail to hold if S or T is not
closed or T' is unbounded.

(a) Prove: If a compact set S is contained in an open set U, there is a positive
number r such that the set

S, = {X| dist(X, S) < r}

is contained in U. (You will need Exercise 24 here.)
(b) Show that S, is compact.
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27. Let Dy and D, be compact subsets of R”. Show that
D ={(X.Y)|X €D Y€ D,}

is a compact subset of R,

28. Prove: If Sisopenand S = AU B where AN B = AN B = @, then A and B are
open.

29. Give an example of a connected set in R” that is not polygonally connected.
30. Prove that a region is connected.
31. Show that the intervals are the only regions in R.

32. Prove: A bounded sequence in R” has a convergent subsequence. HINT: Use Theo-
rems 5.1.14,4.2.2 and 4.2.5(a).

33. Define “lim; 0 X, = 00” if {X;} is a sequence in R”, n > 2.

5.2 CONTINUOUS REAL-VALUED FUNCTIONS OF n VARI-
ABLES

We now study real-valued functions of n variables. We denote the domain of a function f
by Dy and the value of f at a point X = (x1,x2,...,%,) by f(X) or f(x1,x2,...,Xp).
We continue the convention adopted in Section 2.1 for functions of one variable: If a func-
tion is defined by a formula such as

fX) = (12 —xf = =) (M
or

gX) = (1-x}—xF——x2)" )
without specification of its domain, it is to be understood that its domain is the largest
subset of R” for which the formula defines a unique real number. Thus, in the absence of

any other stipulation, the domain of f in (1) is the closed n-ball {X | IX| < 1}, while the
domain of g in (2) is the set {X | [X]| # 1}.

The main objective of this section is to study limits and continuity of functions of n
variables. The proofs of many of the theorems here are similar to the proofs of their coun-
terparts in Sections 2.1 and 2.2. We leave most of them to you.

Definition 5.2.1 We say that f(X) approaches the limit L as X approaches X and
write

li X)=1L
o JX)
if Xo is a limit point of D ¢ and, for every € > 0, there is a & > 0 such that
|l/(X)—L|<e

for all X'in D s such that
0<|X—Xp| <8. ]
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Example 5.2.1 If
glx,y) =1-x2=2)%,

then

lim  g(x,y) =1-x3—2y2 3)
(x,y)—>(x0,¥0)

for every (xo, yo). To see this, we write

lg(x.y) = (1= x5 =2y = (1 = x* = 2y?) = (1 — x5 = 2y7)|

< |x* =gl + 20y = y3

“4)
= [(x + x0)(x — x0)| + 2|(y + y0)(¥ — Yo)|
< IX'—Xol(|x + xo| + 2]y + yo)]).
since
|x —xo| = |X—Xo| and [y —yo|=|X—Xol.
If X — Xp| < 1, then |x| < |xo| + 1 and |y| < |yo| + 1. This and (4) imply that
lg(x, y) = (1= x5 = 299)| < KIX=Xo| if |X—Xo| <1,
where
K = (2|X()| + 1)+ 2(2|y0| +1).
Therefore, if € > 0 and
X —Xo| < § =min{l,e/K},
then
g(x.y) = (1= x5 —2y3)| <e.
This proves (3). |

Definition 5.2.1 does not require that f be defined at Xy, or even on a deleted neighbor-
hood of Xj.

Example 5.2.2 The function

sin /1 — x2 —2y?2
V1—x%2—-2y2

is defined only on the interior of the region bounded by the ellipse

h(x,y) =

x2+2yr =1

(Figure 5.2.1(a), page 304). It is not defined at any point of the ellipse itself or on any
deleted neighborhood of such a point. Nevertheless,

lim hx,y)=1 5)

(x,y)—>(x0,¥0)



304 Chapter 5 Real-Valued Functions of Several Variables

if
X3 +2y5 = 1. (6)
To see this, let
u(x,y) = +1—x2-2y2
Then nu(x. )
sinu(x,y
h(x,y) = ————. (N
u(x,y)
Recall that )
. sinr
lim — =1;
r—-0 r

therefore, if € > 0, there is a §; > 0 such that

sinu
-1

<e if 0<|u|l <é;. ®)

u

From (3),

lim 1-x2-2y%)=0
(x,y)—>(XO,yo)( Y )

if (6) holds, so there is a § > 0 such that

0<u’(x,y)=(1-x*-2y?) < 8%
if X = (x, y) is in the interior of the ellipse and |X — Xo| < §; that is, if X is in the shaded
region of Figure 5.2.1(b).

Therefore,
O<u=+1-x2-2y2<§ 9)

if X is in the interior of the ellipse and |X — Xo| < §; that is, if X is in the shaded region of
Figure 5.2.1(b). This, (7), and (8) imply that

|h(x,y) —1] <€
for such X, which implies (5). |
y )7
A A
//’—_\\\ |X—XO|:5
/ \
/ \
t > > X
\ /
x+2y*=1 x+2y =1

(@ (b
Figure 5.2.1
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The following theorem is analogous to Theorem 2.1.3. We leave its proof to you (Exer-
cise 2).

Theorem 5.2.2 Iflimx_,x, f(X) exists, then it is unique.

When investigating whether a function has a limit at a point Xg, no restriction can be
made on the way in which X approaches Xy, except that X must be in D y. The next
example shows that incorrect restrictions can lead to incorrect conclusions.

Example 5.2.3 The function

Xy

X)) =—5"—
Sx.y) 17
is defined everywhere in R? except at (0, 0). Does lim(x,;)—>(0.0) f (X, ») exist? If we try
to answer this question by letting (x, y) approach (0, 0) along the line y = x, we see the

functional values
fem = 2]
X, X)=—= = —
2x2 2

and conclude that the limit is 1/2. However, if we let (x, y) approach (0, 0) along the line
y = —x, we see the functional values

2
X 1
X, —X)=—7"= =—=
I ) 2x2 2
and conclude that the limit equals —1/2. From Theorem 5.2.2, these two conclusions

cannot both be correct. In fact, they are both incorrect. What we have shown is that

. 1 . 1
lim flx,x) = 3 and  lim fx,—x) = 5
Since limyx_¢ f(x, x) and lim,_,¢ f(x, —x) must both equal lim(y y)—(0,0) f(x, y) if the
latter exists (Exercise 3(@)), we conclude that the latter does not exist. ]

The sum, difference, and product of functions of n variables are defined in the same
way as they are for functions of one variable (Definition 2.1.1), and the proof of the next
theorem is the same as the proof of Theorem 2.1.4.

Theorem 5.2.3 Suppose that f and g are defined on a set D, X is a limit point of
D, and

li X)=L li X) = L,.
Xggiof( ) 1. Xgggog( ) 2

Then
Jim (f +2)X) = Ly + La. (10)
Jim (£ =9)X) = L1 — La, (1)
Jm (/8)X) = L1 Lo, (12)
and, if L # 0,

lim (f)(X) _ % (13)
2

X—Xo g
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Infinite Limits and Limits as |X|—o0
Definition 5.2.4 We say that f(X) approaches oo as X approaches X and write
li X) =
Jim f(%) = o0
if Xo is a limit point of D f and, for every real number M, there is a 8 > 0 such that
JX)>M whenever 0<|X—-Xp|<é and X e Dy.
We say that
li X)=-—
Jim (%) = —o0
if
lim (—f)(X) = oo.
G (=/)X) = o0
Example 5.2.4 If
FO) = (1 =xF = =),

then
li X) =
Jim /%) = o0
if [ Xp| = 1, because
1
X) = ——.
/¢ X — Xo|

SO
1
FX)>M if 0<|X—Xo| <8=—.

Example 5.2.5 If

fx,y) = m,
then limy ,y—1,—1) f(x, y) does not exist (why not?), but
|/ (x, y)| = oo.

lim
¢, »)—>@1,-1)
To see this, we observe that
lx+2y+1|=|(x=1)+2(y + 1)
< V/5|X—=Xy| (by Schwarz’s inequality),
where Xy = (1, —1), so

1

1
x,y)| = > .
7o) Ix +2y +1] 7 /35X - Xo|
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Therefore,

1
x| >M if 0<[X—X| < ——.
|fCx, ) | ol YN

, 1
Sm(xz+y2 +ZZ)‘

x2+y?2+2z2

Example 5.2.6 The function

fx,y,2)=

assumes arbitrarily large values in every neighborhood of (0, 0, 0). For example, if X3 =

(Xk» Yk, Zk), Where
1
X = Yk = 2k = —F/——————,
3(k+3)m

then

fXy) = (k + %) .

However, this does not imply that limx—.¢ f(X) = o0, since, for example, every neighbor-
hood of (0, 0, 0) also contains points

_ 1 1 1
X = 9 9
x («/31(71 3k «/3k71)

for which f(Xy) = 0. |

Definition 5.2.5 If D f is unbounded, we say that

‘Xl‘im f(X)=L (finite)

if for every € > 0, there is a number R such that

|f(X)—L| <€ whenever [X|>R and Xe€ Dy. ]

Example 5.2.7 If

1
o) =0z

then
lim f(X)=1. 14)
|X|—00
To see this, we recall that the continuity of cos u at u = 0 implies that for each € > 0 there
isa § > 0 such that
|cosu —1| <e if |u| <3.
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Since
1 1

- <
X2 42y2 422 7 X2
it follows that if |X| > 1/+/8, then

! <4
x242y2 472
Therefore,
| fX)—1]| <e.
This proves (14). |

Example 5.2.8 Consider the function defined only on the domain
D={(xy|0<y<ax}, 0<a<l
(Figure 5.2.2), by

1
fx,y) = ——.
X—Yy
We will show that
lim f(x,y)=0. (15)
[X|—>00

It is important to keep in mind that we need only consider (x, y) in D, since f is not
defined elsewhere.

In D,
x—y>x(1—-a) (16)
and
X% = x2 +y? < x*(1 +d?),
)
X
x> ——.
1+ a?
This and (16) imply that
> 179 x| Xeb
X _y - T —_— k) k)
1+ da?
)
V1+a? 1
faepl< L XeD.
l—a [X|
Therefore,
|f(x, )] <e
if X € D and
V1+4+4d21
X| > ———-.
l—a e

This implies (15). |
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Y
A
y=ax
> X
Figure 5.2.2
We leave it to you to define limx| oo f(X) = 0o and limx| f(X) = —oo (Exer-

cise 6).

We will continue the convention adopted in Section 2.1: “limx_.x, f(X) exists” means
that limx_.x, f(X) = L, where L is finite; to leave open the possibility that L = %00, we
will say that “limx_,x, f(X) exists in the extended reals.” A similar convention applies to
limits as | X| — oc.

Theorem 5.2.3 remains valid if “limx—x,” is replaced by “lim|x|0,” provided that D
is unbounded. Moreover, (10), (11), and (12) are valid in either version of Theorem 5.2.3 if
either or both of L and L, is infinite, provided that their right sides are not indeterminate,
and (13) remains valid if L, # 0 and L1 /L is not indeterminate.

Continuity

We now define continuity for functions of n variables. The definition is quite similar to the
definition for functions of one variable.

Definition 5.2.6 If X, is in Dy and is a limit point of D s, then we say that f is

continuous at Xg if
lim f(X) = /(Xo). n
X—Xo

The next theorem follows from this and Definition 5.2.1.
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Theorem 5.2.7 Suppose that Xo is in D s and is a limit point of D . Then f is con-
tinuous at Xo if and only if for each € > 0 there is a § > 0 such that

/X)) — fXo)| <€

whenever
IX—-Xo| <8 and XeDy.

In applying this theorem when Xy € D;’c, we will usually omit “and X € D y.” it being
understood that S5(Xo) C Dy.

We will say that f is continuous on S if f is continuous at every point of S

Example 5.2.9 From Example 5.2.1, we now see that the function

flx,y)=1-x*=2y?

is continuous on R2. ]

Example 5.2.10 If we extend the definition of / in Example 5.2.2 so that

sin /1 —x2 —2y2
hix,y) = /T—x2—2y2 '

1, x2+2y2: 1,

x24+2y? <1,

then it follows from Example 5.2.2 that / is continuous on the ellipse
x24+2y2 =1.
We will see in Example 5.2.13 that / is also continuous on the interior of the ellipse. [ ]

Example 5.2.11 Itis impossible to define the function

Xy
x2 4+ y2

S, y) =
at the origin to make it continuous there, since we saw in Example 5.2.3 that

lim X,
(x,»)—(0,0) fxy)

does not exist. [ ]
Theorem 5.2.3 implies the next theorem, which is analogous to Theorem 2.2.5 and, like

the latter, permits us to investigate continuity of a given function by regarding the function
as the result of addition, subtraction, multiplication, and division of simpler functions.
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Theorem 5.2.8 If f and g are continuouson a set S inR", then soare f + g, f —g,
and fg. Also, f/g is continuous at each X¢ in S such that g(Xo) # 0.

Vector-Valued Functions and Composite Functions

Suppose that g1, g2, ..., gn are real-valued functions defined on a subset 7" of R™, and
define the vector-valued function G on T by

GU) = (g1(U), g2(U), ..., g, (U)), UeT
Then g1, g2, ..., & are the component functions of G = (g1, g2, ..., gn). We say that
li =L=(Ly,L,,...,L
Jim G(U) (L1, Lo, ..., Ly)

if
lim g;(U)=L;, 1<i<n,
alo gl( ) i =1 =
and that G is continuous at Uy if g1, g2, ..., gn are each continuous at Uy.

The next theorem follows from Theorem 5.1.14 and Definitions 5.2.1 and 5.2.6. We omit
the proof.

Theorem 5.2.9 For a vector-valued function G,
li =L
Jim, G©)
if and only if for each € > 0 there is a § > 0 such that
|IG(U) —L| <€ whenever 0<|U—-Upy| <6 and U e Dg.

Similarly, G is continuous at Uy if and only if for each € > 0 there is a § > 0 such that

|G(U) — G(Uy)| <€ whenever |U—Upy| <8 and U € Dg.

The following theorem on the continuity of a composite function is analogous to Theo-
rem 2.2.7.

Theorem 5.2.10 Let f be a real-valued function defined on a subset of R", and let
the vector-valued function G = (g1, 2, - .-, 8n) be defined on a domain D¢ in R™. Let
the set

T={U|UeDg and G(U)e Dy}

(Figure 5.2.3, page 312) be nonempty, and define the real-valued composite function
h=foG

onT by
h(U) = f(G(U)), UeT

Now suppose that Uy is in T and is a limit point of T, G is continuous at Uy, and f is
continuous at Xog = G(Uy). Then h is continuous at Uy.
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: R(G) =range of G

R” | R”

S
!
!
|
|
|
|
|

Dy
Figure 5.2.3

Proof Suppose that e > 0. Since f is continuous at Xg = G(Uyp), there is an €; > 0
such that

|/ (X) — f(G(Up))| <€ (17)

if

IX—-G(Up)| <€ and XeDy. (18)
Since G is continuous at Uy, there is a § > 0 such that

IG(U) —G(Up)| <€ if |[U-Up| <8 and Ue€ Dg.
By taking X = G(U) in (17) and (18), we see that
|h(U) —h(Uo)| = | f(G(U) — f(G(Uo))| < €
if
[U-Up| <6 and UeT.

Example 5.2.12 If
f6) =5
and
glx,y) = 1-x2-2y%,
then Dy = [0, 00], Dg = R2, and
T ={(x,y)|x*>+2y*> < 1}.
From Theorem 5.2.7 and Example 5.2.1, g is continuous on R2. (We can obtain the same

conclusion by observing that the functions p; (x, y) = x and p,(x, y) = y are continuous
on R? and applying Theorem 5.2.8.) Since f is continuous on D #» the function

h(x.y) = f(gx,y) = v1—x2-2y2

is continuous on 7. ]
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Example 5.2.13 If

g(x,y) = V1 —x2-2y2

sin s

- N Oa
fls)=49 s 7

1, s =0,

and

then D y = (—o00, 00) and
Dg:Tz{(x,y)|x2+2y2§1}.

In Example 5.2.12 we saw that g (we called it & there) is continuous on 7. Since f is
continuous on D ¢, the composite function 7 = f o g defined by

sin /1 —x2 —2y2

. x242y% <1,
hix,y) = /T—x2—2y2 Y
1, x2 4+ 2y2 =1,
is continuous on 7'. This implies the result of Example 5.2.2. |

Bounded Functions

The definitions of bounded above, bounded below, and bounded on aset S are the same for
functions of n variables as for functions of one variable, as are the definitions of supremum
and infimum of a function on a set S (Section 2.2). The proofs of the next two theorems
are similar to those of Theorems 2.2.8 and 2.2.9 (Exercises 12 and 13).

Theorem 5.2.11 If f is continuous on a compact set S in R", then f is bounded on
S.

Theorem 5.2.12 Let f be continuous on a compact set S in R" and

o = inf fX), B= sup S X).

Then
SX)=a and [f(X2)=§
for some X1 and X5 in S.

The next theorem is analogous to Theorem 2.2.10.

Theorem 5.2.13 (Intermediate Value Theorem) Let f be continuous on
a region S in R". Suppose that A and B are in S and

fA) <u < f(B).
Then f(C) = u for some Cin S.
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Proof If thereisnosuch C, thenS = RU T, where

R={X|XeSand f(X) < u}
and

T ={X|XeSand f(X) > u}.
If Xo € R, the continuity of f implies that thereisad > 0 such that f(X) < uif [ X—Xo| <
8 and X € S. This means that Xg & T. Therefore, RN T = @. Similarly, RN T = .

Therefore, S is disconnected (Definition 5.1.19), which contradicts the assumption that S
is a region (Exercise 5.1.30). Hence, we conclude that f(C) = u for some C in S. o

Uniform Continuity

The definition of uniform continuity for functions of n variables is the same as for functions
of one variable; f is uniformly continuous on a subset S of its domain in R” if for every
€ > 0 there isa § > 0 such that

|fX) = f(X)] <€

whenever |[X — X'| < § and X, X’ € S. We emphasize again that § must depend only on €
and S, and not on the particular points X and X'.

The proof of the next theorem is analogous to that of Theorem 2.2.12. We leave it to you
(Exercise 14).

Theorem 5.2.14 If f is continuous on a compact set S in R", then f is uniformly
continuous on S.

5.2 Exercises

With R replaced by R", the following exercises from Sections 2.1 and 2.2 have analogs
for this section: 2.1.5, 2.1.8-2.1.11, 2.1.26, 2.1.28, 2.1.29, 2.1.33, 2.2.8, 2.2.9, 2.2.10,
2.2.15,2.2.16,2.2.20,2.2.29,2.2.30.

1. Find limx_,x, f(X) and justify your answer with an €—§ argument, as required by
Definition 5.2.1. HINT: See Examples 5.2.1 and 5.2.2.

() fX)=3x+4y+z-2, Xo=(1,2,1)

3_ .3
(b) fX)=""2" Xo=(11)
X=Yy
(C) f(X) — w, X, = (_2’ 1,—1)

x+4y+2z2
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(d) f(X)=(x*+y*)log(x> + y»)'/2, Xo = (0,0)

(e) f(X)=%, Xo = (2.2)
() 1% = 5ze X Xo=0

Prove Theorem 5.2.2.

If limyx, y(x) = yo and limy_,x, f (x,¥(x)) = L, we say that f(x,y) ap-

proaches L as (x, y) approaches (xo, yo) along the curve y = y(x).

(a) Prove: If lim(x,y)—(xo.y0) S (*,¥) = L, then f(x, y) approaches L as (x, y)
approaches (xg, yg) along any curve y = y(x) through (xg, o).

(b) We saw in Example 5.2.3 that if

flx,y) = a2

x2 4+ y?’
then lim(y, ,)—(0,0) f (x, y) does not exist. Show, however, that f(x, y) ap-
proaches a value L, as (x, y) approaches (0, 0) along any curve y = y(x)
that passes through (0, 0) with slope a. Find L,.

(c) Show that the function

X3yt
glx,y) = 2+ y6)?

approaches 0 as (x, y) approaches (0, 0) along a curve as described in (b),
but that lim(y ,)—(0,0) f (x. ») does not exist.

Determine whether limx_,x, f(X) = £o0.
[sin(x + 2y + 4z)|

(a) f(X) = (x +2y n 4Z)2 5 XO = (23_130)
(b) fX) = J):Ty Xo = (0,0)
() fX)= % Xo = (0,0)
4 2 2
(d) fx = ﬁ Xo = (2,1)
(e) fX) = sinx + 2y + 42) Xo = (2,—1,0)

(x +2y +472)2”°
Find limjx| o f(X), if it exists.
log(x? + 2y? + 4z?)
(@) f[X) = —F5—5—
X<+ y-+z

sin(x? + y?)
Vx2+y?

(c) f(X) = e~@+» (d) f(X) = e

(b) f(X) =
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sin(x2 — y?)
(€ fX) =1 x2_y2 ~ *TE

1, x==y
Define (a) limx|— o0 f(X) = 00 and (b) limx|e0 f(X) = —c0.
Let

|1 ][22 |92 - |xp [

X) =
f(X) X
For what nonnegative values of ay, as, ..., a,, b does limx_,¢ f(X) exist in the
extended reals?
Let 2 443
(x=+»7)
gX) = T 68
+ x°y

Show that limjy|_,o g(x,ax) = oo for any real number a. Does

lim g(X) = o0?

[X|—>00

For each f in Exercise 1, find the largest set S on which f is continuous or can be
defined so as to be continuous.

Repeat Exercise 9 for the functions in Exercise 5.

Give an example of a function f on R? such that f is not continuous at (0, 0),
but f(0, y) is a continuous function of y on (—oo, 00) and f(x, 0) is a continuous
function of x on (—o0, 00).

Prove Theorem 5.2.11. HINT: See the proof of Theorem 2.2.8.
Prove Theorem 5.2.12. HINT: See the proof of Theorem 2.2.9.
Prove Theorem 5.2.14. HINT: See the proof of Theorem 2.2.12.

Suppose that X € D s CR"and X is a limit point of D 7. Show that f"is continuous
at X if and only if limg_,oo f Xp) = f (X) whenever {Xj} is a sequence of points
in D s such that limg _, o, Xg = X. HINT: See the proof of Theorem 4.2.6.

5.3 PARTIAL DERIVATIVES AND THE DIFFERENTIAL

To say that a function of one variable has a derivative at x¢ is the same as to say that it
is differentiable at xo. The situation is not so simple for a function f of more than one
variable. First, there is no specific number that can be called the derivative of f at a point
Xp in R”. In fact, there are infinitely many numbers, called the directional derivatives of
f at Xy (defined below), that are analogous to the derivative of a function of one variable.
Second, we will see that the existence of directional derivatives at Xy does not imply that f
is differentiable at X, if differentiability at Xj is to imply (as it does for functions of one
variable) that f(X)— f(X¢) can be approximated well near X, by a simple linear function,
or even that f is continuous at Xj.
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We will now define directional derivatives and partial derivatives of functions of several
variables. However, we will still have occasion to refer to derivatives of functions of one
variable. We will call them ordinary derivatives when we wish to distinguish between them

and the partial derivatives that we are about to define.

Definition 5.3.1 Let @ be a unit vector and X a point in R”. The directional derivative
of f at X'in the direction of ® is defined by

YO _ K+ 19) = [(X)
a® >0 t

if the limit exists. That is, df(X)/d® is the ordinary derivative of the function

ht) = fX+t®)

att = 0, if 1'(0) exists. ]
Example 5.3.1 Let ® = (¢1, ¢, ¢3) and

S50 y.2) = 3nvz 4+ 267 4 2.

Then
h(t) = f(x + 11,y + 12,2 + 1h3),
=3(x +1$1)(y + 192)(2 + 1¢3) + 2(x + 1$1)” + (2 + 13)°
and
B(t) =3¢1(y + th2)(z + th3) + 3o (x + td1)(z + 1¢3)
+3¢3(x +11)(y +1¢2) + 41(x + 1¢1) + 2¢3(z + 1h3).
Therefore,
% = N1'(0) = Byz + 4x)¢p1 + 3x2¢> + Bxy + 22)¢s. (1)
| ]

The directional derivatives that we are most interested in are those in the directions of
the unit vectors

E, =(1,0,...,0), E,=(0,1,0,...,0),..., E,=(0,...,0,1).

(All components of E; are zero except for the ith, which is 1.) Since X and X + ¢E; differ
only in the ith coordinate, df(X)/JE; is called the partial derivative of f with respect to
x; at X. Itis also denoted by df(X)/dx; or f, (X); thus,

If X)

3)61 -

S+t xa, X)) — (XL X2, LX)
X) =1
S (X) lim ; .
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3];(X) _ in(X) _ lirI(l) f(xl,...,xi_l,xi +t,xi+1;...,xn)—f(xl,xz,...,xn)
Xi t—

if2 <i <n,and
X)) _ Fo (X) = lim SO Xp1 X +t)—f(xh...,xn_1,xn)’
0xp t—0 t

if the limits exist.

If we write X = (x, y), then we denote the partial derivatives accordingly; thus,

af(x’y)zfx(x,y)zhm f(x+h’y)_f(xvy)
0x h—0 h
and
af (x, . , h) — f(x,
f(any) = /() = lim SOy + Z oy

It can be seen from these definitions that to compute f, (X) we simply differentiate f
with respect to x; according to the rules for ordinary differentiation, while treating the other
variables as constants.

Example 5.3.2 Let
fey,2) =3xyz + 232 + 22 )
as in Example 5.3.1. Taking ® = E; (that is, setting ¢; = 1 and ¢ = ¢3 = 0) in (1), we

find that
X _ X _
ox N 3E1 N
which is the result obtained by regarding y and z as constants in (2) and taking the ordinary
derivative with respect to x. Similarly,

B0 _ 0f(X) _

3yz + 4x,

= 3
3y g,  F
and
afX)  af(X)
= = 3xy + 2z
9z oE, YT n

The next theorem follows from the rule just given for calculating partial derivatives.

Theorem 5.3.2 If fy;(X) and gx, (X) exist, then

9 X
(f-gff)() = f5; X) + gx; X),

3(]5%’% = fu X)gX) + f(X)gx, (X),
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and, if g(X) # 0,
/X)) _ 8X) fr, X) — fX)gx; (X)
9x; [g(X)]? ‘
If f%, (X) exists at every point of a set D, then it defines a function f, on D. If this
function has a partial derivative with respect to x; on a subset of D, we denote the partial

derivative by
0 af 2 f
ax; ( ) - =f XiXj*

axj axxi B axj 3x,»
Similarly,
0 32f _ 33f 3
E (3xﬂ,~3xi ) - 3xk3x‘;3xi - fxixjxk .
The function obtained by differentiating f successively with respect to x;,, Xi,, . .., Xj, is
denoted by v
9x;, 0xj,_, -+ 0xi1 = Sy ot Xip—y iy

it is an rth-order partial derivative of f .
Example 5.3.3 The function
fy) =352y +xy
has partial derivatives everywhere. Its first-order partial derivatives are
frley)=6xy> +y, fy(x.y) = 9272 +x.

Its second-order partial derivatives are

fxx(xv)’):6y3a fyy(x,y)=18x2y,
froy(x,y) = 18xy2 + 1, fyx(x,y) = 18xy% + 1.

There are eight third-order partial derivatives. Some examples are
Srxy(x,y) = 18y2’ Sryx(x,y) = 18y2’ Syxx(x,y) = 18)’2- u
Example 5.3.4 Compute fy(0,0), f3,(0,0), fxy(0,0), and f,x(0,0) if

(x2y + xy?)sin(x — y)
f(x,y) = x2 + y2 . (x,y) #(0,0),

0, (x.y) = (0,0).

Solution If (x, y) # (0, 0), the ordinary rules for differentiation, applied separately to
x and y, yield

(2xy + y?)sin(x — y) + (¥%y + xy?) cos(x — y)
2y ey Y 3)
2x(x*y + xy*)sin(x — y)
B (x2 + y2)2 ’ (X, y) ?é (O, O),

fx(xv y) =
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and
(x* +2xy) sin(x — y) — (x?y +xy?) cos(x — y)
2y(x%y + xy?) sin)(cj : yy)2 @
- , , 0,0).
AT (x.) # (0,0)
These formulas do not apply if (x, y) = (0, 0), so we find f,(0,0) and £, (0, 0) from their
definitions as difference quotients:

fy(xv)’) =

S0 = 10.0 _ | 0-0

fx(0,0) = lim lim —— =0,
x—0

X x—0 X
0,y)— £(0,0) . 0-0
£(0,0) = tim LOP=SO0 020
y—0 y y—0 y

Setting y = 0 in (3) and (4) yields
fx(x,0) =0, fy(x,0)=sinx, x #0,

SO

fx(X,O)—fx(0,0) . O_O
= lim ——
X x—0 X

fxx(0,0) = lim
x—0

L0~ /(0.0) _ . sinx—0
Jfyx(0,0) = lim Jy(x,0) — £,(0,0) = lim smx —9
x—0 x Lm T

Setting x = 0in (3) and (4) yields

fx(ovy):_Sinyv fy(OaY)ZOa Y#Oa

SO
O’ - Ov O . — si - O
£0,(0,0) = Tim 0.9 - 0.0 . —siny -0 _ .
y—0 y y—0 y
O’ - Oa O . O - O
Syy(0,0) = lim 50N =1/09 _ lim —— = 0. [
y—0 y y—0 y

This example shows that fy, (Xo) and f}x(Xo) may differ. However, the next theorem
shows that they are equal if f satisfies a fairly mild condition.

Theorem 5.3.3 Supposethat f, fx, fy,and fxy, exist onaneighborhood N of (x¢, yo),
and fxy is continuous at (xo, yo). Then fx(xo, yo) exists, and

fyX(XOa yO) = fxy(XOa yO) )

Proof Suppose that € > 0. Choose § > 0 so that the open square
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S5 = {(x, ») | |x — xo| < 8.1y — yol <&}
isin N and
| fey (K. 9) = fay(X0. yo)| <€ if (X,)) € Ss. (6)
This is possible because of the continuity of fx, at (xg, yo). The function

A(h, k) = f(xo+ h,yo+ k) — f(xo 4+ h,y0) = f(x0,¥0 + k) + f(x0,¥0) (7)

is defined if —8 < h, k < §; moreover,

A(h, k) = ¢(xo + h) — ¢(x0). (®)
where
P(x) = f(x.y0+ k) — f(x, yo).
Since
¢'(x) = fx(x,yo+ k) — fi(x.y0). |x—xo| <38,
(8) and the mean value theorem imply that

A(h, k) = [fx (X, yo + k) — fx (X, yo)l I, ©)

where X is between xq and xo + /#. The mean value theorem, applied to fx (X, y) (where X
is regarded as constant), also implies that

Fe(E yo + k) = fx(X, yo) = fry (X, DK,
where 7 is between yg and yo + k. From this and (9),
A(h.k) = fry (X, V)hk.
Now (6) implies that

A(h. k)
hk

— foy(x0.0)| = | fay R 9) = fay(x0, y0)| <€ if 0 <|h|, |k| <8. (10)

Since (7) implies that

. A(h, k) . fxo+h,yo+k)— f(xo + h, yo)
im = lim

k—0 hk k—0 hk
I S (x0, yo + k) — f(xo0, yo)
— 11mm
k—0 hk
_ Sfy(xo + h,yo) — fy(x0, yo)

h
it follows from (10) that

Jy(xo + A, yo) — fy(xo0, yo)
h

— fey(x0,y0)| <€ if 0<|h| <3$.
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Taking the limit as 7 — 0 yields

| fyx (X0, Yo) = fxy (X0, y0)| < €.

Since € is an arbitrary positive number, this proves (5). |

Theorem 5.3.3 implies the following theorem. We leave the proof to you (Exercises 10
and 11).

Theorem 5.3.4 Suppose that f and all its partial derivatives of order < r are contin-
uous on an open subset S of R". Then

fxil xiz,...,xir (X) = ijl sz,...,xjr (X)a X € Sa (1 1)
if each of the variables x1, X2, ..., X appears the same number of times in
{xil,xiz,...,xi,} and {x‘,-l,x‘,-z,...,xjr}.

If this number is r, we denote the common value of the two sides of (11) by

" fX)

— 12
dxy'Oxy -+ 0xp" (12)
it being understood that
O<re=r, 1=k=n, (13)
ri+ra+-trm=r, (14)

and, if ry = 0, we omit the symbol 3x2 from the “denominator" of (12).

For example, if f satisfies the hypotheses of Theorem 5.3.4 with k = 4 at a point X, in
R” (n > 2), then

fxxyy(XO) = fxyxy(XO) = fxyyx(XO) = fyyxx(XO) = fyxyx(XO) = fyxxy(XO)’

and their common value is denoted by

3* f(Xo)

0x20y2

It can be shown (Exercise 12) thatif f is a functionof (x1, X2, ..., X,) and (r1,72,...,7y)
is a fixed ordered n-tuple that satisfies (13) and (14), then the number of partial derivatives
inl Xiy Xy that involve differentiation r; times with respect to x;, 1 < i < n, equals the
multinomial coefficient ‘

r!

r1!r2!---rn!.
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Differentiable Functions of Several Variables

A function of several variables may have first-order partial derivatives at a point X but fail
to be continuous at Xg. For example, if

Xy
fx,y) = x2+ y2’ (x, ) # (0,0), s
0. (x,y) = (0,0),
then
g 00 70.0 0=
/x(0,0) = lim ; i 20—
and

fOK) = f©.0) _ . 0-0_

/(0,0) = lim k ik

but f is not continous at (0, 0). (See Examples 5.2.3 and 5.2.11.) Therefore, if differentia-
bility of a function of several variables is to be a stronger property than continuity, as it is
for functions of one variable, the definition of differentiability must require more than the
existence of first partial derivatives. Exercise 2.3.1 characterizes differentiability of a func-
tion f of one variable in a way that suggests the proper generalization: f is differentiable

at xo if and only if
i 0 = f(x0) —mlx —x0) _

x—>x0 X — Xo

0

for some constant m, in which case m = f/(xo).

The generalization to functions of n variables is as follows.
Definition 5.3.5 A function f is differentiable at

Xo = (X10. X20, - - -, Xno))

if Xp € D} and there are constants my, ms, ..., m, such that

SX) = fXo) — Z m; (x; — X;o)

. i=1
lim
X—Xo |X - X0|

=0. (16)

Example 5.3.5 Let
flx,y) = x2 + 2xy.

We will show that f is differentiable at any point (xg, y¢), as follows:
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J(x,9) = f(x0, o) = x* + 2xy — x§ — 2x0)0
=x%_ x% + 2(xy — x0Yo0)
= (x —x0)(x + xo) + 2(xy —xo0y) + 2(x0y — Xo0Yo)
= (x + x0 + 2y)(x — x0) + 2x0(y — yo)
= 2(xo + yo)(x — x0) + 2x0(y — yo)
+ (x = x0)(x —x0 + 2y — 2yo)
=m1(x —xo) +ma2(y — yo) + (x — x0)(x — X0 + 2y —29),

where
my = 2(xo + yo) = fx(x0,y0) and my = 2x9 = f,(x0, yo)- 17
Therefore,
|f(x,y) = f(x0, o) = mi(x — x0) —ma2(y — yo)| _ |x — xol|(x —x0) +2(y — yo)|
X — Xo| B X — Xo|
< V51X = Xol,

by Schwarz’s inequality. This implies that

I S(x,y) — f(x0, y0) —m1(x —x0) —ma(y —yo) _
m -

Oa
X—>Xo X —Xo

so f is differentiable at (xo, yo). ]

From (17), m; = fx(x0, yo) and my = f, (x0, o) in Example 5.3.5. The next theorem
shows that this is not a coincidence.

Theorem 5.3.6 If f is differentiable at Xo = (x10,X20, - -, Xno), then fx,(Xo),
Jx,(Xo), ..., fx,(Xo) exist and the constants my, ma, ..., my, in (16) are given by

m; = fr;Xo), 1=<i=<n; (18)
that is,

FX) = f(Xo) = D fr; Xo)(xi = xi0)

. i=1
lim

=0.
X—Xo |X - X0|

Proof Leti beagivenintegerin{l,2,...,n}. Let X = Xo +E;, so that x; = x;0 +1,
Xx; = xjoif j # i, and |X — Xo| = |f|. Then (16) and the differentiability of f at X
imply that

im S Xo +1E;) — f(Xo) —m;t

i
t—0 t
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Hence,
. [(Xo +1Ei) — f(Xo)
lim = m;.
t—0 t
This proves (18), since the limit on the leftis f; (Xo), by definition. 0

A linear function is a function of the form
L(X) = mix1 + maxz + - + mpxy, (19)

where my, ms, ..., my are constants. From Definition 5.3.5, f is differentiable at X if
and only if there is a linear function L such that f(X) — f(X¢) can be approximated so
well near Xy by

L(X) — L(Xo) = L(X — Xo)

that
SX) = fXo) = L(X = Xo) + EX)(IX —Xol), (20)
where
xlig%o EX) =0. (21

Theorem 5.3.7 If f is differentiable at Xy, then f is continuous at Xo.

Proof From (19) and Schwarz’s inequality,
|L(X —Xo)| = M|X —Xo,

where
M = m?+m?+-- +m2)/2,

This and (20) imply that
|fX) = fXo)| = (M + |[EX)DIX —Xol,

which, with (21), implies that f is continuous at Xj. a

Theorem 5.3.7 implies that the function f defined by (15) is not differentiable at (0, 0),
since it is not continuous at (0, 0). However, fx(0,0) and £ (0, 0) exist, so the converse
of Theorem 5.3.7 is false; that is, a function may have partial derivatives at a point without
being differentiable at the point.

The Differential

Theorem 5.3.7 implies that if f is differentiable at Xy, then there is exactly one linear
function L that satisfies (20) and (21):

LX) = fryXo)x1 + fr;(Xo)x2 + -+ + fx, Xo)xn.
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This function is called the differential of f at Xo. We will denote it by dx, f and its
value by (dx, f)(X); thus,

(dxo /)X) = fx; Xo)x1 + frx, (Xo)x2 + -+ + fx, (Xo)Xn. (22)
In terms of the differential, (16) can be rewritten as

SO0 = f(Xo) — (dxy X = Xo) _
1m =

0.
X—Xo X —Xo

For convenience in writing dx, f, and to conform with standard notation, we introduce
the function dx;, defined by
dx;(X) = x;;

that is, dx; is the function whose value at a point in R” is the i th coordinate of the point. It
is the differential of the function g; (X) = x;. From (22),

dxo f = fey(Xo)dx1 + fr,Xodxz + -+ + fx,(Xo) dxn. (23)
If we write X = (x, y,...,), then we write
dxo f = fxXo)dx + f,Xo)dy +---,
where dx, dy, ... are the functions defined by

dxX)=x, dyX)=y,...

When it is not necessary to emphasize the specific point Xg, (23) can be written more
simply as

df = fxl dxy + fxz dx; +---+ fxn dx,.

When dealing with a specific function at an arbitrary point of its domain, we may use the
hybrid notation

df = fu X)dx1 + fr, X)dxz + -+ + fr, (X) dxp.
Example 5.3.6 We saw in Example 5.3.5 that the function
fx,y) = x* +2xy
is differentiable at every X in R”, with differential
df = (2x +2y)dx +2xdy.
To find dx, f with Xy = (1, 2), we set xo = 1 and yo = 2; thus,
dx,f =6dx +2dy

and
(dxo )X —Xo) = 6(x — 1) +2(y —2).
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Since f(1,2) = 5, the differentiability of f at (1, 2) implies that

SO y)=5-6(x—1)—-2(y=2) _ 0
@n=>02 =12+ (y = 2p

Example 5.3.7 The differential of a function f = f(x) of one variable is given by
dxo f = f'(x0) dx,
where dx is the identity function; that is,
dx(t) =t.

For example, if
f(x) = 3x% + 5x3,

then
df = (6x + 15x%) dx.

If xo = —1, then
dxof = 9dxv (dxof)(x —X()) = 9(‘x + 1)3

and, since f(—1) = =2,

() +2=-9(x+1)
lim =0
x—>—1 x+1

Unfortunately, the notation for the differential is so complicated that it obscures the
simplicity of the concept. The peculiar symbols df, dx, dy, etc., were introduced in
the early stages of the development of calculus to represent very small (“infinitesimal’)
increments in the variables. However, in modern usage they are not quantities at all, but

linear functions. This meaning of the symbol dx differs from its meaning in | ab f(x)dx,
where it serves merely to identify the variable of integration; indeed, some authors omit it

. . . b
in the latter context and write simply |’ 2 J-

Theorem 5.3.7 implies the following lemma, which is analogous to Lemma 2.3.2. We
leave the proof to you (Exercise 13).

Lemma 5.3.8 If f is differentiable at Xy, then
JX) = f(Xo) = (dxo /)X = Xo) + EX)[X - Xo],
where E is defined in a neighborhood of Xo and
Xllg(lo EX) = E(Xp) =0.

Theorems 5.3.2 and 5.3.7 and the definition of the differential imply the following theo-
rem.
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Theorem 5.3.9 If f and g are differentiable at Xy, then so are | + g and fg. The
same is true of f/g if §(Xo) # 0. The differentials are given by

dXo(f +g) = dxof + dxog,
dx, (fg) = fXo)dx,g + g(Xo)dx, /.

dx (i) _ 8Xo)dx, f — f(Xo)dxo8
‘\g [g(Xo)? ’

and

The next theorem provides a widely applicable sufficient condition for differentiability.

Theorem 5.3.10 If fx,, fxs»---» fx, exist on a neighborhood of X¢ and are contin-
uous at Xy, then f is differentiable at Xy.

Proof Let Xy = (x10,X20, ..., Xno) and suppose that € > 0. Our assumptions imply
that there is a § > O such that fy,, fx,,..., fx, are defined in the n-ball

S5(Xo) = {X | IX —Xo| < &}

and
| fe, X) — fx, Xo) <€ if |X—Xo| <8, 1=<j=<n. (24)

Let X = (x1,x,...,x,) bein S§(Xp). Define

s

Xj:(xla”‘axjaxj-l—l,()a”‘axno)a lfjfn_la

and X,, = X. Thus, for 1 < j < n, X; differs from X;_ in the jth component only, and
the line segment from X;_; to X is in S5(Xo). Now write

FX) = f(Xo) = f(Xn) — f(Xo) = D [f (X)) — fXj-1)]: (25)
Jj=1
and consider the auxiliary functions
g1(t) = f(l, X205 -+ - » Xn0),
g_,-(t):f(xl,...,x_,-_l,t,x_,-+1,o,...,x,,o), ij <n-—1, (26)
gn) = f(x1,...,xXp—1,1),

where, in each case, all variables except ¢ are temporarily regarded as constants. Since

X)) — fXjo1) =g (xj) —gj(xj0),

the mean value theorem implies that

SX)) = f(Xj—1) = g (tj)(x; = xj0),
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where 7; is between x; and x jo. From (26),
g5 @) = fi, X).
where 3\(‘,- is on the line segment from X; 1 to X;. Therefore,
S = FKjm) = S, K = xjo),
and (25) implies that

FX) = fXo)= D fr, X)(x; = xjo)

j=1
=3 S, Ko)(xj —xj0) + Y [fe; X)) = fr, X0)I(x; — Xjo).
Jj=1 j=1

From this and (24),

n n
FX) = f(Xo) = Y fr,Xo)(xj —xj0)| <€y |x; —xjol <nelX—Xo,
J=1 j=1
which implies that f is differentiable at X. a

We say that f is continuously differentiable on a subset S of R” if S is contained in an
open set on which fy,, fx,, ..., fx, are continuous. Theorem 5.3.10 implies that such a
function is differentiable at each Xg in S.

Example 5.3.8 If

2 2
X“+y
fxy)=—"—.
xX=Y
then
2x x2 +y? 2y x2 4 y?
Jalx,y) = - and  fy(x,y) = + :
iy x=y (x—y)7? g x—y  (x—yp?
Since fy and f, are continuous on
S =10, |x #y},
[ is continuously differentiable on . |

Example 5.3.9 The conditions of Theorem 5.3.10 are not necessary for differentiabil-
ity; that is, a function may be differentiable at a point Xy even if its first partial derivatives
are not continuous at Xy. For example, let

. 1
Fx.y) = (x—y)zsmx 5’ X #y,
0, X =y.
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Then
1

— cos , X F Y,
xX—=y X—=y

Jx(x,y) = 2(x — y)sin

and

fO+hx)— fxx) lim h?sin(1/h) =0

X k) = 1 = k)
Salx,x) = lim i ) I 0

so fx exists for all (x, ), but is not continuous on the line y = x. The same is true of f),
since

1
fy(x,y) = —2(x — y)sin +cosx_y, X #y,

and
o flex4+k) = f(x,x) . kZsin(=1/k) -0
fy(x,x) = lim = lim——— 2" 7 _
k—0 k k—0 k
Now,
S = F0.0— f0,0x— 00y  [EZD g 1Ly
) - ) — Jx\Y, — Jy\Y, _ — s
X2 + y2 = O\’/xz+y2 X—=y .

and Schwarz’s inequality implies that

— )2 1 2(x2 2
(x—=y) sin < (x +y):2 TIyE x Ay
N ] e
Therefore,
e S = f0.0 = £0.0x = /0.0y _
(x,7)—(0,0) JxZ )2 ’
so f is differentiable at (0, 0), but fy and f) are not continuous at (0, 0). ]

Geometric Interpretation of Differentiability

In Section 2.3 we saw that if a function f of one variable is differentiable at x¢, then the
curve y = f(x) has a tangent line

y =T(x) = f(xo) + f'(x0)(x — xo)
that approximates it so well near x, that

i LT _
im =

X—>X( X — Xo

0.

Moreover, the tangent line is the “limit” of the secant line through the points (x1, f(x¢))
and (xg, f(x0)) as x; approaches x.
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Figure 5.3.1

Differentiability of a function of n variables has an analogous geometric interpretation.

We will illustrate it for n = 2. If f is defined in a region D in R2, then the set of points
(x, ¥, z) such that

z=f(x.y), (x.y) €D, 27)
is a surface in R® (Figure 5.3.1).

z=f(x,y)

Figure 5.3.2
If f is differentiable at Xo = (xo, o), then the plane

z2=T(x,y) = fXo) + fxXo)(x — x0) + fyXo)(y — o) (28)

intersects the surface (27) at (xo, yo, f (X0, o)) and approximates the surface so well near
(0, yo) that
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i S(x,y)=T(x,y)
(.9)=>(0.30) /(x — x0)* + (¥ — y0)?

(Figure 5.3.2, page 331). Moreover, (28) is the only plane in R3 with these properties
(Exercise 25). We say that this plane is tangent to the surface z = f(x,y) at the point
(x0, Yo, f(x0, y0)). We will now show that it is the “limit” of “secant planes” associated
with the surface z = f(x, y), just as a tangent line to a curve y = f(x) in R3 is the limit

of secant lines to the curve (Section 2.3).

Let X; = (x;,y;) (i = 1,2,3). The equation of the “secant plane” through the points
(xi, yi, f(xi, i) (@ = 1,2,3)on the surface z = f(x, y) (Figure 5.3.3) is of the form

z = f(Xo) + A(x — x0) + B(y — yo).

where A and B satisfy the system

f(X1) = f(Xo) + A(x1 — x0) + B(y1 — yo),
f(X2) = f(Xo) + A(x2 — x0) + B(y2 — yo).

Solving for A and B yields
4= VXD =~ /X)) (2 =~ yo) = (f(X2) = fK0)) (1 — yo)

(x1 = x0)(y2 — yo) — (x2 — x0)(¥1 — Yo)
and
_(fX2) = f(Xo))(x1 = x0) = (f(X1) = f(Xo))(x2 — x0)
B (x1 = x0)(y2 — yo) — (x2 — x0)(¥1 — Yo)

B

if
(x1 —x0)(y2 — yo) — (x2 — x0)(¥y1 — yo) # 0,

(29)

(30)

(€19

(32)

which is equivalent to the requirement that X, X;, and X5 do not lie on a line (Exercise 23).

If we write
X;i =Xo+tU and X; =Xy +1?V,

where U = (u1,u3) and V = (vy, vy) are fixed nonzero vectors (Figure 5.3.3), then (30),

(31), and (32) take the more convenient forms

f(Xo +10) —f(Xo)vz_ f(Xo +1V) —f(Xo)u2

A= ! L :
U1V — U V1
fXo +1V) — f(Xo)u1 _ JXo +1U) - f(Xo)v1

B— ¢ ¢
U V2 — U VY '

and
U1V —UV] 75 0.

(33)

(34)
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Y

y

Figure 5.3.3

If f is differentiable at X,, then

where

FX) = fXo) = fxXo)(x —x0) + fyXo)(y = yo) + X)X =Xo[,  (35)

lim €(X) = 0. (36)
X—Xo

Substituting first X = X 4 #U and then X = X 4 #V in (35) and dividing by ¢ yields

and

where

SO

JfXo 4 1U) — f(Xo)
t

= fxXo)u1 + fy(Xo)uz + E1(2)|U] (37)

JfXo +1V) — f(Xo)

; = fxXo)v1 + fy(Xo)va + E2(1)|V], (38)

Ei(t) =eXo+tU)|t|/t and E,(t) = eXo +1tV)|t|/t,

lim £:(1) =0, i =1.2, (39)

because of (36). Substituting (37) and (38) into (33) and (34) yields

where

A= fx(Xo) + A1), B = f,(Xo) + Az(1), (40)
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V2|U|E1(t) — uz2|V|Ex (1)

Ay (1) =
UV — U2V
and V|IE UIE
t) — t
Az(t)=u1| |E2(t) — v1|U] 1()’
U1V — UV1
SO
lim Ai(1) =0, i=1.2, (41)
t—

because of (39).
From (29) and (40), the equation of the secant plane is

z = f(Xo) + [fxXo) + A1 (0)](x — x0) + [fy(Xo) + A2(H)](y — Yo)-

Therefore, because of (41), the secant plane “approaches” the tangent plane (28) as ¢ ap-
proaches zero.

Maxima and Minima

We say that X is a local extreme point of f if there is a § > 0 such that
JX) = f(Xo)

does not change sign in Ss(Xo) N D r. More specifically, Xy is a local maximum point if
FX) = f(Xo)

or a local minimum point if
FX) = f(Xo)
forall X in S5(Xo) N D .

The next theorem is analogous to Theorem 2.3.7.

Theorem 5.3.11 Suppose that f is defined in a neighborhood of Xo in R" and fx, (Xo),
Jx,(Xo), ..., fx,(Xo) exist. Let X be a local extreme point of f. Then

Jx;,Xo) =0, 1<i<n. (42)

Proof Let
E, = (1,0,...,0), E,=(0,1,0,...,0),..., E,=(0,0,...,1),

and
gi(t) = fXo+1tE;), 1<i<n.

Then g; is differentiable at r = 0, with

£i(0) = f;(Xo)
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(Definition 5.3.1). Since X is a local extreme point of f, 7o = 0 is a local extreme point
of g;. Now Theorem 2.3.7 implies that g/ (0) = 0, and this implies (42). 0

The converse of Theorem 5.3.11 is false, since (42) may hold at a point Xy that is not a
local extreme point of f. For example, let Xo = (0, 0) and

flx,y) =x>+ >

We say that a point X where (42) holds is a critical point of f. Thus, if f is defined in
a neighborhood of a local extreme point X, then X is a critical point of f; however, a
critical point need not be a local extreme point of f.

The use of Theorem 5.3.11 for finding local extreme points is covered in calculus, so we
will not pursue it here.

5.3 Exercises

1. Calculate 9f(X)/0®.

(a) f(x,y) =x*+2xycosx, ¢:(%’_\/§>

2 1 1 1
b x4z g (L L L
( ) f(xvyaZ) e , (ﬁ’ 3’ﬁ)
X o= (= =
(c) fX)=[X], ¢_(ﬁ’ L. n)
(d) fGr.y.2)=logl +x+y+2). €=(0.1.0)
2. Let .
Xy sinx
fx,y) = {x2+y2’ (x,y) # (0,0),
0, (x,y) = (0,0),

and let ® = (¢1, ¢») be a unit vector. Find df (0, 0)/0®P.

3. Find df(Xo)/0®, where ® is the unit vector in the direction of X; — X).
(a) f(x,y,z)=sinmxyz; Xo=(1,1,-2), X;=@3,2,-1)
(b) f(x,y,2) = e P42 Xo = (1,0,—1), X; = (2,0,-1)
(¢) f(x,y,z2)=logl +x+y+2z); Xo=(1,0,1), X;=(3,0,-1)
(d) fX)=IX* Xo=0, X;=(.1...1)

4. Give a geometrical interpretation of the directional derivative df (xo, yo)/d® of a
function of two variables.

5. Find all first-order partial derivatives.

() f(x,y,2) =log(x +y +2z) (b) f(x,y,2) = x2 4+ 3xyz + 2xy

(c) f(x,y.2) = xe* (d) f(x.y.2) =z +sinx?y
6. Find all second-order partial derivatives of the functions in Exercise 5.
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7.  Find all second-order partial derivatives of the following functions at (0, 0).

xy(x? —y?
(a) f(xvy): x2+y2 ’ (x’y)#(ovo)a
0, (x,y) = (0,0)
2ean1 Y V2 an! X
(b) flx,yy= ¥ B oy g x# 0y 0
0, x=0 or y=0

(Here |tan~!u| < 7/2.)

8. Find a function f = f(x,y) such that fx, exists for all (x,y), but f, exists
nowhere.

9. Let u and v be functions of two variables with continuous second-order partial

derivatives in a region S. Suppose that uy = v, and u, = —v, in §. Show
that

Uxx + Uyy = Uxx +Vyy =0
in S.

10. Let f be a function of (x1,x2,...,Xs) (n > 2) such that fx;, fx,,and fx,x, (i #
J) exist on a neighborhood of Xg and f, x; is continuous at Xy. Use Theorem 5.3.3
to prove that fy x; (Xo) exists and equals fx;x; (Xo).

11. Use Exercise 10 and induction on r to prove Theorem 5.3.4.

12. Letry,ra,...,r, be nonnegative integers such that
ri+ra+--+rp,=r>0.
(a) Show that

r! " _r

212y

ittt ) =) —————
(1 2 n) Zr:rllrzl---rn!

where ). denotes summation over all n-tuples (ry,72,...,r,) that satisfy
the stated conditions. HINT: This is obvious if n = 1, and it follows from
Exercise 1.2.19 ifn = 2. Use induction on n.

(b) Show that there are

r!
ordered n-tuples of integers (i1, i, ..., i) that contain r; ones, r; twos, ...,
and r, n’s.
(c) Let f be a function of (x1, x2, ..., X,). Show that there are
r!

partial derivatives fxil Xiy:
tox;,fori =1,2,...,n.

13. Prove Lemma 5.3.8.

- that involve differentiation r; times with respect



14.

15.

16.

17.

18.

19.

20.

21.
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Show that the function
x2y
flx,y) =336 +2y2° (x.y) #(0,0),
0, (x,y) =(0,0),

has a directional derivative in the direction of an arbitrary unit vector ® at (0, 0), but

f is not continuous at (0, 0).

Prove: If fy and f, are bounded in a neighborhood of (x¢, y¢), then f is continuous

at (xo, yo).

Show directly from Definition 5.3.5 that f is differentiable at Xo.

(@) flx.y)=2x>+3xy +y% Xo=(12)

(b) f(x.y.z) =2x?+3x+4yz, Xo=(1,1,1)

(c) f(X)=IX]% X, arbitrary

Suppose that f; exists on a neighborhood of (x¢, yo) and is continuous at (xo, yo),

while f; merely exists at (xo, yo). Show that f is differentiable at (xo, yo).

Find df and dx, f, and write (dx, f)(X — Xo).

(a) f(x,y)=x3+4xy? +2xysinx, Xo = (0,-2)

(b) f(x.y.2) =e O+ X4 =(0.0.0)

(c) f(X)=log(l +x1 +2x2+3x3+4---+nx,), Xo=0

(d) O =X, Xo=(11...1)

(a) Suppose that f is differentiable at Xo and ® = (¢1, 2, ..., Pn) is a unit
vector. Show that

af (Xo)
P

= fx, Xo)p1 + fr. Xo)p2 + -+ + fx, (Xo)Pn.

(b) For what unit vector ® does 3f(Xo)/d® attain its maximum value?
Let f be defined on R” by

SX) = g(x1) + g(x2) + -+ + g(xn),

where

u? sin l, u #0,

0, ! u=0.

Show that f is differentiable at (0,0, ...,0), but fx,, fx,, ..., fx, are all discon-
tinuous at (0,0, ..., 0).

gu) =

The purpose of this exercise is to show that if f, f; and f exist on a neighborhood
N of (xg,y0) and fy and f, are differentiable at (xq, yo), then fx,(xo,y0) =
Jfyx(x0, ¥o). Suppose that the open square

() [ Ix = xol < |Al, |y — yol < |Al}
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22,

23.

24.

is in N. Consider

B(h) = f(xo+h,yo+h)— f(xo+ h,yo) — f(x0,y0 + h) + f(x0.Y0)-

(a) Use the mean value theorem as we did in the proof of Theorem 5.3.3 to write

B(h) = [fx(X, yo + k) — fx(X, yo)] h,

where X is between xo and xo + h. Then use the differentiability of f} at
(x0, yo) to infer that

B(h) = hzfxy(xo, yo) + hE{(h), where lim Ev(h) =

0.
h—0 h

(b) Use the mean value theorem to write

B(h) = [ fy(xo + 7. 9) — fy(x0, )] h.

where ¥ is between yo and yo + . Then use the differentiability of f at
(x0, yo) to infer that

B(h) = hzfyx (x0,Y0) + hE>(h), where lim Ea(h) =

0.
h—0 h

(c) Infer from (a) and (b) that fx,(xo, y0) = fyx(X0, Yo)-

(a) Let fy, and Jfx, be differentiable at a point Xo in R”. Show from Exercise 21
that

fxl-xj (XO) = ijxl- (XO)

(b) Use (a) and induction on r to show thatall (r — 1)-st order partial derivatives
of f are differentiable on an open subset S of R”, then inl xiy-x;, (X) (X € 5)
depends only on the number of differentiations with respect to each variable,
and not on the order in which they are performed.

Prove that (xg, y0), (x1, ¥1), and (x2, y2) lie on a line if and only if
(1 —x0)(y2 — yo) — (x2 — X0)(y1 — y0) = 0.
Find the equation of the tangent plane to the surface
2= f(x,y) at (xo.Y0.20) = (X0, o, f (X0 yo)).

(@) flx.y)=x2+y*—1, (x0.y0) =(1,2)

(b) f(x.y)=2x+3y+1, (x0.y0) = (1,—1)
(¢) f(x.y)=xysinxy, (xo.y0) = (1,7/2)

(d) f(x.y) =x2=2y*+3xy, (x0.y0) = (2.-1)
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25. Prove: If f is differentiable at (xo, yo) and

S, y)—a—blx—xo)) —c(y —yo) _
()= (x0.50) V& =x0)2 + (v = y0)?

Oa

thena = f(xo, yo), b = fx(x0,y0), and ¢ = fy(xo, yo).

5.4 THE CHAIN RULE AND TAYLOR’S THEOREM

We now consider the problem of differentiating a composite function

h(U) = f(G(U)).

where G = (g1, 82,.-.,8n) is a vector-valued function, as defined in Section 5.2. We
begin with the following definition.

Definition 5.4.1 A vector-valued function G = (g1, g2, .. ., &) is differentiable at
Up = (u10,U20, -+, Umo)
if its component functions g1, g2, ..., gn are differentiable at Up. |

We need the following lemma to prove the main result of the section.

Lemma 5.4.2 Suppose that G = (g1, g2, - - ., &n) is differentiable at

Uo = (410, U20, - .. Umo),

and define

Then, ife > 0, there is a § > 0 such that

|G(U) — G(Uy)|

<M if 0<|U-Up| <.
U= Uo| +e if | ol

Proof Since g1, g, ..., gn are differentiable at Uy, applying Lemma 5.3.8 to g; shows
that
gi(U) — gi(Uo) = (du,&i)(U — Up) + E; (U)|(U — Uy

ey

~ 9gi (U
=3 2O o) + E(U)IU - Uy,
J

Jj=1
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where
lim E;(U)=0, 1<i<n. 2)
U—Ug

From Schwarz’s inequality,

lgi (U) — gi (Ug)| < (M; + |E;(U)])|U — Up|,

where 12
_ [+ (02i(U0) )2
M; = Z s
j=1 J
Therefore,
GWU) = GUy)| _ (< v
—_— < M; + |E;(U)|)? .
U= Uy (g( P+ IE( >|>)
From (2), U U
n n
Jim (Z(Mi + |Ei(U)|)2) = (Z Mﬁ) =M,
oo i=1
which implies the conclusion. a

The following theorem is analogous to Theorem 2.3.5.

Theorem 5.4.3 (The Chain Rule) Suppose that the real-valued function f is
differentiable at Xy in R", the vector-valued function G = (g1, g2, - - ., &n) is differentiable
atUp inR™, and Xo = G(Uy). Then the real-valued composite functionh = f oG defined
by

h(U) = f(G(U)) 3)

is differentiable at Uy, and
dUoh = fxl (XO)dUogl + fxz(XO)dUogZ +---+ fxn (XO)dUogn‘ (4)

Proof We leave it to you to show that Uy is an interior point of the domain of / (Exer-
cise 1), so it is legitimate to ask if / is differentiable at Uy.

Let Xo = (x10, X20, - - - , Xno). Note that
xio = gi(Uo), 1=<i=<n,
by assumption. Since f is differentiable at Xo, Lemma 5.3.8 implies that
n
FX) = f(Xo) =) fr; Xo)(xi — Xi0) + EX)|X = Xol, (5)
i=1

where
lim E(X) =0.
X—Xo
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Substituting X = G(U) and X¢ = G(Up) in (5) and recalling (3) yields
h(U) — h(Uo) = Y fr;(X0)(gi (U) — £ (Vo)) + E(G(U))|G(U) —G(Ug)|.  (6)
i=1
Substituting (1) into (6) yields
h(U) —h(Up) = > fr; Xo)(du, &) (U — Ug) + (Z fxi Xo)Ei (U)) U —Uy|
i=1 i=1
+E(G(U))|G(U) — G(Uo|.
Since
(2) and Lemma 5.4.2 imply that
h(U) = h(Up) — Y _ fr; (Xodu,gi (U — Up)

i=1

|U — Uy
Therefore, h is differentiable at Uy, and dy,h is given by (4). a

=0.

Example 5.4.1 Let
f(x,y,2) =2x% + 4xy + 3yz,

g1(u,v) = u? + vz, g2(u,v) = u? —2v2, g3(u,v) = uv,

and
h(u’ U) = f(gl(uv U), gZ(u’ U), g3(uv U))
Let Up = (1,—1) and

Xo = (g1(Uop), g2(Uop), g3(Up)) = (2,—1,—=1).

Then
Sx(Xo) =4, f,(Xo) =5, [f:(Xo) =-3,
dg1(Uo) _ 2. dg1(Uo) _ Y
ou ov
dg2(Uo) _ ). dg2(Uo) _ 4,
ou ov
dg3(Uo) _ 1 dg3(Uo) _ |
ow v
Therefore,

dUOgl =2du —Zdv,

dUng =2du+4dv,

dU0g3 = —du + dv,
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and, from (4),
duph = fx(Xo) duyg1 + fy(Xo) duy &2 + f2(Xo) du, &3
=4Q2du—2dv)+5Q2du + 4dv) —3(—du + dv)
=21du+ 9dv.

Since
duyh = hy(Up) du + hy,(Up) dv

we conclude that
hy(Up) =21 and hy(Ug) = 9. 7

This can also be obtained by writing & explicitly in terms of (u, v) and differentiating; thus,
h(u, v) = 2[g1(u, v)]> + 4g1(u, v)g2(u, v) + 3g2(u, v)g3(u, v)
=2@? +v?)? 4+ 4@? + vH)W? — 202) + 3u? - 20H)uv
= 6u* + 3udv — 6uv® — 6v*.
Hence,
hy(u,v) = 24u3 4+ 9u?v — 6v>  and hy(u,v) = 3ud — 18uv? — 2403,
0 hy (1,—1) = 21 and hy (1, —1) = 9, consistent with (7). [ |
Corollary 5.4.4 Under the assumptions of Theorem 5.4.3,

0h(Uo) _ Zn: df (Xo) dg; (Uo)

, 1<i<m. 8
3”[ — ij 3”[ - ( )
Proof Substituting
ag; (U dg; (U dagi(A
dUOg[Z il O)du1+ & (Vo) duy + -+ il O)dum, 1<i<n,
ou1 o0us 0Um
into (4) and collecting multipliers of duy, dus, ..., du, yields

dUoh _ Z Z af (Ao) 3gj(U0) du;.

ij Bui

i=1 \j=1

However, from Theorem 5.3.6,

Comparing the last two equations yields (8). o
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When it is not important to emphasize the particular point X¢, we write (8) less formally
as

Z af 0g; 1<i<m, 9)

Bx, du;’ -

Bu,

with the understanding that in calculating 0h(Ag)/0u;, 0g;/0u; is evaluated at Uy and
Bf/ij at Xo = G(Uy).

The formulas (8) and (9) can also be simplified by replacing the symbol G with X =
X(U); then we write

h(U) = f(X(U))

and
dh(Uy) Z 8f (Xo) 9, (Uo)
3”[ n — ij 3”[ ’
or simply
af Ox;
Bu, Z ij ou; (10)

Example 5.4.2 Let (r, 6) be polar coordinates in the xy-plane; that is,
x=rcosf, y=rsinf.
Suppose that f = f(x, y) is differentiable on a set S, and let
h(r,0) = f(rcos6,rsin6).
If (r cos 0, r sinf) € S, (10) implies that
o _ordx  af dy

P ingd

= = 0 in 6 — 11
ar  dx dr  QJy or o8 ax +sin ay (i
and
dh df ox  df dy . 0f af
) 3x39+3y39_ rsm93x+r00393y
where fyx and fj are evaluated at (x, y) = (r cos 8, r sin§). ]

The proof of Corollary 5.4.4 suggests a straightforward way to calculate the partial
derivatives of a composite function without using (10) explicitly. If 2(U) = f(X(A)),
then Theorem 5.4.3 , in the more casual notation introduced before Example 5.4.2, implies
that

dh = fydx1 + fo,dxa+ -+ fy,dxn, (12)

where dx1, dx», ..., dx, must be written in terms of the differentials duy, dus, ..., du,,
of the independent variables; thus,
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0x; 0x; Xi
dx; = 31d1+32 .

Substituting this into (12) and collecting the multipliers of duy, dus, ..., duy, yields (10).

Example 5.4.3 If
h(r,0.z) = f(x(r,0), y(r.0).2),

then
dh = fydx + f,dy + f;dz.
But 3 3 3 3
X X y y
= — — do d = = — do;
dx Brd +3 df and dy Brdr+39d
hence,
ox ay ay
dh = fx(— +3—9d9)+fy( dr +3—9d9)+fzdz
(fx +fya)dr+(fx +fy39)d0+fzdz,
SO

d d
b= fog b foghs o= fegs + fygys he=fe .
Example 5.4.4 Let
h(x) = f(x,y(x,2(x)), 2(x)).

Then
dh = fyrdx+ fydy + f;dz, (13)
dy = yxdx + y; dz, (14)
and
dz =7/ dx, (15)

where the prime indicates differentiation with respect to x. Substituting (15) into (14)
yields
dy = (yx + yz2') dx

and substituting this and (15) into (13) yields

dh = [fx + fy(yx + yz2') + f2'1dx;

hence,
= fi+ Sy(x + y2) + f2.

Here fy, fy, and f; are evaluated at (x, y(x, z(x)),z(x)), yx and y, are evaluated at
(x,z(x)), and 7’ is evaluated at x. [ ]
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Higher Derivatives of Composite Functions

Higher derivatives of composite functions can be computed by repeatedly applying the
chain rule. For example, differentiating (10) with respect to uy yields

o _ i ()
Qupdu; Oug \ 0x; du;

(16)
_Zaf 9%x; Zﬁx,ﬁ(ﬁf)
n = E)x‘, ouy du; ou; ouy
We must be careful finding
9 (ﬁ)
Buk 3)(?‘/' ’
which really stands here for
J (of (X(U)))
17
Buk ( 3)(?‘/' a7
The safest procedure is to write temporarily
af (X)
gX) = ja:(c ;
J
then (17) becomes
BXWV) _ 3 d5X(U) x, ()
Qg — 0x Jug
Since
g % f
dxs  Oxs ox;’
this yields
] %S dxg
dug E)xk Bxs dx; duy
Substituting this into (16) yields
02h af  9%x; 3x, ©2f Oxg
. 1
ouy ou; Z E)x‘, ouy du; Z SZ: 0xs 0x Ok (18)

To compute £y, (Up) from this formula, we evaluate the partial derivatives of x1, x2,

., X at Up and those of f at Xo = X(Up). The formula is valid if x1, x2, ..., X, and
their first partial derivatives are differentiable at Up and f, fx,, fx,, ..., fx, and their first
partial derivatives are differentiable at Xj.

Instead of memorizing (18), you should understand how it is derived and use the method,
rather than the formula, when calculating second partial derivatives of composite functions.
The same method applies to the calculation of higher derivatives.
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Example 5.4.5 Suppose that f; and f) in Example 5.4.2 are differentiable on an open
set S in R?. Differentiating (11) with respect to r yields

821 d (of\ . 0 (df
m—00395($)+31n93—r($)

2 fdx  0%f dy 02f ox  0%f dy
—cosp [ L > ino 9x  o7J oy
o8 (3x2 ar + dy dx Br) +ein (3x dy or + dy? Br)

19)

if (x,y) € S. Since

ax ay ) 02 f 02 f
— =cosf, — =sinf, and =
ar ar dxdy  dyodx
if (x, y) € S (Exercise 5.3.21), (19) yields
0%h 5 02 f ) 02 f 5 0% f
2= cos QW + 2sin 0 cos QW + sin QW.
Differentiating (11) with respect to 0 yields

9%h . af af a (df . a [(of
aear——sm9$+0039$+00393—9(5)+sm93—9($)

i of Pfox RS dy
__Sln93x+cosef)y+COS€(3x239+3y3x39

PF ax  92f dy
in ox 0L
+sin (3x3y 20 T 92 39)

Since

it follows that

= —sinf= + cos@— — rsin6 cos O —

36 or ax dy Ix2  9y?
Pf ‘ -
dxady

92h of of (Bz_f Bzf)

+r(cos? § —sin? )

The Mean Value Theorem

For a composite function of the form

h(t) = f(x1(t), x2(0), ..., xa(1))

where ¢ is a real variable, x1, x5, ..., X, are differentiable at ¢, and f is differentiable at
Xo = X(fp), (8) takes the form

H(to) =) fr; (X(t0))x'; (to). (20)

Jj=1

This will be useful in the following proof.
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Theorem 5.4.5 (Mean Value Theorem for Functions of n Variables)
Let f be continuous at X1 = (X11,X21, ..., Xn1) and Ay = (X12, X232, ..., Xn2) and dif-
ferentiable on the line segment L from X; to X,. Then

n
fX2) = f(X1) =) fr Ko)(xiz — xi1) = (dxo f)(X2 — X1) 1)

i=1
for some X¢ on L distinct from X1 and A,.
Proof An equationof L is

X=X@#)=tXo+(1-0)X;, 0=<r<I1.
Our hypotheses imply that the function
h(r) = f(X(1))

is continuous on [0, 1] and differentiable on (0, 1). Since

xi(t) = txjo + (1 — t)x;1,
(20) implies that

n
W) =) fo X@O)xiz —xn), 0<1 <1
i=1
From the mean value theorem for functions of one variable (Theorem 2.3.11),
h(1) — h(0) = I'(t0)

for some 79 € (0,1). Since (1) = f(X2) and 2(0) = f(A}1), this implies (21) with
Xo = X(10). N

Corollary 5.4.6 If fx,, fxys---» fx, are identically zero in an open region S of R",
then f is constantin S.

Proof We will show that if Xg and X are in S, then f(X) = f(Xp). Since S is an open
region, S is polygonally connected (Theorem 5.1.20). Therefore, there are points

X0, X1,.... X, =X
such that the line segment L; from X;_; to X; isin S, 1 <i < n. From Theorem 5.4.5,
n
FXi) = fXi1) =Y (dg, )HXi = Xi),
i=1
where X is on L; and therefore in S. Therefore,

fi X)) = fo.X) == fu,X) =0,
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which means that dg, / = 0. Hence,

fXo) = fXy) == f(Xa);
that is, f(X) = f(Xo) forevery X in S. 0

Higher Differentials and Taylor’s Theorem

Suppose that f is defined in an n-ball B,(Xp), with p > 0. If X € B,(Xj), then
X(t) =Xo+t(X—-Xp) € By(A), 0=<t=<1,

so the function
h@t) = f(X())
is defined for 0 <t < 1. From Theorem 5.4.3 (see also (20)),

W) = fo (X@)(xi = xi0)

i=1

if f is differentiable in B,(Xo), and

L0 (X
HOEDYS ax; (Z f(sz))(Xi - xiO)) (xj = xjo)
j=1 "7 \i=1

— 9 f(X(0))

= ————(xi —Xj0)(x; — Xj0)

=1 ij 3)6[
if fx,s fxps---» fx, are differentiable in B,(Xo). Continuing in this way, we see that
n
9" f(X(1))
") (+) — C X e a) e (0 — X
o= To g, i T X 0) (62— Xin0) - (G = i) (22)

01,02, =1
if all partial derivatives of f of order < r — 1 are differentiable in B,(X).

This motivates the following definition.

Definition 5.4.7 Suppose that r > 1 and all partial derivatives of f of order < r — 1
are differentiable in a neighborhood of Xo. Then the rth differential of f at Xy, denoted

by d)((:))f, is defined by

n
5 9" f (Xo)
d(r) = dxi dxi - dox: ’ ’3
X/ A X, Ox, e 0x, T ir (23)
015000 =1
where dx1, dxa, ..., dx, are the differentials introduced in Section 5.3; that is, dx; is the

function whose value at a point in R” is the ith coordinate of the point. For convenience,
we define

(dyo f) = f(Xo).
Notice that d,((i)) f=dx,f. ]
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Under the assumptions of Definition 5.4.7, the value of

3" f(Xo)

Bxi, Bxir_l s 3)6[1

depends only on the number of times f is differentiated with respect to each variable,
and not on the order in which the differentiations are performed (Exercise 5.3.22). Hence,
Exercise 5.3.12 implies that (23) can be rewritten as

r ' ar X r r r,
RS = X XD ) a)? ). )

r r
rp! Ox7 0x5% -+ Oxy"

where Zr indicates summation over all ordered n-tuples (ry, r2, ..., r,) of nonnegative
integers such that
r+ra+--+rp=r

and Bxir i is omitted from the “denominators” of all terms in (24) for which r; = 0. In
particular, if n = 2,

: S o, -
ax) f = Z( ) ey ayy

Example 5.4.6 Let
flx.y) =

1+ax+by’

where a and b are constants. Then

" f(x,y) = (—1)r! a’bri

oxJ ayr—i (1 +ax + by)r+t’
S0

(’) =Dt — (7 Ipr=i(dx) (dv) 7
o/ = (1 + axo + byg)" 1 ; J 4 (dx)’(dy)
=D"r!
= d bdy)”

(1 + axo + byg)" 1 (@dx+bdy)

if 1 +axo+ by # 0. [ |

Example 5.4.7 Let
JX)=exp| =) ajx; |,
j=1

where a1, a,, ..., a, are constants. Then

v 1) ,
———— = (-1)"a}'a?--a)" ex a;x;
3x113x£2 ax;n ( ) 2 n p Z J
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Therefore,

r r r! r,r r r r
(@) = D (Z mallazz“'an”(dxl) "(dx2)rz -+ (dxp) n)

n
X exp —E ajxjo
j=1

n
=(—=D"(a1dx1 +azdxs +---+a,dx,) exp | — Z a;xjo
j=1

(Exercise 5.3.12). |

The next theorem is analogous to Taylor’s theorem for functions of one variable (Theo-
rem 2.5.4).

Theorem 5.4.8 (Taylor’s Theorem for Functions of n Variables) Suppose
that f and its partial derivatives of order < k are differentiable at X¢ and X in R" and on
the line segment L connecting them. Then

k

1 1
X)=Y —@fHX-A d&D fyxX — A 25
S ;Or!(x()f)( e i HE -0 (25)
for some XonL distinct from X¢ and X.
Proof Define
h(t) = f(Xo + 1(X —Xo)). (26)
With ® = X — X, our assumptions and the discussion preceding Definition 5.4.7 imply
that i, i/, ..., h*+D exist on [0, 1]. From Taylor’s theorem for functions of one variable,
k
hO©)  h*+D ()
h(l) = , 27
) ; r! +(k+1)! @7)
for some t € (0, 1). From (26),
h0) = f(Xo) and h(1) = f(X). (28)
From (22) and (23) with ® = X — X,
W) = (@) YA =Xo), 1=r=<k, (29)

and

WD (@) = (d&+ f) (X = Xo) (30)
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where _

X=Xy + t1X—-Xp)
is on L and distinct from X and X. Substituting (28), (29), and (30) into (27) yields (25).
a

Example 5.4.8 Theorem 5.4.8 and the results of Example 5.4.6 with Xo = (0, 0) and
® = (x,y) imply thatif 1 4+ ax + by > 0, then

k
1 (ax + by)k+1
I —1'ax+b r+_1k+1
1 +ax+ by Z;)( ' WD (1 4+ atx + bry)k+2
for some 7 € (0, 1). (Note that T depends on k as well as (x, y).) [ ]

Example 5.4.9 Theorem 5.4.8 and the results of Example 5.4.7 with Xo = 0 and
@ = X imply that

d -1y
exp|—> ajx;| =) p (a1x1 + azxz + -+ + anxp)”
j=1 =0

(_1)k+1

m((ll](fl =+ [252.%) —+ -4+ anxn)k+1

+

n
xXexp | —t Z a;x; ,
j=1
for some t € (0, 1). [ ]
By analogy with the situation for functions of one variable, we define the kth Taylor

polynomial of f about X¢ by

k

1
Te(X) = 3 —(dy) /(A = Xo)

r=0

if the differentials exist; then (25) can be rewritten as

1
S&X) = TieX) + 1)!(dg‘“)f)(x — Xo).

A Sufficient Condition for Relative Extreme Values

The next theorem leads to a useful sufficient condition for local maxima and minima. It
is related to Theorem 2.5.1. Strictly speaking, however, it is not a generalization of Theo-
rem 2.5.1 (Exercise 18).
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Theorem 5.4.9 Suppose that f and its partial derivatives of order < k — 1 are differ-
entiable in a neighborhood N of a point X in R" and all kth-order partial derivatives of
[ are continuous at Xo. Then

fX) —Te(X)
R XX b

Proof If e > 0, there is a § > 0 such that Bs(Xo) C N and all kth-order partial
derivatives of f satisfy the inequality

o £(X) 9k f(Ao)

Bxikf)xik_l ---3)6[1 Bxikf)xik_l ---3)6[1

<e, X e Bs(Xo). (32)

Now suppose that X € Bs(Xp). From Theorem 5.4.8 with k replaced by k — 1,
Low
f(A) =T (X) + F(di X =Xo), (33)

where X is some point on the line segment from Ag to X and is therefore in Bs(Xp). We
can rewrite (33) as

FOX) = ) + 7 [@® X~ Xo) — @ X - Xo)]. (34)

But (23) and (32) imply that

(@ £)(X ~Xo) — (dy? £)(X — Xo)| < nFe|X — X[ (35)

0

(Exercise 17), which implies that

|f(X) — Te(X)|  nFe

< —, X e€ BsXyp),
X — o[t a 5(Xo)
from (34). This implies (31). a
Let r be a positive integer and Xo = (Xx19, X20, - - - , Xno0)- A function of the form
pX) = Z Aryraern (X1 — X10)1 (02 — X20)"2 -+ (X0 — Xp0)™, (36)

r

where the coefficients {a,,,..r,} are constants and the summation is over all n-tuples of
nonnegative integers (ry, 72, . .. , I,) such that

rnt+rn+--+rp=r,

is a homogeneous polynomial of degree r in X — Xy, provided that at least one of the
coefficients is nonzero. For example, if f satisfies the conditions of Definition 5.4.7, then
the function

PX) = (d) £)(X —Xo)
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is such a polynomial if at least one of the rth-order mixed partial derivatives of f at Xj is
nonzero.

Clearly, p(Xp) = 0 if p is a homogeneous polynomial of degree r > 1 in X — Xp.
If p(X) > 0 for all A, we say that p is positive semidefinite; if p(X) > 0 except when
X = Xy, p is positive definite.

Similarly, p is negative semidefinite if p(X) < 0 or negative definite if p(X) < 0 for all
X # Xp. Inall these cases, p is semidefinite.

With p as in (36),
p(=X+2Xo) = (=1)" p(X),

so p cannot be semidefinite if r is odd.
Example 5.4.10 The polynomial
p(x,v.2) =x2+ 2+ 22+ xy+xz2+yz

is homogeneous of degree 2 in X = (x, y, 7). We can rewrite p as

plx.y.2) = % [(x+ )+ +2)° + @ +x)?].

so p is nonnegative, and p(x,y,Z) = 0if and only if
X+y=y+z=2Z2+x=0,

which is equivalent to (x,y,Z) = (0,0,0). Therefore, p is positive definite and —p is
negative definite.

The polynomial
pr1(x,y,2) =x2 4+ y2 + 22 + 2xy
can be rewritten as
p1(x,y.2) = (x + y)* + 2%,

so pp is nonnegative. Since pi(1,—1,0) = 0, p; is positive semidefinite and —p; is
negative semidefinite.

The polynomial
p2(x.y.2) = x> =y +2°

is not semidefinite, since, for example,
p2(1,0,0) =1 and p,(0,1,0) =1. ]
From Theorem 5.3.11, if f is differentiable and attains a local extreme value at X,, then
dx,f =0, 37

since fy, Xo) = fx,Xo) = -+ = fx,(Ao) = 0. However, the converse is false. The
next theorem provides a method for deciding whether a point satisfying (37) is an extreme
point. It is related to Theorem 2.5.3.
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Theorem 5.4.10 Suppose that | satisfies the hypotheses of Theorem 5.4.9 with k >
2, and

dy)f=0 (L<r<k=1. dy'f#0. (38)
Then

(a) Xy is not a local extreme point of f unless d)((]:))f is semidefinite as a polynomial in
X — Xo. In particular, Xg is not a local extreme point of f ifk is odd.

(b) Xo is a local minimum point of f zfd)((]:))f is positive definite, or a local maximum
point zfd)((]:))f is negative definite.

(c) Ifd,((]:))f is semidefinite, then Xo may be a local extreme point of f, but it need not
be.

Proof From (38) and Theorem 5.4.9,

fm%fmw—(w%m Xo)

I = 0. 39
X>Xo |X—X0|k (39)

If X = X + tU, where U is a constant vector, then
(Ao £)(X —Xo) =tk (dy) £)(A),
so (39) implies that

f(Xo +1U) — fmw——wwﬁw>
lim

t—0 tk ’

or, equivalently,

L Ko + ISC) — fXo) _(d(k)f)(U) 40)

t—0

for any constant vector U.

To prove (&), suppose that d,((]:)) f is not semidefinite. Then there are vectors U; and U,
such that
(dyg HU) >0 and  (dy,) [)(U2) <0,

This and (40) imply that
fXo +1U1) > f(Xo) and f(Xo +1A2) < f(Xo)

for ¢ sufficiently small. Hence, X is not a local extreme point of f.

To prove (b), first assume that d,((]:)) [ is positive definite. Then it can be shown that
there is a p > 0 such that

(dy? £)(X — Xo

o > pIX —Xo/* (41
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for all X (Exercise 19). From (39), there is a § > 0 such that

SO~ £(Xo) = (@0 )X~ Xo)
IX — Xol*

> =2 i X-Xo| <8,
Therefore,
FOX) = £(Ko) > (@) (A ~ A9) — £1X =Kol if X~ Ao <5,
This and (41) imply that
FX) = f(Xo) > EIX = Aol if [X=Xo| <3,

which implies that Xy is a local minimum point of f. This proves half of (b). We leave
the other half to you (Exercise 20).

To prove () merely requires examples; see Exercise 21. |

Corollary 5.4.11 Suppose that f, fx, and f, are differentiable in a neigborhood of a
critical point Xg = (xo, yo) of f and fxx. fyy. and fx, are continuous at (xo, yo). Let

D = fix(x0.0) fxy(X0. Y0) — f3,(x0. yo).

Then

a X0, Yo) is a local extreme point o if D > 0; (xo, yo) is a local minimum point i
(a) (xo,y0) P y P
frx (X0, yo) > 0, or a local maximum point if fxx(xo, yo) < 0.

(b) (xo0, yo) is not a local extreme point of f if D < 0.
Proof Write (x — x9,y — y0) = (4, v) and
pu,v) = (d)((i)f)(u, v) = Au? + 2Buv + Cv2,
where A = fyx(x0, ¥0), B = fxy(X0,¥0),and C = f},(x0., Yo), s0
D = AC — B>

If D > 0, then A # 0, and we can write

2B B? B?
pu,v)=A4 (u2 + juv + —vz) + (C - —) v?

A2 A
B \> D
=Alu+=v| + =02
() 3
This cannot vanish unless ¥ = v = 0. Hence, d)((f)) f is positive definite if A > 0 or

negative definite if 4 < 0, and Theorem 5.4.10(b) implies (a).
If D < 0, there are three possibilities:
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B D
1. A #0;then p(1,0) = A and p (_Z’ 1) =T

B D
2. C # 0;th 0,)=Candp|l,—= )= —.
a0 =t (1-2) =
3. A=C =0;then B # 0and p(1,1) =2B and p(1,—1) = —2B.

In each case the two given values of p differ in sign, so Ay is not a local extreme point
of f, from Theorem 5.4.10(a).

a
Example 5.4.11 If

flx,y) = e+,
then

fx(x,y)=2axf(x,y), fy(xvy)ZZbyf(xvy)v

o)
fx(0,0) = £,(0,0) =0,
and (0, 0) is a critical point of f. To apply Corollary 5.4.11, we calculate
frx(x.y) = (2a + 4a®x?) f(x, ),
Syy(x,y) = (2b+ 4p%y?) f(x. y).
Jay(x, ) = 4abxyf(x,y).

Therefore,

D = f2x(0,0) fy5(0,0) = £,(0,0) = (2a)(2b) — (0)(0) = 4ab.
Corollary 5.4.11 implies that (0, 0) is a local minimum point if @ and b are positive, a local
maximum if @ and b are negative, and neither if one is positive and the other is negative.

Corollary 5.4.11 does not apply if a or b is zero. |

5.4 Exercises

In the exercises on the use of the chain rule, assume that the functions satisfy appropriate
differentiability conditions.

1. Under the assumptions of Theorem 5.4.3, show that Uy is an interior point of the
domain of 4.
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Let 7(U) = f(G(U)) and find dy,h by Theorem 5.4.3, and then by writing A
explicitly as a function of U.

(a) f(x,y) = 3x2+4xy? + 3x,
g1(u,v) = ve vl (1o, v0) = (0, 1)
gz(u’v) — e—u+v—1,

(b) fx.y.z) = e CHr2),
g1(u,v,w) = logu —logv + logw,
g2(u,v,w) = —2logu —3logw,
g3(u,v,w) = logu + logv + 2logw,

(1o, vo, wo) = (1,1, 1)

() fx,y) = (x+)7>,
g1(u,v) = ucosv, (uo,v0) = (3, /2)
g2(u,v) = usinv,

(d)  fx,y,2) = x2+y2+ 72,
g1(u,v,w) = ucosvsinw,
g2(u, v, w) = ucosvcosw,
g3(u,v,w) = usinv;

(M(), Vo, wO) = (43 7-[/3’ 7-[/6)

Let h(r,0,z) = f(x,y,z), where x = rcosf and y = rsinf. Find h,, hg, and
hz interms of fy, f,, and f;.

Let h(r,0,¢) = f(x,y,z), where x = rsingcosf, y = rsingsinf, and z =
rcos¢. Find h,, hg, and hg in terms of fy, f), and f.
Prove:
(a) Ifh(u,v) = f(u? + v?), then vhy —uh, = 0.
(b) If h(u,v) = f(sinu + cosv), then hy, sinv + hy, cosu = 0.
(c) Ifh(u,v) = f(u/v), then uh, + vh, = 0.
(d) Ifh(,v) = f(g,v),—g(u,v)), thendh = (fx — fy)dg.
Find Ay and h if
h(y.z) = g(x(y,2).y.z,w(y, 2)).

Suppose that u, v, and f are defined on (—oo, 00). Let u and v be differentiable
and f be continuous for all x. Show that

d [

Ix f®)ydt = fE)V'(x) — fux)u'(x).
X Ju(x)



358 Chapter 5 Real-Valued Functions of Several Variables

8. Wesay that f = f(x1,x2,...,X,) is homogeneous of degree r if D y is open and
there is a constant r such that

fxy,txa, ... txn) = 1" f(x1,x2,...,%n)

whenever ¢ > 0 and (x1, x2,...,X,) and (¢x1,1X2,...,tx,) are in D . Prove: If
f is differentiable and homogeneous of degree r, then

n
infxi(xl,xz,...,xn) =rf(x1,X2,...,Xn).

i=1
(This is Euler’s theorem for homogeneous functions.)

9. Ifh(r,0) = f(rcos6,rsin@), show that

1 1
Jxx + fyy =hrr + ;hr + r—zhee.
HINT: Rewrite the defining equationas f(x,y) = h(r(x, y), 0(x, y)), withr(x,y) =
Vx2 + y2and O(x,y) = tan~'(y/x), and differentiate with respect to x and y.
10. Let h(u,v) = f(a(u,v),b(u,v)), where a,, = by, and a, = —b,,. Show that
huy + hyy = (fxx + fyy)(ai + aﬁ)
11. Prove: If
u(x,t) = f(x —ct) + g(x + ct),
then u;; = ¢2uyy.
12, Leth(u,v) = f(u + v,u —v). Show that

1
(@) fxx = fyy =hww (D) fax + fyy = E(huu + hyy)
13. Returning to Exercise 4, find /,, and h,¢ in terms of the partial derivatives of f.
14. Let hy, = 0 for all (u, v). Show that /4 is of the form

h(u,v) =U) + V(v).
Use this and Exercise 12(a) to show that if fxx — f3, = 0 for all (x, y), then
O, y) =Ulx +y) +Vix = ).

15. Prove or give a counterexample: If f is differentiable and fy = 0 in a region D,
then f(x1,y) = f(x2,y) whenever (x1,y) and (x2, ¥) are in D; that is f(x, y)
depends only on y.

16. Find 75(X).
(@) f(x,y)=e*cosy, Xo=(0,0)
(b) f(x,y)=e™, Xo=1(0,0)
(c) f(x,y,2)=(x+y+z-3)7° Xo=(1,1,1)
(d) f(x,y,z) =sinxsinysinz, Xo = (0,0,0)
17. Use Eqgns. (23) and (32) to prove Eqn. (35).



18.
19.

20.
21.

22,

23.

24.
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Carefully explain why Theorem 5.4.9 is not a generalization of Theorem 2.5.1.

Suppose that p is a homogeneous polynomial of degree r in Y and p(Y) > 0 for all
nonzero Y in R”. Show that there is a p > 0 such that p(A) > p|Y|" for all Y in
R”. HINT: p assumes a minimum on the set {Y | Y| = 1} . Use this to establish the
inequality in Eqn. (41).
Complete the proof of Theorem 5.4.10(b).
(a) Show that (0, 0) is a critical point of each of the following functions, and that
they have positive semidefinite second differentials at (0, 0).

px,y) =x% =2xy + y? + x* + y*;

q(x.y) = x> =2xy +y? —x* - y*.
(b) Show that D as defined in Corollary 5.4.11 is zero for both p and g.
(c) Show that (0, 0) is a local minimum point of p but not a local extreme point

of gq.
Suppose that p = p(x1,X2,...,X,) is a homogeneous polynomial of degree r
(Exercise 8). Let iy, 15, ..., iy be nonnegative integers such that
i1 +iz+-+in =k,
and let

Fp(x1,x2,...,Xn)

dx1'9x52 -+ dxy"
Show that g is homogeneous of degree < r — k, subject to the convention that a
homogeneous polynomial of negative degree is identically zero.

q(x1,X2,...,Xp) =

Suppose that f = f(x1,x2,...,X,) is a homogeous function of degree r (Exer-
cise 8), with mixed partial derivative of all orders. Show that

n 2
> x,»xja S xa ) r(r—1)f(x1, X2, ..., Xn)

3)6[ ij

i,j=1

and

- 33(x1, X2, - .+, Xn)
Z XX )Xk =r(r -1 —2)f(x1,X2,...,Xp).
. 0x;0x ; 0xk
i,j,k=1 ‘
Can you generalize these results?

Obtain the result in Example 5.4.7 by writing
F(X) — e_alxl 6_02)52 . e—anxn

formally multiplying the series

oo

VA L
emo = 3y Wy oy
ri!
rl-=0

together, and collecting the resulting products appropriately.
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25. Let
fx,y) = et
By writing
@y
f(x,y)—r;) o

and expanding (x + y)" by means of the binomial theorem, verify that

, 3" £(0.0) .
EO)O)f Z()B/ar/(d)(d) /



CHAPTER 6

Vector-Valued Functions

of Several Variables

IN THIS CHAPTER we study the differential calculus of vector-valued functions of several
variables.

SECTION 6.1 reviews matrices, determinants, and linear transformations, which are inte-
gral parts of the differential calculus as presented here.

SECTION 6.2 defines continuity and differentiability of vector-valued functions of several
variables. The differential of a vector-valued function F is defined as a certain linear trans-
formation. The matrix of this linear transformation is called the differential matrix of F,
denoted by F’. The chain rule is extended to compositions of differentiable vector-valued
functions.

SECTION 6.3 presents a complete proof of the inverse function theorem.

SECTION 6.4 uses the inverse function theorem to prove the implicit function theorem.

6.1 LINEAR TRANSFORMATIONS AND MATRICES

In this and subsequent sections it will often be convenient to write vectors vertically; thus,

instead of X = (xq, x2, ..., X,) we will write
X1
X2
X =
Xn

when dealing with matrix operations. Although we assume that you have completed a
course in linear algebra, we will review the pertinent matrix operations.

We have defined vector-valued functions as ordered n-tuples of real-valued functions, in
connection with composite functions 4 = f o G, where f is real-valued and G is vector-
valued. We now consider vector-valued functions as objects of interest on their own.

361
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If f1, f2,..., fm are real-valued functions defined on a set D in R”, then
S
/2
F = .
Jm
assigns to every X in D an m-vector
S1(X)
F2(X)
F(X) = .
Jm(X)
Recall that f1, f2, ..., fm are the component functions, or simply components, of F. We
write
F:R" - R"

to indicate that the domain of F is in R” and the range of F is in R”. We also say that F is a
transformation from R" to R™. If m = 1, we identify F with its single component function
f1 and regard it as a real-valued function.

Example 6.1.1 The transformation F : R? — R3 defined by

2x 4+ 3y
F(x,y)=| —x+4y
X=Y
has component functions
filx,y) =2x+3y, folx,y)=—x+4y. fa(x.y) =x—y. u

Linear Transformations

The simplest interesting transformations from R” to R™ are the linear transformations,
defined as follows

Definition 6.1.1 A transformation L : R” — R defined on all of R” is linear if
L(X +Y) = L(X) + L(Y)

forall X and Y in R” and
L(@X) = aL(X)

for all X in R” and real numbers a. [ |
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Theorem 6.1.2 A transformation L : R" — R™ defined on all of R" is linear if and

only if
ailxy +apxz + -+ ainxn

az1X1 + azpXxy + -+ dapXp
L(X) = : , ()

Am1X1 + AmaX2 + -+ AmnXn

where the a;;’s are constants.

Proof If can be seen by induction (Exercise 1) that if L is linear, then

L(a1X1 + axXp + -+ i Xy) = a1L(A1) + a2 L(Xo) + -+ + apL(Xg)  (2)

for any vectors X1, X», ..., X; and real numbers ay, as, ..., ag. Any X in R” can be
written as
X1 1 0 0
X2 1 0
X=| " l=x| . [+x]| . [+ +x
Xn 0 0 1

= x1E1 + x2E; + -+ - + X, Ej.

Applying 2) with k = n, X; = E;, and q; = x; yields

L(X) = x1L(E;) + xo2L(E) + -+ + x,L(E,). 3)
Now denote
aij
azj
LE;) = ) .
Amj
so (3) becomes
ail aiz Aln
any azs Aazn
LX) = x; ) +x2| . + e Xy ) .
am1 am2 Amn

which is equivalent to (1). This proves that if L is linear, then L has the form (1). We leave
the proof of the converse to you (Exercise 2). a

We call the rectangular array
ajy aiz o din
az1 dz -+ dapn
A= . S . “

adm1 A4m2 *** Admn
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the matrix of the linear transformation (1). The number a;; in the i th row and j th column
of A is called the (i, j)th entry of A. We say that A is an m x n matrix, since A has m rows
and n columns. We will sometimes abbreviate (4) as

A = [a;)].

Example 6.1.2 The transformation F of Example 6.1.1 is linear. The matrix of F is

2 3
—1 4 1. [ ]
1 -1

We will now recall the matrix operations that we need to study the differential calculus
of transformations.

Definition 6.1.3

(a) Ifcisareal number and A = [a;;] is an m X n matrix, then cA is the m x n matrix
defined by
cA = [cajj];

that is, cA is obtained by multiplying every entry of A by c.

(b) If A = [a;;] and B = [b;;] are m x n matrices, then the sum A + B is the m x n

matrix
A +B = [a;; + byjl;

that is, the sum of two m x n matrices is obtained by adding corresponding entries.
The sum of two matrices is not defined unless they have the same number of rows and
the same number of columns.

(c) If A = [a;;]is an m x p matrix and B = [b;;] is a p x n matrix, then the product
C = AB is the m x n matrix with

P
¢ij = aitbij + aizbzj + -+ aipbp; = Z aikbrj, 1<i<m,1=<j=<n.
k=1

Thus, the (7, j)th entry of AB is obtained by multiplying each entry in the i th row of
A by the corresponding entry in the jth column of B and adding the products. This
definition requires that A have the same number of columns as B has rows. Otherwise,
AB is undefined. ]

Example 6.1.3 Let
1
A=]| -1 0
1

and
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Then
2(2) 2(1) 2(2) 4 2 4
2A=| 2(-1) 20) 23) |=| -2 0 o
2(0) 2(1) 2(0) 0 2 0
and
240 141 241 2 23
A+B=| -1-1 040 342 |=| -2 0 5
04+3 140 041 31 1

The (2, 3) entry in the product AC is obtained by multiplying the entries of the second
row of A by those of the third column of C and adding the products: thus, the (2, 3) entry
of AC is

=DM +O)(=3) + B)(=1) = —4.

The full product AC is
2 1 2 50 1 2 15 0 -3 7
-1 0 3 30 -3 1 (=]-20 —41
01 0 1 0 -1 1 30 =3 1
Notice that A + C, B 4+ C, CA, and CB are undefined. |

We leave the proofs of next three theorems to you (Exercises 7-9)
Theorem 6.1.4 IfA, B, and C are m x n matrices, then
A+B)+C=A+B+C).

Theorem 6.1.5 IfA and B are m x n matrices and r and s are real numbers, then (a)
r(sA) = (rs)A; (b) r +s) A =rA +sA; (c) r(A+B) =rA + rB.

Theorem 6.1.6 IfA, B, and C are m x p, p X q, and ¢ X n matrices, respectively,
then (AB)C = A(BC).

The next theorem shows why Definition 6.1.3 is appropriate. We leave the proof to you
(Exercise 11).

Theorem 6.1.7

(a) Ifwe regard the vector
X1
X2

Xn

as an n x 1 matrix, then the linear transformation (1) can be written as

L(X) = AX.
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(b) If Ly and Ly are linear transformations from R" to R™ with matrices A and A,
respectively, then ciLy + c;L; is the linear transformation from R" to R™ with
matrix c1A1 + c2A,.

(C) IfL; : R* - R? and L, : R? — R™ are linear transformations with matrices A,
and A,, respectively, then the composite function L3 = L, o Ly, defined by

L3(X) = Ly (L (X)),

is the linear transformation from R"™ to R™ with matrix A, A .

Example 6.1.4 If

2x + 3y X =y
LX) = 3x +2y and L,X)=| 4x+y |,
—X+ y X
then
23 -1 -1
A1 = 3 2 and A2 = 4 1
-1 1 1 0
The linear transformation
L=2L;+L,
is defined by
L(X) = 2L; (X) + L2 (X)
2x 4+ 3y X -y
=2| 3x4+2y |[+| 4x+y
—X+ y X
3x + 5y
=| 10x + 5y
—x +2y
The matrix of LL is
3 5
A= 10 5 =2A1 + A,. |
-1 2
Example 6.1.5 Let
[ x+2y ] p2 2
LX) = 3yt 4y i|.IR — R~
and
U+ v
L,(U)=| —u—2v |:R> =R
| 3u+ v
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Then L3 = Ly oL : R?2 - R3is given by

(x+2y)+ (Bx+4y) 4x + 6y
LiX) = Ly (@ (X)) = | —(x +2)) —2Bx +4y) | =| —Tx—10y
3(x +2y)+ (Bx+4y) 6x + 10y
The matrices of L and L, are
1 1
Al:l:; ii| and A2= -1 =2 s
3 1
respectively. The matrix of L3 is
4 6
C=| =7 —-10 | = AA;.
6 10

Example 6.1.6 The linear transformations of Example 6.1.5 can be written as

1 2 X ! ! u
LI(X)=[3 J[J, LU =| -1 -2 [v]
3 1

and

4 67,
LyX)=| -7 —10 }
6 10 [L7Y

A New Notation for the Differential

If a real-valued function f : R” — R is differentiable at Xq, then
dxof = fxl Xo)dx1 + fo(Xo) dxs + -+ fx, Xo) dxp.
This can be written as a matrix product

dx1

dxo f = [fx1 Xo)  fe:(Xo) -+ fx,(Xo)] :
dxy
We define the differential matrix of f at Xo by
f'Xo) = [fx; Xo)  fr,Xo) -+ fx,(Xo)]

and the differential linear transformation by

dx1

de
dX =

dx,

367

&)

(6)
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Then (5) can be rewritten as

dx, f = f'Xo)dX. (N

This is analogous to the corresponding formula for functions of one variable (Exam-
ple 5.3.7), and shows that the differential matrix f’(Xp) is a natural generalization of the
derivative. With this new notation we can express the defining property of the differential
in a way similar to the form that applies for n = 1:

SX) = f(Xo) = /X)X =Xo) _

li 0,
XX X —Xo
where Xo = (x10, X20, ..., Xn0) and f/(Xo)(X — Xp) is the matrix product
X1 —X10
X2 — X20
[fxl (XO) fxz(XO) fxn (XO)]
Xn — Xno

As before, we omit the X¢ in (6) and (7) when it is not necessary to emphasize the
specific point; thus, we write

f'=[f fo - fu] and df = fldX.
Example 6.1.7 If
f(x,y,2) = 4x?yz>,

then
fl(x.y.2) = [8xyz® 4x?z2® 12x7y2%).

In particular, if Xo = (1, —1, 2), then
f'(Xo) =[-64 32 —48],

SO
dx
dxof = f/Xo)dX =[-64 32 —48]| dy
dz
= —64dx +32dy — 48dz. u

The Norm of a Matrix
We will need the following definition in the next section.

Definition 6.1.8 The norm, ||A||, of an m x n matrix A = [a;;] is the smallest number
such that
|AX] < [|A][X]

for all X in R”. ]
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To justify this definition, we must show that ||A|| exists. The components of Y = AX
are
Yi =ainx1+ai2X2 + -+ ainxp, 1 <i <m.

By Schwarz’s inequality,
i = @h +ah + -t a) X
Summing this over 1 <i < m yields

n

m
DN AL®

i=1j=1
Therefore, the set
B = {K||AX| < K|X| forall X inR"}

is nonempty. Since B is bounded below by zero, B has an infimum «. If € > 0, then o + €
is in B because if not, then no number less than o 4+ € could be in B. Then o 4+ € would be
a lower bound for B, contradicting the definition of . Hence,

[AX| < (¢ + ¢)|X|, X eR".
Since € is an arbitrary positive number, this implies that
[AX| < ¢|X]|, X eR",

so o € B. Since no smaller number is in B, we conclude that ||A| = «.

In our applications we will not have to actually compute the norm of a matrix A; rather,
it will be sufficient to know that the norm exists (finite).

Square Matrices

Linear transformations from R” to R” will be important when we discuss the inverse func-
tion theorem in Section 6.3 and change of variables in multiple integrals in Section 7.3.
The matrix of such a transformation is square; that is, it has the same number of rows and
columns.

We assume that you know the definition of the determinant

air diz2 -+ din
azy dazx -+ d2p
det(A) =
anl1 dp2 -+ dpn
of an n X n matrix
aipr 42 -+ din
azy dz2 -+ d2p
A=

ap1 A4p2 -+ dpn
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The transpose, A’, of a matrix A (square or not) is the matrix obtained by interchanging
the rows and columns of A; thus, if

1 2 3 1 3 0
A=| 3 1 4 |, then A'=]| 2 1 1
01 -2 3 4 2

A square matrix and its transpose have the same determinant; thus,
det(A") = det(A).
We take the next theorem from linear algebra as given.
Theorem 6.1.9 IfA and B are n x n matrices, then
det(AB) = det(A) det(B).
The entries a;j;, 1 <i < n,of an n xn matrix A are on the main diagonal of A. The nxn

matrix with ones on the main diagonal and zeros elsewhere is called the identity matrix
and is denoted by I; thus, if n = 3,

1 0
I=| 0 1
0 0

- o O

We call I the identity matrix because AI = A and IA = A if A is any #n x n matrix. We
say that an n x n matrix A is nonsingular if there is an n x n matrix A~1, the inverse of A,
such that AA™! = A=1A = L. Otherwise, we say that A is singular.

Our main objective is to show that an n x n matrix A is nonsingular if and only if
det(A) # 0. We will also find a formula for the inverse.

Definition 6.1.10 Let A = [a;;] be an n x n matrix, with n > 2. The cofactor of an
entry a;; is o
cij = (—I)H—j det(A[j),

where A;; is the (n — 1) x (n — 1) matrix obtained by deleting the ith row and j th column
of A. The adjoint of A, denoted by adj(A), is the n X n matrix whose (i, j)th entry is c ;.
|

Example 6.1.8 The cofactors of
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are
-1 2 3 2 3 -1
611=‘ 1 2‘=—4, Ce=—|g 5 |=-6 ci3= ‘O L= 3
1 4 1 4 2
2 1 4 1 4 2
C31=‘_1 2‘= S0 =] 4 5, | =75 3= ‘3 _1 | =710
o) a
-4 =3 5
adjA)y=| -6 8 =5
| 3 -4 -10
Notice that adj(A) is the transpose of the matrix
-4 —6 3
-3 8 —4
5 =5 -10
obtained by replacing each entry of A by its cofactor. [ ]

For a proof of the following theorem, see any elementary linear algebra text.

Theorem 6.1.11 Let A be an n x n matrix.

(a) The sum of the products of the entries of a row of A and their cofactors equals det(A),
while the sum of the products of the entries of a row of A and the cofactors of the
entries of a different row equals zero; that is,

D ke = {O‘T‘t( ) ®)

k=1

(b) The sum of the products of the entries of a column of A and their cofactors equals
det(A), while the sum of the products of the entries of a column of A and the cofactors
of the entries of a different column equals zero; that is,

n
det(A), i =/,
E Ckiakj = { . 9
= 0, i # J.
If we compute det(A) from the formula

n
det(A) = ZaikCik,
k=1
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we say that we are expanding the determinant in cofactors of its ith row. Since we can
choose i arbitrarily from {1,...,n}, there are n ways to do this. If we compute det(A)
from the formula

n
det(A) = ) " agjck;,
k=1

we say that we are expanding the determinant in cofactors of its j th column. There are also
n ways to do this.

In particular, we note that det(I) = 1 foralln > 1.

Theorem 6.1.12 Let A be an n x n matrix. If det(A) = 0, then A is singular. If
det(A) # 0, then A is nonsingular, and A has the unique inverse

1
-1 _ .
A7l = RN adj(A). (10)

Proof If det(A) = 0, then det(AB) = O for any n X n matrix, by Theorem 6.1.9.
Therefore, since det(I) = 1, there is no matrix n x n matrix B such that AB = I; that is, A
is singular if det(A) = 0. Now suppose that det(A) # 0. Since (8) implies that

Aadj(A) = det(A)I

and (9) implies that
adj(A)A = det(A)],

dividing both sides of these two equations by det(A) shows that if A~1 is as defined in (10),
then AA™! = A7!'A = I Therefore, A~! is an inverse of A. To see that it is the only
inverse, suppose that B is an n x n matrix such that AB = I. Then A" (AB) = A™!, so
(A"'A)B = A~!. Since AA™! = I and IB = B, it follows that B = A~ 0

Example 6.1.9 In Example 6.1.8 we found that the adjoint of

4 2 1
A=1| 3 -1 2
| 0 1 2
is
[ —4 -3 5
adj(A)=| —6 8 =5
| 3 —4 -10

We can compute det(A) by finding any diagonal entry of A adj(A). (Why?) This yields
det(A) = —25. (Verify.) Therefore,

-4 -3 5
=—| -6 8 -5 |. m
3 —4 —10
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Now consider the equation

AX =Y (11)
with
ayl daiz -+ din X1 N
a1 dzx -+ dap X2 Y2
A= , X= , and Y=
apl dp2 - dpn Xn Yn

Here A and Y are given, and the problem is to find X.

Theorem 6.1.13 The system (11) has a solution X for any given 'Y if and only if A is
nonsingular. In this case, the solution is unique and is given by X = A~1Y.

Proof Suppose that A is nonsingular, and let X = A~'Y. Then
AX=AA'Y)=(AA )Y =1IY = Y;

that is, X is a solution of (11). To see that X is the only solution of (11), suppose that
AX; =Y. Then AX; = AX, so

A1 AX) = A1 (AX))
and

ATTAX = (AT1A)X,,

which is equivalent to IX = IXj, or X = Xj.

Conversely, suppose that (11) has a solution for every Y, and let X; satisfy AX; = E;,
1 <i <n.Let
B =[X;X; - Xpl;

that is, X1, X>, ..., X}, are the columns of B. Then
AB = [AX; AX; --- AX, | = [E1E; --- E,] =L

To show that B = A~L, we must still show that BA = I. We first note that, since AB = I
and det(BA) = det(AB) = 1 (Theorem 6.1.9), BA is nonsingular (Theorem 6.1.12). Now
note that

(BA)(BA) = B(AB)A) = BIA;

that is,
(BA)(BA) = (BA).

Multiplying both sides of this equation on the left by BA)~! yields BA = L. 0

The following theorem gives a useful formula for the components of the solution of (11).
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Theorem 6.1.14 (Cramer’s Rule) If A = [a;] is nonsingular, then the solu-
tion of the system

apnxi +apxz + -+ adipXn = Y1

az1X1 + azXxz + -+ dpXn =Y2

an1X1 + aAn2X2 + -+ + dpnXn = Yn

(or, in matrix form, AX =Y) is given by

D;
Xji = —0,
"7 det(A)

<n,

where D; is the determinant of the matrix obtained by replacing the ith column of A with
Y; thus,

Y1 arnz Aain ailr Y1 a3 Adin
Y2 a2 Aazn a1 Y2 a3 Aon
Dy =| . , Dy = . Lo,
Yn Qan2 Ann anl Yn Qanp3 Ann
ar ain-1 Y1
azi a2n—-1 Y2
Dn: .
anl Ann—1 Yn

Proof From Theorems 6.1.12 and 6.1.13, the solution of AX = Y is

X1 C11 €21

X2 1 1 C12 (22
: det(A)

Xn Cin  C2n

c11y1 t+c21y2+ -
C12y1 +c22y2 + -

CinY1 + Cony2 + -~

But
1
Y2
c11y1 +c21y2+ -+ Cmyn = | .

Yn

Cnl
Cn2

Cnn

+ Cn2Yn

a2
azz

an2

+ Cn1Yn ]

+ Cnn¥n

1
Y2

Yn

Aln
Aazn

Ann
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as can be seen by expanding the determinant on the right in cofactors of its first column.
Similarly,

ar Y1 d4iz - din

az1 Y2 d23 - d2p
C12Y1 + C22Y2 + ++ + Cn2¥n = . )

anl Yn Qp3 *°* dpn

as can be seen by expanding the determinant on the right in cofactors of its second column.
Continuing in this way completes the proof. a

Example 6.1.10 The matrix of the system

dx+2y+z=1
3x—y+2z=2

y+2z=0
is _
4 21
A=| 3 -1 2 |.
0 1 2 |
Expanding det(A) in cofactors of its first row yields
-1 2 3 2 3 -
o =4] 71 2|3 2[1[ 3 7|

= 4(—4)—2(6) + 1(3) = —25.

Using Cramer’s rule to solve the system yields

o2, Cle )
X=—12 -1 2 ==, y=-—=— 32 2 = —-=,
By | 5| 5 Bloo 2| °
LIS sl n
=—— —_ = —.
5y 10l

A system of n equations in # unknowns

apnxi +apxy+---+amx, =0

an1x1 +anxy+ -+ ax, =0
(12)

an1 X1+ apaxo + -+ appxy, =0

(or, in matrix form, AX = 0) is homogeneous. It is obvious that Xy = 0 satisfies this
system. We call this the trivial solution of (12). Any other solutions of (12), if they exist,
are nontrivial.
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We will need the following theorems. The proofs may be found in any linear algebra
text.

Theorem 6.1.15 The homogeneous system (12) of n equations in n unknowns has a
nontrivial solution if and only if det(A) = 0.

Theorem 6.1.16 If A, As,..., A are nonsingularnxn matrices, then sois A1 As - - - A,
and

(A1 Ay Ap) ™ = A A - AT

6.1 Exercises

1. Prove: IfL : R” — R™ is a linear transformation, then
LX) +axXo + -+ + agXyg) = a1 L(Xy) + asL(X3) + -+ - 4+ ar L(Xg)
if X1,Xs5, ..., X are in R” and a4, as, ..., a; are real numbers.

2. Prove that the transformation L defined by Eqn. (1) is linear.
3. Find the matrix of L.

3x +4y + 62 ézlt;‘jz
(A)LX)=| 2x—47+2z (b) L(X) = Lmen2
Tx 4+ 2y +3 7x1 =4
Y < 6x1+ x2
4. Find cA.
2.2 4 6 1 30
(a)ce=4,A=|0 0 1 3 (bye=—2,A=|0 1 2
3 4 11 1 -1 3
5. FindA +B.
(-1 2 3 -1 0 3
(a) A= 41, B=| 5 -7
i -1 4 0 -1 2
0 5 -1 2
(b)A=|3 2|, B=| 0 3
17 4 7
6. Find AB.
(-1 2 3 -1 2
(a)A=| 0 1 4|, B=| 0 3
0 -1 4 4 7
1
[5 3 2 1 3
(byA=|¢ 7 4 1}’ B=14
1



10.
11.
12.

13.
14.
15.

16.

17.
18.
19.
20.
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Prove Theorem 6.1.4.

Prove Theorem 6.1.5.

Prove Theorem 6.1.6.

Suppose that A + B and AB are both defined. What can be said about A and B?
Prove Theorem 6.1.7.

Find the matrix of aLL; + bL,.

3x+2y+ z ]
(a) Li(x.y.2)=| x+4y+2z |,
3x—4y+ z |
—x+y— z |

Lo(x,y,2)=| —2x+y+3z |, a=2, b=-1
y+ z |

2x + 3y 3x—y

(b) Litx,y) =| x—y |, Lax,y)=| x+y |, a=4 b=
4x + y —X =Yy

Find the matrices of L1 oL, and L, oL, where L1 and L, are as in Exercise 12(a).
Write the transformations of Exercise 12 in the form L(X) = AX.

Find f” and f'(Xo).

(a) f(x,y,2)=3x%yz, Xo=(1,-1,1)

(b) f(x,y) =sin(x +y), Xo= (w/4,7/4)

(€) flx,y.2)=xye ™, Xo=(1,2,0)

(d) f(x,y,z)=tan(x +2y +z), Xo=(n/4,—7/8,7/4)

(e) fX)=IX|:R" >R, Xo=(1/yn 1/yn,....1//n)

Let A = [a;;] be an m x n matrix and
A:max{|a,’j||1§i <m,1<i fn}.

Show that [|A[| < A/mn.

Prove: If A has at least one nonzero entry, then ||A| # 0.
Prove: ||A + B| < ||A] + ||B]|-

Prove: [|AB|| < [|A[[B].

Solve by Cramer’s rule.

(9,

X+ y+2z= 1 X+ y— z=
(a) 2x— y+ z=-1 (b) 3x—2y+2z
x—2y—-3z= 2 4x +2y -3z =14

Il
=
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X+2y43z7=-5 Y= y+ z-2w =1

_ 2x+ y—3z+3w= 4
() i_’_ +2Z:_i (d) 3x +2y + w=13
Y= X+ y— z = 4
21. Find A~! by the method of Theorem 6.1.12.
- 1 2
@@l ! 2 M| 1 0 -1
3 4
L |11
[ 4 2 1 1 0 1
()| 3 -1 2 (d| o 11
| 0 1 2 | 1 1 0
1 2 0 0 1 1 2 -1
-2 3 0 0 2 2 -1 3
©1 00 23 O 74 1 2
| 0 0 -1 2 31 0 1
22. Forl <i,j < m,leta;; = a;;(X) be a real-valued function continuous on a

compact set K in R”. Suppose that the m x m matrix
AX) = [a;;(X)]
is nonsingular for each X in K, and define the m x m matrix
BX,Y) = [b;; X, Y)]

by
BXX,Y) = A (X)A(Y) - L

Show that for each € > 0 there is a § > 0 such that
bijX.Y)| <€, 1<i,j<m,
it X, Y € K and |X — Y| < 8. HINT: Show that b;; is continuous on the set
{X.Y)|X €K, Y€K}
Then assume that the conclusion is false and use Exercise 5.1.32 to obtain a contradiction.

6.2 CONTINUITY AND DIFFERENTIABILITY OF TRANS-
FORMATIONS

Throughout the rest of this chapter, transformations F and points X should be considered as
written in vertical form when they occur in connection with matrix operations. However,
we will write X = (x1, X2, ..., X,) when X is the argument of a function.
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Continuous Transformations

In Section 5.2 we defined a vector-valued function (transformation) to be continuous at X
if each of its component functions is continuous at X,. We leave it to you to show that this
implies the following theorem (Exercise 1).

Theorem 6.2.1 Suppose that Xy is in, and a limit point of, the domain of F : R" —
R™. Then F is continuous at Xo if and only if for each € > 0 there is a § > 0 such that

IFX) —F(Xo)| <€ if |X—Xo| <8 and X € Dy. (1)

This theorem is the same as Theorem 5.2.7 except that the “absolute value” in (1) now
stands for distance in R™ rather than R.

If C is a constant vector, then “limyx_.x, F(X) = C” means that
lim |F(X) —C| =0.
am IFX) —C|
Theorem 6.2.1 implies that F is continuous at X if and only if

Jim F(X) = F(Xo).

Example 6.2.1 The linear transformation

X+ y+z
LX) = 2x -3y +z
2x+ y—z

is continuous at every Xo in R3, since

(x —x0) + (¥ —yo) + (z —20)
L(X) —L(Xo) = L(X—Xp) = [ 2(x —x0) —3(y —yo) + (2 —20) |,
2(x —x0) + (y —yo) — (2 —20)

and applying Schwarz’s inequality to each component yields
IL(X) — L(Xo)]> < 3 + 14+ 6)[X — Xo|? = 23X — X|*.
Therefore,
€

L(X)—L(Xp)| <€ if |X—Xp| <
IL(X) — L(Xo)| | ol 75

Differentiable Transformations

In Section 5.4 we defined a vector-valued function (transformation) to be differentiable at
X if each of its components is differentiable at Xo (Definition 5.4.1). The next theorem
characterizes this property in a useful way.
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Theorem 6.2.2 A transformationF = (f1, fa,..., fm) defined in a neighborhood of
Xo € R” is differentiable at Xy if and only if there is a constant m x n matrix A such that

FX) —FXo) ~AX —Xo) _

Xlig%o |X — X0| 0. (2)
If (2) holds, then A is given uniquely by
[ 0/1Xo)  9/1(Xo)  9/1(Xo) ]
0x1 0x2 0x,
0/2(Xo)  9/2(Xo) 9/2(Xo)
afi (X
A= [ /i 0)} = dx1 9x2 xn . 3)
3)(?‘/' . . . .
afm(XO) afm(XO) afm(XO)
L 3)61 3x2 3xn _
Proof Let Xo = (x10,X20,...,Xn0). If F is differentiable at X, then so are fi, fa,
..., fm (Definition 5.4.1). Hence,
2L 0fi (X
fiX) - fiXo) =Y fagc ,0) (xj —Xxjo)
lim Ak =0, l<i<m,
X—Xo X — Xo|

which implies (2) with A as in (3).
Now suppose that (2) holds with A = [a;;]. Since each component of the vector in (2)
approaches zero as X approaches Xo, it follows that

n
fi(X) = fi(Xo) = Y _aij(x; — x;o0)
lim /=1 =0, 1<i<m,
X—Xo IX — Xo|

so each f; is differentiable at X¢, and therefore so is F (Definition 5.4.1). By Theo-

rem 5.3.6,

9/i (Xo)
dx;
which implies (3). a

A transformation T : R” — R™ of the form

, 1<i=z=m, 1=<j=<n,

aij =

T(X) = U+ AX — Xo),

where U is a constant vector in R”, X is a constant vector in R”, and A is a constant m X n
matrix, is said to be affine. Theorem 6.2.2 says that if F is differentiable at X¢, then F can
be well approximated by an affine transformation.
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Example 6.2.2 The components of the transformation

x2 4+ 2xy +z
FX)=| x +2xz+y
x2 + yZ+Z2

are differentiable at Xo = (1,0, 2). Evaluating the partial derivatives of the components
there yields

2 2 1
A= 51 2
2 0 4
(Verify). Therefore, Theorem 6.2.2 implies that the affine transformation

T(X) = F(Xo) + A(X — Xo)

3 2 2 1 x—1
=[5+ 51 2 y
5 2 0 4 z—2
satisfies FX T(X
FX) -TX) _, -

X=X |X —Xo

Differential of a Transformation

IfF = (f1, f2,..., fm) is differentiable at X, we define the differential of F at X to be
the linear transformation

dx, f1
dx, /"
dxF=| )
dX() fm
We call the matrix A in (3) the differential matrix of F at Xo and denote it by F'(Xo); thus,
[ 0/1Xo)  3/iXo)  9/i(Xo) T
0x1 dx2 0xp
>Xo)  3/oXo)  3f2(Xo)
F(X) = 0x1 0x2 0xn ‘ )
fmXo)  fmXo)  Ifm(Xo)
L 3)61 3)62 an .
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(It is important to bear in mind that while F is a function from R" to R™, F’ is not such
a function; F’ is an m x n matrix.) From Theorem 6.2.2, the differential can be written in
terms of the differential matrix as

dx1
, de
dxF =F(Xo) | . ©)
dx,
or, more succinctly, as
dx,F = F'(Xo) dX,

where

dx1

de
dX = . ’

dx,
as defined earlier.

When it is not necessary to emphasize the particular point Xo, we write (4) as

dfi
df:
aF=| "7
dfn
(5) as
Cof M A
dax1 0xy 0xp
¥ - dx; 0xa 0xp
U Un O
| 0x;  Jxp 0x,
and (6) as
dF =F dX.

With the differential notation we can rewrite (2) as

lim T —FXo) — F'(Xo)(X —Xo) _
1im =

0.
X—Xo |X - X0|
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Example 6.2.3 The linear transformation
ajnxy +appxy+ -+ ainx,
ar1XxX1 + azyxs + -+ axpXp
FX) =
aAm1X1 + amaX2 + -+ + AmnXn
can be written as F(X) = AX, where A = [a;;]. Then
F =A;

that is, the differential matrix of a linear transformation is independent of X and is the
matrix of the transformation. For example, the differential matrix of

2 3 1
10 *2
X3

N =

F(x1,x2,x3) = [

is
, |1 2 3
F= [ 2 1 0|
If F(X) = X (the identity transformation), then F = I (the identity matrix). [ |

Example 6.2.4 The transformation

X
x2 4+ y2
Fix,y) = | — Y _
X< +y

2xy

is differentiable at every point of R? except (0, 0), and

2

y2 —x 2xy
(2 +y2)?2 (224 y?)?
F(x,y) = 2xy xX2—y?
(2 +y2)? (2 +y?)?
2y 2x
In particular,
o -1
2
_ 1
F/(lv 1) - ) O )
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SO
1 1
2 0 —3
! x—1
lim Foeoy)—| L [=] -2 o [ }
D= (/(x = 1)2 + (y — 1) (o) 2 2 y—1
2 2 2
0
= 0 m
0

If m = n, the differential matrix is square and its determinant is called the Jacobian of
F. The standard notation for this determinant is

afi  df /1
protll vl
oh b
Af1, fo-os Jn) | Ox1 Ox2 9xp
(X1, X2, ..., Xp) . . :
Afn  Ofn 0fn

We will often write the Jacobian of F more simply as J(F), and its value at X as JF(Xp).

Since an n x n matrix is nonsingular if and only if its determinant is nonzero, it follows
that if F : R* — R” is differentiable at Xy, then F'(Xo) is nonsingular if and only if
JF(Xo) # 0. We will soon use this important fact.

Example 6.2.5 If

x2=2x+7z
F(x,y,z) = | x+2xy+2* |,
X+y+z
then
2x—2 0 1
a 9 9
WSS _ pexy=| 142y 2¢ 22
d(x1, X2, X3) 1 1 1
_ 2x 2z I1+2y 2x
—(2x—2)‘ | ) +‘ 1 1

= (2x —2)(2x —22) + (1 + 2y — 2x).
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In particular, JF(1, —1, 1) = —3, so the differential matrix

F(,-1.1)=| —

—_— O
— N O
—_ N =

is nonsingular. [ ]

Properties of Differentiable Transformations

We leave the proof of the following theorem to you (Exercise 16).
Theorem 6.2.3 IfF : R" — R™ is differentiable at Xo, then F is continuous at Xo.
Theorem 5.3.10 and Definition 5.4.1 imply the following theorem.

Theorem 6.2.4 LetF = (f1, f,..., fm) : R" — R™, and suppose that the partial
derivatives
dfi

9
3)(?‘/'

1<i<m, 1=Zj<n, @)

exist on a neighborhood of Xo and are continuous at Xo. Then F is differentiable at Xy.

We say that F is continuously differentiable on a set S if S is contained in an open set on
which the partial derivatives in (7) are continuous. The next three lemmas give properties
of continuously differentiable transformations that we will need later.

Lemma 6.2.5 Suppose that F : R" — R™ is continuously differentiable on a neigh-
borhood N of Xg. Then, for every € > 0, there is a § > 0 such that

[FX) —F(Y)| < (IFXo) + )X —=Y| if A Y€ Bs(Xo). ®)
Proof Consider the auxiliary function
G(X) = FX) — F'(Xo)X. C)]
The components of G are

Zn: 3fl (Xo)ax‘/’

X J

g&iX) = fiX) -

’

Jj=1

SO

08i(X) _ (%) _ 3fi(Xo)

3Xj 3xj E)xj
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Thus, dg;/dx; is continuous on N and zero at Xo. Therefore, there is a § > 0 such that

‘ 0gi (X)

3)(?‘/'

€
<
J/mn
Now suppose that X, Y € Bs(Xo). By Theorem 5.4.5,

2 0gi (X;
(0 —gi(v) = Y 28D

J=1

for 1<i<m, 1<j<n, if [X—Xo <8  (10)

(xj = yj), (11)

where X; is on the line segment from X to Y, so X; € Bs(Xp). From (10), (11), and
Schwarz’s inequality,

0gi (X;)
3)(?‘/'

n 2 2
(8:(X) — g (V)? < Z[ ] X-¥P < Six-vp

j=1
Summing this from i = 1toi = m and taking square roots yields
IGX) —G(Y)| <elX-Y]|] if X,Y e Bs(Xop). 12)
To complete the proof, we note that
F(X) —F(Y) = G(X) - G(Y) + F (X0)(X - Y), (13)
so (12) and the triangle inequality imply (8). o

Lemma 6.2.6 Suppose that F : R" — R" is continuously differentiable on a neigh-
borhood of Xo and ¥'(Xy) is nonsingular. Let

1

r=——. (14)
[(F' (Xo))~* |
Then, for every € > 0, there is a § > 0 such that
FX)—F(Y)| = (r—e)X-Y| if X, Ye BsXo). (15)
Proof Let X and Y be arbitrary points in Dy and let G be as in (9). From (13),
IFX) — F(Y)| > |[F(Xo)(X - Y)| - |G(X) — G(Y)||, (16)
Since
X-Y = [FXo)] 'F(Xo)X - Y),
(14) implies that
1
X-Y| < - [FXo)(X - Y],
r
SO
[F'(Xo)X-Y)| > r[X-Y|. 17)
Now choose § > 0 so that (12) holds. Then (16) and (17) imply (15). a

See Exercise 19 for a stronger conclusion in the case where F is linear.
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Lemma 6.2.7 IfF : R" — R™ js continuously differentiable on an open set containing
a compact set D, then there is a constant M such that

IF(Y)—F(X)| < M[Y—X| if X,.YeD. (18)
Proof On
S={X.Y)|X.Ye D} CR>”
define F(Y) — F(X) - F'(X)(Y — X)|
gX,Y) = Y — X| - Y£X
0, Y =X.

Then g is continuous for all (X,Y) in S such that X # Y. We now show that if Xy € D,
then

lim gX)Y) =0 = g(Xo, Xo); (19)
(X,Y)—(X0,X0)

that is, g is also continuous at points (X¢, X¢) in S.

Suppose that € > 0 and Xy € D. Since the partial derivatives of fi1, f5, ..., fm are
continuous on an open set containing D, there is a § > 0 such that

DY) )| e
0x 0x Jmn
(Note that df; /0x; is uniformly continuous on Bj(Xo) for § sufficiently small, from The-

orem 5.2.14.) Applying Theorem 5.4.5 to f1, f2, ..., fm, we find that if X, Y € Bs(Xo),
then

if X, YeBs(Xp), 1 <i<m,1=<j<n. (20)

2L 0f (X
A —fX) =3 j;f”

Jj=1

(j —xj),

where X; is on the line segment from X to Y. From this,

2 2
N 010, SN B N T O R A P
S = £i(X) ; )| = ;[ I }(yﬂ, X))

iy _xp S [ UKD X))

==X ;[ dx; dx; ]

(by Schwarz’s inequality)
2
<SIY-XP (by 20)
m
Summing fromi = 1 toi = m and taking square roots yields
[F(Y)—FX) —FX)(Y-X)| <e]Y-X] if X,Y e BsXo).

This implies (19) and completes the proof that g is continuouson S.
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Since D is compact, so is S (Exercise 5.1.27). Therefore, g is bounded on S (Theo-
rem 5.2.12); thus, for some M1,

F(Y) —FX) -FX)(Y -X)| < M;[X-Y| if X, YeD.

[F(Y) - FX)| < [F(Y) — F(X) - F'(X)(Y - X)| + [F'(X)(Y — X)|

< (M + |[FX) DY = X]|. 2D

Since
1/2

FXl< (3 [ gf‘)]
J

i=1 =1

and the partial derivatives {df; /dx;} are bounded on D, it follows that || F'(X)|| is bounded
on D; that is, there is a constant M> such that

IF'X)| <M, XeD.

Now (21) implies (18) with M = M| + M>. a

The Chain Rule for Transformations

By using differential matrices, we can write the chain rule for transformations in a form
analogous to the form of the chain rule for real-valued functions of one variable (Theo-
rem 2.3.5).

Theorem 6.2.8 Suppose that F : R" — R™ is differentiable at Xo, G : R¥ — R” is
differentiable at Uy, and Xo = G(Uy). Then the composite function H = F o G : R¥ —
R™, defined by

H(U) = F(G(U)),

is differentiable at Uy. Moreover,

H'(Up) = F'(G(Uy))G’ (Uo) (22)
and
dUoH = dXOF o dUOG, (23)
where o denotes composition.
Proof The components of H are k1, hy, ..., hy, where

hi(U) = fi(G(U)).
Applying Theorem 5.4.3 to h; yields

n - X
dughi =y 3fai'°)duogj, 1<i<m. (24)
J

Jj=1
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Since
dyyhi dy, &1
duyh> dy 82
dUoH = 0 and dUoG = 0 B
dUohm dUogn

the m equations in (24) can be written in matrix form as

du,H = F’(Xo)dUOG = F’(G(Uo))dUOG. (25)
But
dUoG = G/(UO) dUa

where

du1

duz

dU = . I
duk

so (25) can be rewritten as
dy,H = F'(G(Uy))G' (Ug) d U.

On the other hand,
dy,H = H'(Uyp) dU.

Comparing the last two equations yields (22). Since G'(Up) is the matrix of dy,G and
F'(G(Up)) = F'(Xp) is the matrix of dx,F, Theorem 6.1.7(c) and (22) imply (23). a

Example 6.2.6 Let Uy = (1,—1),

Ju
x2 4+ y? 4272
GWU) =Gu,v) =| Vu2+3v2 |, FX)=F(x,y,2)= 5 5 ,
x*—y
VU 42

and
H(U) = F(G(U)).

Since G is differentiable at Uy = (1, —1) and F is differentiable at
Xo = G(Up) = (1,2, 1),

Theorem 6.2.8 implies that H is differentiable at (1, —1). To find H'(1, —1) from (22), we
first find that
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r 1
0
2/u
G/(U) = u 3v
| VuZ £330 JuZ + 302
1
0 - -
L 25/v + 2
and
, _ [ 2x 2y 4z
FX) = | 2x -2y O |

Then, from (22),
H(1,-1)=F(1,2,1)G'(1,-1)

1

2
(2 4 4
T2 -4 0

We can check this by expressing H directly in terms of (1, v) as

(Vi) + (Vi) 12 (i)
(Vi) - (Vi 302)’

(=)

=
|
N|W
Il
| —
|
—_
|
N
| I

0

=

H(u,v) =

[ w4+ u?+3v24+20+4
u—u? —3p2

and differentiating to obtain

oo [ 142u 6v+2
H(”’”)_[l—zu —6v }

which yields
, _ 3 —4

as we saw before.

6.2 Exercises

1. Show that the following definitions are equivalent.

(a) F = (f1, f2,..., fm) is continuous at Xg if f1, fa, ..., fm are continuous
at Xo.
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(b) F is continuous at Xg if for every € > 0 there is a § > 0 such that [F(X) —
F(Xo)| < €if X —Xp| < § and X € Dp.

Verify that

lim &) —FXo) —F'(Xo)X —Xo) _
1m =

0.
X—>Xo X — Xo|

[ 3x + 4y
(a) FX)=| 2x— y |. Xo= (x0.Y0.20)
X+ y

[ 2x2+xy +1
(b) FX) = Xy . Xo=(1.-1)
x2 + y?

sin(x + y)
(c) FX)=| sin(y +z) |, Xo=(7/4,0,7/4)

sin(x + z)
Suppose that F : R” — R™ and & : R" — R have the same domain and are
continuous at Xy. Show that the product hF = (hf1, hf>, ..., hfy) is continuous at
Xo.

Suppose that F and G are transformations from R” to R” with common domain D.
Show that if F and G are continuous at Xo € D, thenso are F + G and F — G.

Suppose that F : R” — R™ is defined in a neighborhood of Xy and continuous at
Xo, G : R*¥ — R” is defined in a neighborhood of Uy and continuous at Uy, and
Xo = G(Uyp). Prove that the composite function H = F o G is continuous at Uy.

Prove: If F : R” — R™ is continuous on a set S, then |F| is continuous on S.

Prove: If F : R” — R™ is continuous on a compact set S, then |F| is bounded on
S, and there are points Xy and X7 in S such that

[FXo)| = [FX)| < [F(Xy)|, Xe€S;

that is, |F| attains its infimum and supremum on S. HINT: Use Exercise 6.

Prove that a linear transformation L : R” — R™ is continuous on R”. Do not use
Theorem 6.2.8.

Let A be an m X n matrix.

(a) Use Exercises 7 and 8 to show that the quantitites

M(A):max{%|X7ﬁ0} and m(A):min{%|X7&0}

exist. HINT: Consider the function L(Y) = AY on S = {Y | Y| = 1} .
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10.

11.

12.

13.

14.

(b) Show that M(A) = ||A]|.
(c) Prove: If n > m or n = m and A is singular, then m(A) = 0. (This requires a
result from linear algebra on the existence of nontrivial solutions of AX = 0.)

(d) Prove: If n = m and A is nonsingular, then
mAYMA™) =mA T HYMA) = 1.

We say that F : R” — R™ is uniformly continuous on S if each of its components
is uniformly continuous on S. Prove: If F is uniformly continuous on S, then for
each € > 0 thereis a § > 0 such that

IFX) —F(Y)|<e if |[X—Y| <8 and X,Ye€S.

Show that if F is continuouson R” and F(X +Y) = F(X) + F(Y) forall Xand Y
in R”, then A is linear. HINT: The rational numbers are dense in the reals.

Find F' and JF. Then find an affine transformation G such that
F(X) - G(Y)

li .
Xlg%o X— XO 0
x24+y+2z
(a) F(x.y.z)=| cos(x+y+2) |, Xo=(,-1,0)
exyz
| e*cosy _
(b) F(xvy)_l: exsiny i|v XO_(OvT[/Z)
[ x2 )2
() Fioy.o)=| »*=2> |, Xo=(L L1
22 —x2
Find F'.
g1(x)
[ (x +y + 2)e* 82(¥)
@ = GE ] mrm | ©
_ gn(x)
e*sinyz
(c) F(x,y,z) = | e’sinxz
| e®sinxy
Find F’ and JF.
rcos 0 r cos 0 cos ¢
(a) F(r,0) = [ - sin i| (b) F(r,6,¢) = | rsinfcos¢
7 sin ¢
rcos 6

(c) F(r,0,z) = | rsin®
Z



15.

16.
17.

18.

19.

20.
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Prove: If G and G, are affine transformations and

G1(X) —Ga(Y) _

lim =0,

X—Xo |X — X0|
then G; = G».
Prove Theorem 6.2.3.

Show that if F : R” — R™ is differentiable at X, and € > 0, there isa § > 0 such
that
[F(X) — F(Xo)| < (|F'Xo)|| + €)X —Xo| if [X—Xo| <3.

Compare this with Lemma 6.2.5.
Suppose that F : R* — R” is differentiable at X and F'(Xj) is nonsingular. Let

1
IFXo)]

and suppose that € > 0. Show that there is a § > 0 such that

r

FX) —FXo)| = (r —€)[X—Xo| if [X—Xo| <.
Compare this with Lemma 6.2.6.

Prove: If L : R® — R™ is defined by L(X) = A(X), where A is nonsingular, then
1
L) ~LY)| = e X - Y]

for all X and Y in R”.

Use Theorem 6.2.8 to find H' (Up), where H(U) = F(G(U). Check your results by
expressing H directly in terms of U and differentiating.

x2+y2 W CoS U SIinv
(a) F(x,y,z) = z ., Gu,v,w) = wsinusinv |, Uy =
X2+ y? w cos v
(7/2,7/2,2)
x?—y? v Cos U
(b) Feeyy=| y |, Guwwv=| | Up=(r/43)
= v sinu
X
3x+4y+2z+6 U— v
(¢) Fx.y.2)=| 4x-2y+ z—1 |, Guv)=| u+ v |,
—x+ y+ z-2 u—2v

Uy arbitrary
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(d) F(x.y) = [ ifi } G, v, w) = [ Zue;ﬁ;w } Uo = (1,1,-2)

(e) F(x,y)=[x§+y§] G(u,v>=[e"°°”] Uy = (0,0)

x“—y e sinv
x+2y
u+ 2v
(f) F(x’y): x_yz ) G(u’v)zl:zu_vz}v U0=(15_2)
x2+y

21. Suppose that F and G are continuously differentiable on R”, with values in R”, and
let H = F o G. Show that

a(hltha*‘*ahn) _ a(flv va”"fn) a(glngv”"gn)

O, Usy oo Up)  O(X1, X2s ooy Xp) Oy, Uz, . Up)

Where should these Jacobians be evaluated?

22. Suppose that F : R” — R™ and X is a limit point of Dy contained in Dg. Show
that F is continuous at X if and only if limg o, F(Xg) = F(X) whenever {X;} is a
sequence of points in Dy such that limg_, o Xz = X. HINT: See Exercise 5.2.15.

23. Suppose that F : R” — R™ is continuous on a compact subset S of R”. Show that
F(S) is a compact subset of R"™.

6.3 THE INVERSE FUNCTION THEOREM

So far our discussion of transformations has dealt mainly with properties that could just as
well be defined and studied by considering the component functions individually. Now we
turn to questions involving a transformation as a whole, that cannot be studied by regarding
it as a collection of independent component functions.

In this section we restrict our attention to transformations from R” to itself. It is useful
to interpret such transformations geometrically. If F = (f1, f2, ..., fu), we can think of
the components of

FX) = (/1(X), 2(X)..... /(X))

as the coordinates of a point U = F(X) in another “copy” of R”. Thus, U = (uy, us, ..., uy),
with

up = fl (X), Uy = fz(X), ey Uy = fn(X)

We say that F maps X to U, and that U is the image of X under F. Occasionally we will
also write du; /0x; to mean df; /dx;. If § C D, then the set

F(S) ={U|U=FX), X € S}

is the image of S underF.

We will often denote the components of X by x, y, ..., and the components of U by u,
U, ...
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Example 6.3.1 If

2 2
MR

then
u= filx,y) =x>+y> v=fr(x,y)=x>—)%
and
af1(x, afi (x,
fa(x, af>(x,
vx(x,y) = % = 2x, vy(x,y) = %:—Zy.

To find F(R?), we observe that
u+v=2x% u-—v=2y%

SO
FR*) C T ={@u,v)|u+v>0u—v=>0},

which is the part of the uv-plane shaded in Figure 6.3.1. If (4, v) € T, then

()]

2 7 2 v

soF(R?) =T.

A u—v=0

u+v=0

Figure 6.3.1

395



396 Chapter 6 Vector-Valued Functions of Several Variables

Invertible Transformations

A transformation F is one-to-one, or invertible, if F(X;) and F(X3) are distinct whenever
X and X, are distinct points of Dy. In this case, we can define a function G on the range

R(F) = {U|U = F(X) for some X € Dy}
of F by defining G(U) to be the unique point in Dy such that F(U) = U. Then
Dg = R(F) and R(G) = Dy.
Moreover, G is one-to-one,
GF(X)) =X, Xe€ Dy,

and
F(GU)) =U, Ue€ Dg.

We say that G is the inverse of F, and write G = F~!. The relation between F and G is
symmetric; that is, F is also the inverse of G, and we write F = G L.

Example 6.3.2 The linear transformation

u | | x=y
ISR m
maps (x, y) to (u, v), where
U=x-—y,
v=2x+y. 2)

L is one-to-one and R(L) = R2, since for each (u,v) in R? there is exactly one (x, y)
such that L(x, y) = (u, v). This is so because the system (2) can be solved uniquely for
(x, y) in terms of (u, v):

x=3(+v),
1 3)
y = 3(-u+v).
Thus,
- 1 u+v
1 —_
L (u’v)_ZI:—M-I-U] [ ]
Example 6.3.3 The linear transformation
u | _ _ X+ y
[ v i|—L1(x,y)— [ 2x + 2y i|
maps (x, y) onto (u, v), where
u= x+ y, (4)

v =2x +2y.
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L; is not one-to-one, since every point on the line
X +y =c (constant)

is mapped onto the single point (c, 2¢). Hence, L; does not have an inverse. |

The crucial difference between the transformations of Examples 6.3.2 and 6.3.3 is that
the matrix of L is nonsingular while the matrix of L; is singular. Thus, L (see (1)) can be

written as . .
u — X
! ®

where the matrix has the inverse

—

1 1
2 2
11
2 2

(Verify.) Multiplying both sides of (5) by this matrix yields

|
NI

= W=
| D— |

e =
| I |

I

| p— |
= =
| I |

D=

which is equivalent to (3).

Since the matrix
1 1
2 2

of L; is singular, (4) cannot be solved uniquely for (x, y) in terms of (1, v). In fact, it
cannot be solved at all unless v = 2u.

The following theorem settles the question of invertibility of linear transformations from
R” to R". We leave the proof to you (Exercise 2).

Theorem 6.3.1 The linear transformation
U=LX)=AX [@R"->R")
is invertible if and only if A is nonsingular, in which case R(L) = R" and

L '(U) =AU

Polar Coordinates

We will now briefly review polar coordinates, which we will use in some of the following
examples.

The coordinates of any point (x, y) can be written in infinitely many ways as

x =rcosf, y=rsin, (6)
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where
r?=x%+y?

and, if » > 0, 6 is the angle from the x-axis to the line segment from (0, 0) to (x, y),
measured counterclockwise (Figure 6.3.2).

(x,y)

0

3

20

9 ﬁ
> X

Figure 6.3.2

For each (x,y) # (0,0) there are infinitely many values of 6, differing by integral
multiples of 27, that satisfy (6). If 6 is any of these values, we say that 6 is an argument
of (x, y), and write

0 = arg(x, y).

By itself, this does not define a function. However, if ¢ is an arbitrary fixed number, then
0 =arg(x,y), ¢ <0 <¢+2nm,
does define a function, since every half-open interval [¢, ¢ + 27) contains exactly one

argument of (x, y).

We do not define arg(0, 0), since (6) places no restriction on 8 if (x,y) = (0,0) and
therefore r = 0.

The transformation

. VaZ 1 y?
[9]:G(x,y)= ;¢ <arg(x,y) <¢ + 2m,
arg(x, y)

is defined and one-to-one on

D¢ = {(X,y) | (xvy) 7é (0,0)} s

and its range is
R(G) ={(r.0)|r>0.¢ <0 <¢+27}.
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For example, if ¢ = 0, then

_ﬁ_
T )

4

G(1,1) =

since 7r/4 is the unique argument of (1, 1) in [0, 277). If ¢ = =, then
/ que arg

- U3
9 ’
L 4

G(1,1) =

since 97 /4 is the unique argument of (1, 1) in [r, 37).

If arg(xo, yo) = ¢, then (xo, yo) is on the half-line shown in Figure 6.3.3 and G is
not continuous at (xg, yo), since every neighborhood of (x¢, y¢) contains points (x, y) for
which the second component of G(x, y) is arbitrarily close to ¢ + 2m, while the second
component of G(xg, Vo) is ¢. We will show later, however, that G is continuous, in fact,
continuously differentiable, on the plane with this half-line deleted.

(5 ¥y)

Figure 6.3.3

Local Invertibility

A transformation F may fail to be one-to-one, but be one-to-one on a subset S of Dy. By
this we mean that F(X;) and F(Xj) are distinct whenever X; and X are distinct points of
S In this case, F is not invertible, but if Fg is defined on S by

Fs(X) =FX), XeS§,

and left undefined for X ¢ S, then Fyg is invertible. We say that Fg is the restriction of F
to S, and that Fgl is the inverse of F restricted to S. The domain of Fgl isF(S).
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If F is one-to-one on a neighborhood of Xo, we say that F is locally invertible at Xo. If
this is true for every Xo in a set S, then F is locally invertible on S.

Example 6.3.4 The transformation
u x2 —y?
[ v } _F(xvy) - [ ny } (7)

F(=x,—y) = F(x, y). ®)

It is one-to-one on S if and only if S’ does not contain any pair of distinct points of the form
(x0, yo) and (—xgo, —Y0); (8) implies the necessity of this condition, and its sufficiency
follows from the fact that if

1S not one-to-one, since

F(x1, y1) = F(xo, o). ©)
then
(x1.y1) = (x0.y0) or (x1.y1) = (=X0.—Yo)- (10)
To see this, suppose that (9) holds; then
xXf =yl =x5-¥3 (1n
and
X1Y1 = Xo)o- (12)

Squaring both sides of (11) yields

Xt —2x7y7 4 vt = x5 —2x555 + s

This and (12) imply that

xX{ = x5 = y5 — ¥i- (13)
From (11),

xX{ = x5 = ¥i = . (14)
Factoring (13) yields

(F = x0T +x3) = (5 — DO + D)
If either side of (14) is nonzero, we can cancel to obtain
2
1>

XHxg=—y5—y

which implies that xo = x; = yo = y1 = 0, so (10) holds in this case. On the other hand,
if both sides of (14) are zero, then

X1 =®£x0, y1 = Zyo.

From (12), the same sign must be chosen in these equalities, which proves that (8) implies
(10) in this case also.
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We now see, for example, that F is one-to-one on every set S of the form
S ={(x.y)|ax + by >0},

where a and b are constants, not both zero. Geometrically, S is an open half-plane; that is,
the set of points on one side of, but not on, the line

ax+by =0

(Figure 6.3.4). Therefore, F is locally invertible at every Xo # (0, 0), since every such
point lies in a half-plane of this form. However, F is not locally invertible at (0, 0). (Why
not?) Thus, F is locally invertible on the entire plane with (0, 0) removed.

N

X‘O\j

ax + by >0

(a,b)

Figure 6.3.4

It is instructive to find Fgl for a specific choice of S. Suppose that S is the open right
half-plane:
S ={(x.y)|x>0}. (15)

Then F(S) is the entire uv-plane except for the nonpositive u axis. To see this, note that
every pointin S can be written in polar coordinates as

x=rcosf, y=rsinf, r>0——<0<

4 4
2 2"

Therefore, from (7), F(x, y) has coordinates (u, v), where

u = x2—y% = r?(cos? § —sin? §) = r? cos 26,

v =2xy =2r*cos@sinf = r?sin26.
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Every point in the uv-plane can be written in polar coordinates as
U =pcosa, Vv =psina,
where either p = 0 or
p=+vVu2+v2>0, —-7m<a<m,

and the points for which p = 0 or@ = — are of the form (u, 0), withu < 0 (Figure 6.3.5).
If (u,v) = F(x,y) for some (x, y) in S, then (15) implies that p > O and —7 < @ <
. Conversely, any point in the uv-plane with polar coordinates (p, ) satisfying these
conditions is the image under F of the point

(x.y) = (p"?cosa/2, p'/?sina/2) € 8.
Thus,
(2 + v?)* cos(arg(u, v)/2)

Fg'(u,v) = . —m <arg(u,v) < .
(2 + v?) 4 sin(arg(u, v)/2

(u,v)

Y
=

Figure 6.3.5

Because of (8), F also maps the open left half-plane

S = {(x,y)|x <0}
onto F(S), and

w2 + v?)V/4 cos(arg(u, v)/2)
Fgll(u, v) = , w <arg(u,v) < 3m,
w2 + v?)V*sin(arg(u, v)/2)

= —Fg'(u,v). u
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Example 6.3.5 The transformation

u | | e*cosy
I:v:|_F(x’y)_|:exsiny:| (16)
1S not one-to-one, since
F(x,y + 2kn) = F(x, y) (17)

if k is any integer. This transformation is one-to-one on a set S if and only if S does
not contain any pair of points (xo, yo) and (xo, yo + 2km), where k is a nonzero integer.
This condition is necessary because of (17); we leave it to you to show that it is sufficient
(Exercise 8). Therefore, for example, F is one-to-one on

Sp ={(x.y)| —co<x <00, ¢ <y<¢+2m} (18)

where ¢ is arbitrary. Geometrically, Sy is the infinite strip bounded by the lines y = ¢ and
¥ = ¢ + 2m. The lower boundary is in S, but the upper is not (Figure 6.3.6). Since every
point is in the interior of some such strip, F is locally invertible on the entire plane.

Figure 6.3.6

The range of Fg, is the entire uv-plane except the origin, since if (u,v) # (0,0), then
(u, v) can be written uniquely as

u | | pcosa
v | | psina |’

p>0, ¢=<a<g¢+2nm,

where

so (u, v) is the image under F of
(x,y) = (logp,a) € S.
The origin is not in R(F), since

[F(x, )7 = (€ cos y)? + (¥ sin y)* = > # 0.
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Finally,
log(u? + v?)1/2
Fg;(u,v) = , ¢ <arg(u,v) < ¢+ 2m.
arg(u, v)
The domain of Fg; is the entire uv-plane except for (0, 0). [ ]

Regular Transformations

The question of invertibility of an arbitrary transformation F : R” — R”" is too general to
have a useful answer. However, there is a useful and easily applicable sufficient condition
which implies that one-to-one restrictions of continuously differentiable transformations
have continuously differentiable inverses.

To motivate our study of this question, let us first consider the linear transformation

ai aip - ain X1

asi azy -c- aznp X2
F(X) = AX =

dpn1 Qp2 **+ dpn Xn

From Theorem 6.3.1, F is invertible if and only if A is nonsingular, in which case R(F) =
R” and
F1(U)=A"'U.

Since A and A~! are the differential matrices of F and F~!, respectively, we can say that a
linear transformation is invertible if and only if its differential matrix F’ is nonsingular, in
which case the differential matrix of F~! is given by

(F—l)/ — (F/)—l .

Because of this, it is tempting to conjecture that if F : R” — R” is continuously differen-
tiable and A’(X) is nonsingular, or, equivalently, JF(X) # 0, for X in a set S, then F is
one-to-one on S. However, this is false. For example, if

F(x, y) = [ e*cosy i|’

e*siny

then
e*cosy —e*siny

JE(x, ) = e*siny  e*cosy

‘ =e2¥ £, (19)

but F is not one-to-one on R? (Example 6.3.5). The best that can be said in general is
that if F is continuously differentiable and JF(X) # 0 in an open set S, then F is locally
invertible on S, and the local inverses are continuously differentiable. This is part of the
inverse function theorem, which we will prove presently. First, we need the following
definition.
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Definition 6.3.2 A transformation F : R” — R” is regular on an open set S if F is
one-to-one and continuously differentiable on S, and JF(X) # 0if X € §. We will also
say that F is regular on an arbitrary set S if F is regular on an open set containing S |

Example 6.3.6 If

xX—=y
F =
(x, ) [ x4y }
(Example 6.3.2), then

1 -1
JF(X’Y)—‘ 1 1 ‘_23
so F is one-to-one on R2. Hence, F is regular on R?.
If
_| xt
Fx.y) = [ 2x +2y }
(Example 6.3.3), then
1 1
JF(an)—‘ 2 2 ‘_Oa
so F is not regular on any subset of R2.
It ) )
| Y=Y
F(x’ Y) - [ ny }
(Example 6.3.4), then
_ ZX —2y _ 2 2
JF(an)—‘ 2y Zx ‘_Z(X +y)’

so F is regular on any open set S on which F is one-to-one, provided that (0, 0) & S. For ex-
ample, F is regular on the open half-plane {(x, y) | x> O}, since we saw in Example 6.3.4
that F is one-to-one on this half-plane.

If
| e*cosy
Fx,y) = [ e* cosy i|

(Example 6.3.5), then JF(x, y) = e2* (see (19)), so F is regular on any open set on which
it is one-to-one. The interior of Sy in (18) is an example of such a set. |

Theorem 6.3.3 Suppose that F : R" — R”" is regular on an open set S, and let
G = Fgl. Then ¥(S) is open, G is continuously differentiable on ¥(S), and

G'(U) = F X)L, where U=FX).

Moreover, since G is one-to-one on F(S), G is regular on F(S).
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Proof We first show that if Xo € S, then a neighborhood of F(Xy) is in F(S). This
implies that F(.S) is open.
Since S is open, there is a p > 0 such that B,(Xp) C §. Let B be the boundary of
B,(Xp); thus,
B={|X}X-Xo| =p. (20)
The function
o(X) = [F(X) - F(Xo)|

is continuous on S and therefore on B, which is compact. Hence, by Theorem 5.2.12, there
is a point X; in B where o (X) attains its minimum value, say m, on B. Moreover, m > 0,
since X; # Xj and F is one-to-one on S. Therefore,

F(X) —F(Xo)| =m >0 if |X—Xo| = p. @1

The set
{U]|U—-FXo)| <m/2}

is a neighborhood of F(X(). We will show that it is a subset of F(S). To see this, let U be
a fixed point in this set; thus,
|[U—- F(Xp)| <m/2. (22)

Consider the function
01(X) = [U-F(X)|?,
which is continuous on S. Note that

2
m .
01(X) = - i X —Xo| = p, (23)

since if | X — Xo| = p, then

U —F(X)| = |(U-F(Xo)) + (FXo) — F(X))|
> |[F(Xo) — F(X)| — |U — F(Xo)||
m m

>m— — = —,

- 2 2
from (21) and (22).

Since o7 is continuous on §, 07 attains a minimum value & on the compact set B, (Xo)

(Theorem 5.2.12); that is, there is an X in B,(Xp) such that

01(X) = 01(X) = . X € B,(Xo).

Setting X = Xj, we conclude from this and (22) that
2

_ m
01(X) = pu < 01(Xp) < i

Because of (20) and (23), this rules out the possibility that X € B, so X € B,(Xp).
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Now we want to show that © = 0; thatis, U = F(i). To this end, we note that o1 (X)
can be written as

o1 (X) =Y (uj— f;(X)?,
j=1

so o7 is differentiable on B,(Xo). Therefore, the first partial derivatives of oy are all zero

at the local minimum point X (Theorem 5.3.11), so

Zn: 3f; (X)

™ wj—f;X) =0, 1<i<n,

j=1
or, in matrix form, . _
F'(X)(U - F(X)) = 0.

Since F'(X) is nonsingular this implies that U = F(X) (Theorem 6.1.13). Thus, we have
shown that every U that satisfies (22) is in F(S). Therefore, since X is an arbitrary point
of S, F(S) is open.

Next, we show that G is continuous on F(S). Suppose that Uy € F(S) and X is the
unique point in S such that F(X¢) = Up. Since F'(Xj) is invertible, Lemma 6.2.6 implies
that there is a A > 0 and an open neighborhood N of X¢ such that N C S and

IF(X) — F(Xo)| = A|[X —Xo| if XeN. (24)

(Exercise 6.2.18 also implies this.) Since F satisfies the hypotheses of the present theorem
on N, the first part of this proof shows that F(N) is an open set containing Uy = F(X).
Therefore, there is a § > 0 such that X = G(U) isin N if U € Bs(Up). Setting X = G(U)
and Xy = G(Up) in (24) yields

[F(G(U)) — F(G(Uo))| = AIG(U) = G(Up)| if U e Bs(Uo).

Since F(G(U)) = U, this can be rewritten as
1 .
|G(U) — G(U)| = X'U —U| if U e Bs(Uy), (25)

which means that G is continuous at Ug. Since Uy is an arbitrary point in F(S), it follows
that G is continous on F(5).

We will now show that G is differentiable at Uy. Since
GFX) =X, XeS&,
the chain rule (Theorem 6.2.8) implies that if G is differentiable at Uy, then

G (Up)F' (Xo) =1
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(Example 6.2.3). Therefore, if G is differentiable at Uy, the differential matrix of G must
be
G'(Uo) = [F'(Xo)] ™",

so to show that G is differentiable at Uy, we must show that if

G(U) — G(U) — [F'(Xo)] ' (U — Uyp)

H(U) = T—0 (U # Vo), (26)
then
UlgnUO H(U) = 0. 27

Since F is one-to-one on S and F(G(U)) = U, it follows that if U # Uy, then G(U) #
G(Up). Therefore, we can multiply the numerator and denominator of (26) by |G(U) —
G(Uy)| to obtain

H(U) =

IG(U) — G(Up| { G(U) — G(Up) — [F'(Xo)] " (U—Uyp)
U — Uy IG(U) — G(Up)|

60— GMUY] o o1 (U= Uy~ F(Xo)(G(U) — G(Uy))
== U, F X0 ( IG(U) — G(Uo)] )

if 0 < |U—Up| < §. Because of (25), this implies that

[H(U)| < %II[F’(XO)]—l I ‘U — Uy — F'(Xo)(G(U) — G(Uy)) ‘

|G(U) — G(Up)|
if 0 < |U—Up| < §. Now let

U —Up — F(Xo)(G(U) — G(Uo))

H: (0) = G(U) — G(Uo)]

To complete the proof of (27), we must show that

lim H;(U) = 0. (28)
U—Ug

Since F is differentiable at Xo, we know that if

F(X) — F(Xo) — F'(Xo)(X — Xo)
0 X — Xp|

’

.00 = i
then
xl—ig(lo H,(X) = 0. (29)
Since F(G(U)) = U and Xy = G(Uy),

H,(U) = H2(G(U)).
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Now suppose that € > 0. From (29), there is a §; > 0 such that
Hy(X)| <e if 0<|X—Xg| =|X—-G(Up)| < é;. (30)
Since G is continuous at Uy, there is a §; € (0, §) such that
|G(U) — G(Up)| < 8; if 0<|U=Up < 85.
This and (30) imply that
H; (U)| = |H2(G(U))| <e if 0<|U—Up| < b2.

Since this implies (28), G is differentiable at Xj.

Since Uy is an arbitrary member of F(N), we can now drop the zero subscript and
conclude that G is continuous and differentiable on F(NV), and

G'(U) = [FX)]™!, UeFN).

To see that G is continuously differentiable on F(N), we observe that by Theorem 6.1.14,
each entry of G’(U) (that is, each partial derivative dg; (U)/du;, 1 < i,j < n) can be
written as the ratio, with nonzero denominator, of determinants with entries of the form

01, (GU)

ox. 3D

Since df, /dx; is continuous on N and G is continuous on F(N), Theorem 5.2.10 implies
that (31) is continuous on F(/N). Since a determinant is a continuous function of its entries,
it now follows that the entries of G’ (U) are continuous on F(N). o

Branches of the Inverse

If F is regular on an open set S, we say that Fgl is a branch of F~. (This is a convenient
terminology but is not meant to imply that F actually has an inverse.) From this definition,
it is possible to define a branch of F~! on a set T C R(F) if and only if T = F(S), where
F is regular on S. There may be open subsets of R(F) that do not have this property, and
therefore no branch of F~! can be defined on them. It is also possible that T = F(S;) =
F(S,), where S and S, are distinct subsets of Dg. In this case, more than one branch of
F~! is defined on 7. Thus, we saw in Example 6.3.4 that two branches of F~! may be
defined on a set 7. In Example 6.3.5 infinitely many branches of F~! are defined on the
same set.

It is useful to define branches of the argument function. To do this, we think of the
relationship between polar and rectangular coordinates in terms of the transformation

[;}:F(r’e):[rcosé] (32)

rsinf

where for the moment we regard r and 6 as rectangular coordinates of a point in an r6-
plane. Let S be an open subset of the right half of this plane (thatis, S C {(r, 0) | r> O})
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that does not contain any pair of points (r, 8) and (r, 6 +2k i), where k is a nonzero integer.
Then F is one-to-one and continuously differentiable on S, with

, | cos@ —rsind
F(r.0) = [ sinf rcos® i| (33)
and
JF(r,0)=r>0, (r,0)eS. (34)

Hence, F is regular on S. Now let 7 = F(S), the set of points in the xy-plane with
polar coordinates in S. Theorem 6.3.3 states that 7 is open and Fg has a continuously
differentiable inverse (which we denote by G, rather than F!, for typographical reasons)

- VxZ+y2
[9}=G(x,y)= . (x,y)eT,
argg(x, y)

where argg (x, y) is the unique value of arg(x, y) such that

r,0) = (\/x2 + y2, args(x,y)) €s.

We say that argg(x, y) is a branch of the argument defined on T. Theorem 6.3.3 also
implies that

. o 1 cost  sinf
G'(x,y)=[F(rn0)] =| sinf cosf (see (33))
L r
_ ¥ y

—| V¥ Ty VEEY L (see (32,

L X242 x2 4+ y2

Therefore,

Jargs(x,y) _ ¥ Jargg(x,y) _ X (35)
dx x2+ 2’ dy x2 4 y2

A branch of arg(x, y) can be defined on an open set T of the xy-plane if and only if
the polar coordinates of the points in 7" form an open subset of the rf-plane that does not
intersect the 6-axis or contain any two points of the form (r, ) and (r, 0 + 2k ), where k
is a nonzero integer. No subset containing the origin (x, y) = (0, 0) has this property, nor
does any deleted neighborhood of the origin (Exercise 14), so there are open sets on which
no branch of the argument can be defined. However, if one branch can be defined on 7,
then so can infinitely many others. (Why?) All branches of arg(x, y) have the same partial
derivatives, given in (35).
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Example 6.3.7 The set
T ={(x.y)|(x,y) # (x,0) with x>0},

which is the entire xy-plane with the nonnegative x-axis deleted, can be written as 7T =
F(Sy), where F is as in (32), k is an integer, and

Sk ={(r.0)|r >0,2km <6 <2(k + )7}.

For each integer k, we can define a branch argg, (x, y) of the argument in Sy by taking
argg, (x, y) to be the value of arg(x, y) that satisfies

2km < argg, (x,y) <2(k + Dm.

Each of these branches is continuously differentiable in 7', with derivatives as given in (35),
and

argg, (x.y) —argg, (x.y) = 2(k — j)m. (x.y) €T m

Example 6.3.8 Returning to the transformation

u x2—y?
[v }=F(x,y>=[ . ]

we now see from Example 6.3.4 that a branch G of F~! can be defined on any subset T of
the uv-plane on which a branch of arg(u, v) can be defined, and G has the form

X (2 + v?)* cos(arg(u, v)/2)
[ ] — Glu,v) = . v el (6)
Y (2 + v2)4 sin(arg(u, v)/2)

where arg(u, v) is a branch of the argument defined on 7. If G; and G, are different
branches of F~! defined on the same set T, then G| = +Go. (Why?)

From Theorem 6.3.3,
-1
, o -1 _ | 2x 2y
G(”av)—[F(an)] _[ 2y Zx }

st 1]
2242 | -y x|

Substituting for x and y in terms of u and v from (36), we find that

ox  dy X 1

a2y 268 s ) o0
and

ox ay y 1 .

T T 20747 2 ey NEEEeD GY

It is essential that the same branch of the argument be used here and in (36). |
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We leave it to you (Exercise 16) to verify that (37) and (38) can also be obtained by
differentiating (36) directly.

u | | e¥cosy
[ v i| =Flxy) = [ e*siny i|
(Example 6.3.5), we can also define a branch G of F~! on any subset T of the uv-plane on
which a branch of arg(u, v) can be defined, and G has the form

x ] _ [ log? +v?)Y/?
[ y i| =Gu,v) = [ arg(u, v) i| (39)

Since the branches of the argument differ by integral multiples of 2, (39) implies that if
G, and G, are branches of F~!, both defined on 7, then

Gi(u,v) — Gy(u,v) = [ 2](371 i| (k = integer).

Example 6.3.9 If

From Theorem 6.3.3,

. -1
e*cosy —e*siny
e¥siny e*cosy

G'(u,v) = [F’(x,y)]_1 = [

. e ¥cosy e Fsiny
| —eFsiny e Fcosy |’
Substituting for x and y in terms of u and v from (39), we find that

ox  dy x oy u

—=-—=e Ycosy=e u=———

ou v y u? + v2
and

ax ay . _ v

a—vz—a—uzexsmyze xvzm.

The Inverse Function Theorem

Examples 6.3.4 and 6.3.5 show that a continuously differentiable function F may fail to
have an inverse on a set S even if JF(X) # 0 on S. However, the next theorem shows that
in this case F is locally invertible on S.

Theorem 6.3.4 (The Inverse Function Theorem) Let F : R" — R" be
continuously differentiable on an open set S, and suppose that JF(X) # 0 on S. Then, if
Xo € S, there is an open neighborhood N of X¢ on which F is regular. Moreover, F(N)
is open and G = F&l is continuously differentiable on F(N), with

G'(U)=[F(X)]"' (whereU=F(X)), UeF(N).
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Proof Lemma 6.2.6 implies that there is an open neighborhood N of X on which F is
one-to-one. The rest of the conclusions then follow from applying Theorem 6.3.3 to F on
N. |

Corollary 6.3.5 IfF is continuously differentiable on a neighborhood of X¢ and JF(Xg) #
0, then there is an open neighborhood N of Xo on which the conclusions of Theorem 6.3.4
hold.

Proof By continuity, since JF'(Xg) # 0, JF/(X) is nonzero for all X in some open
neighborhood S of Xy. Now apply Theorem 6.3.4. o

Example 6.3.10 Let X, = (1,2, 1) and

u x+y+@Ez-1*+1
v | =Fx.y.2)=| y+z+@x-1D>-1
w Z4+x+(y—22%+3
Then
1 1 27 =2
F(x,y,2)=| 2x—2 1 1 ,
1 2y—4 1
)

110
JFXe)=|0 1 1|=2,
1 0 1

In this case, it is difficult to describe N or find G = F&l explicitly; however, we know that
F(N) is a neighborhood of Uy = F(Xy) = (4,2,5), that G(Up) = Xy = (1,2, 1), and

that
-1

) 1 10 1 -1 1
GUy)=[FXo)] =]0 11 =3 1 1 -1
1 0 1 - 1 1
Therefore,
1 1 1 -1 1 —4
G(U) = 2 =+ E 1 1 -1 v—2 + E(U),
1 -1 1 1 -5
where
. E(U)
lim =0;
U425 /(u—4)2 + (v—2)2 + (w—5)?
thus we have approximated G near Uy = (4, 2, 5) by an affine transformation. [ ]

Theorem 6.3.4 and (34) imply that the transformation (32) is locally invertible on S =
{(r, 0) | r> O}, which means that it is possible to define a branch of arg(x, y) in a neigh-
borhood of any point (xo, yo) # (0,0). It also implies, as we have already seen, that
the



414 Chapter 6 Vector-Valued Functions of Several Variables

transformation (7) of Example 6.3.4 is locally invertible everywhere except at (0, 0), where
its Jacobian equals zero, and the transformation (16) of Example 6.3.5 is locally invertible
everywhere.

6.3 Exercises

1. Prove: If F is invertible, then F~! is unique.
Prove Theorem 6.3.1.

3. Prove: The linear transformation L(X) = AX cannot be one-to-one on any open set
if A is singular. HINT: Use Theorem 6.1.15.

4. Let
G(x,y) = [ 2 ] 7/2 < arg(x,y) < 5m/2.
arg(x, y)
Find
(a) G0, 1) (b) G(1,0) (c) G(~1,0)
(d) G(2,2) (e) G(-1.1)

5. Same as Exercise 4, except that =27 < arg(x, y) < 0.

6. (a) Prove: If f : R — R is continuous and locally invertible on (a, b), then f is
invertible on (a, b).
(b) Give an example showing that the continuity assumption is needed in ().

7. Let 5 5
x2—y i|

F(x,y) = [ 2xy

(Example 6.3.4) and
S ={(x.y)|ax +by >0} (a*+b*+#0).
Find F(S) and Fg'. If
S = {(x,y)|ax+by <0},

show that F(S1) = F(S) and Fgll = —Fgl.

8. Show that the transformation

u | | e*cosy
[ v i| =Flx,y) = [ e*siny i|
(Example 6.3.5) is one-to-one on any set S that does not contain any pair of points
(x0, yo) and (xo, yo + 2km), where k is a nonzero integer.



10.

11.

12.

13.

14.
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Suppose that F : R” — R” is continuous and invertible on a compact set S. Show
that Fgl is continuous. HINT: Ing1 is not continuous at U in F(S), then there is

an €y > 0 and a sequence {Uy} in F(S) such that limy_, o, Ur = U while
Fs' (Ue) ~F5' ()] = 0. k= 1.

Use Exercise 5.1.32 to obtain a contradiction.
Find F~! and (F~1)":

@ [4]=ren=] 73]

u —x+y+2z
(b) v | =F(x,y,2) = 3x+y—4z
w —x—-y+2z

In addition to the assumptions of Theorem 6.3.3, suppose that all gth-order (g > 1)
partial derivatives of the components of F are continuous on S. Show that all gth-
order partial derivatives of Fgl are continuous on F(S).

If ) )
MBI R

(Example 6.3.1), find four branches G, G;, G3, and G4 of F~! defined on
T, = {(u,v)|u+v >0,u—v >O},
and verify that G} (u,v) = (F'(x(u,v), y(u,v)))" !, 1 <i <4.
Suppose that A is a nonsingular n x n matrix and
xi
x3
U=FX)=A

(a) Show that F is regular on the set
S ={X|eix; >0, 1<i<n},
wheree; = £1,1 <i <n.
(b) Find Fg'(U). (c) Find (Fg')'(U).
Let O(x, y) be a branch of arg(x, y) defined on an open set S.

(a) Show that 6(x, y) cannot assume a local extreme value at any point of S.

(b) Prove: If ¢ # 0 and the line segment from (xg, yo) to (axg, ayp) isin S, then
0(axo, ayo) = 6(xo. o).

(c) Show that S cannot contain a subset of the form

A:{(x,y)|0<r15\/x2+y2§r2}.
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15.

16.

17.

18.

19.

20.

ow that no branch of arg(x, y) can be defined on a deleted neighborhoo
d) Show th branch of arg(x, y be defined deleted neighborhood
of the origin.

Obtain Eqn. (35) formally by differentiating:
1 X 1 Y

_ b) arg(x, y) =sinT' ———
i (b) arg(x. y e
1

—an—1 2
(c) arg(x, y) = tan .

(a) arg(x,y) = cos™

Where do these formulas come from? What is the disadvantage of using any one of
them to define arg(x, y)?

u 'l [ x2—)y?
R e

(Example 6.3.4), find a branch G of F~! defined on 7 = {(u, v) |au + bv > O}.
Find G’ by means of the formula G’(U) = [F'(X)]~! of Theorem 6.3.3, and also by
direct differentiation with respect to u and v.

For the transformation

A transformation

e = 10 ]

is analyticon a set S if it is continuously differentiable and
Ux =Vy, Uy =—Uy

on S. Prove: If F is analytic and regular on S, then Fgl is analytic on F(S); that is,
Xy = Uy and x, = —Uy,.

Prove: If U = F(X) and X = G(U) are inverse functions, then

Aur,uz, ..., up) (X1, X2, ..., Xn)

=1.
(X1, X2, ..., xn 0(Uy, Uz, ..., Uy)

Where should the Jacobians be evaluated?

Give an example of a transformation F : R” — R” that is invertible but not regular
on R”.

Find an affine transformation A that so well approximates the branch G of F~!
defined near Uy = F(Xj) that

G(U) —A(U)
im ——= =0.
U—Up |U — U0|

4.5
@ [ ]=ren=] 55 | xe=a-n



21.

22,

23.
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[ u x2y + xy
®) |4 ]=ren=[ 5750 ] xe=a
" u [ 2x%y +x3 4+ 2
(c) | v |=Fkx,y,2)= x3+yz . X=(0,1,1)
| w | x+y+z
u [ xcosycosz
(d) v | =F(x,y,z2) = | xsinycosz |, Xo=(1,7/2,7)
| w | xsinz
If F is defined by
X r cos 0 cos ¢
y | =F@,0,0) =| rsinfcos¢
z r sing

and G is a branch of F~!, find G’ in terms of r, 6, and ¢. HINT: See Exer-
cise 6.2.14(b).
If F is defined by
r cos 6
=F(r,0,z) = | rsinf
Z

N =

and G is a branch of F~!, find G’ in terms of r, 0, and z. HINT: See Exer-
cise 6.2.14(c).

Suppose that F : R” — R” is regular on a compact set 7. Show that F(0T) =
0F(T); that is, boundary points map to boundary points. HINT: Use Exercise 6.2.23
and Theorem 6.3.3 to show that OF(T') C F(3T'). Then apply this result with ¥ and
T replaced by F~' and F(T') to show that F(0T) C dF(T).

6.4 THE IMPLICIT FUNCTION THEOREM

In this section we consider transformations from R”1™ to R™. It will be convenient to
denote points in R”*™ by

X,U) = (X1, X2, ..., Xn, UL, Uy ooy Upy).

We will often denote the components of X by x, y, ..., and the components of U by u, v,

To motivate the problem we are interested in, we first ask whether the linear system of
m equations in m + n variables

aiixi + aaxs + -+ + ainxn + briur + brous + -+ + bty =0
as1X1 + aoaXx2 + -+ + azpxn + borur + bty + -+ + by, =0

ey

Am1X1 + AmaXo + -+ AmnXn + b1 + buotio + -+ + byt =0
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determines u1, Uz, ..., Uy uniquely in terms of x1, x>, ..., X,. By rewriting the system in
matrix form as
AX + BU =0,
where
ayy diz A biy bz - bim
a1 dxp -+ d b1 by - bam
A = 9 B = . 9
adml1 Am2 - Amn bmi bmz - bmm
X1 1751
X2 Uz
X = . , and U= ,
Xn Um

we see that (1) can be solved uniquely for U in terms of X if the square matrix B is nonsin-
gular. In this case the solution is
U=-B'AX.

For our purposes it is convenient to restate this: If
F(X,U) = AX + BU, (2)
where B is nonsingular, then the system
FX,U)=0

determines U as a function of X, for all X in R”.

Notice that F in (2) is a linear transformation. If F is a more general transformation from
R"+™ to R™, we can still ask whether the system

F(X,U) =0,

or, in terms of components,
fl(xlaXZa”‘axnaulaMZa”‘aum) :O
fz(xlaXZa ”‘axnaulaMZa ”‘aum) = O
fm(-xla x23 ”‘axnaulaMZa ”‘aum) = Oa

can be solved for U in terms of X. However, the situation is now more complicated, even
if m = 1. For example, suppose that m = 1 and

f(xayau)zl_xz_yz_uz‘
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If x2 4+ y2 > 1, then no value of u satisfies

fx.y,u)=0. 3
However, infinitely many functions u = u(x, y) satisfy (3) on the set
S={(x.y)|x*+y> <1}.
They are of the form
u(x,y) = e(x,y)v1—x*—y2,

where €(x, y) can be chosen arbitrarily, for each (x, y) in S, tobe 1 or —1. We can narrow
the choice of functions to two by requiring that u be continuous on S; then

u(x,y) =1 —x2—-y2 4
or

u(x,y) = —/T-2 =7,

We can define a unique continuous solution u of (3) by specifying its value at a single
interior point of S. For example, if we require that

1 1 1
u T =T = = =,
( V3 V3 ) V3
then u must be as defined by (4).

The question of whether an arbitrary system
FX,U)=0

determines U as a function of X is too general to have a useful answer. However, there
is a theorem, the implicit function theorem, that answers this question affirmatively in
an important special case. To facilitate the statement of this theorem, we partition the
differential matrix of F : R"t" — R™:

SR VI VT R /Y
ox1 0xp 0xp ou; Jup Uy
L N VN VA
F = ox1 0xp 0xp ou; Jup Uy, (5)
ofm  0fm 0 fm | 0fm  0fm 3 fm
R R vy | e G u
or
F' = [Fx, Fyl,

where Fx is the submatrix to the left of the dashed line in (5) and Fy is to the right.

For the linear transformation (2), Fx = A and Fy = B, and we have seen that the system
F(X,U) = 0 defines U as a function of X for all X in R” if Fy is nonsingular. The next
theorem shows that a related result holds for more general transformations.
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Theorem 6.4.1 (The Implicit Function Theorem) SupposethatF : R*"t" —
R™ is continuously differentiable on an open set S of R*™™ containing (Xo, Uy). Let
F(Xo, Up) = 0, and suppose that Fy(Xo, Uy) is nonsingular. Then there is a neighborhood
M of (Xo, Uy), contained in S, on which Fy(X, U) is nonsingular and a neighborhood N
of Xo in R" on which a unique continuously differentiable transformation G : R" — R™

is defined, such that G(Xo) = Up and

X,.GX)) e M and FX,GX)) =0 if XehN. 6)
Moreover,
G'(X) = —[Fu(X, (X)) 'Fx(X,G(X)), Xe€N. (M
Proof Define @ : R*"*™" — R"*™ by
- X -
X2
Xn
X, U)=| fi(X,0) ®)
fZ(Xv U)
L /m(X,U)
or, in “horizontal ’notation by
?(X,U) = (X,FX,U)). C)]

Then @ is continuously differentiable on S and, since F(Xg, Up) = 0,

?(Xo, Up) = (Xo,0). (10)

The differential matrix of ® is

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
B T R VIR VTR VY VW I
o = ox1  0xp ox, Ou; OJup U, :[FX Fu i|,
[ VA VA S A
ox1  0xp ox, Ou; OJup Uy,
U Un . Un Un Un | On
L dx;  0xy ox, OJu; OJup Uy,
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where I is the n x n identity matrix, 0 is the n x m matrix with all zero entries, and Fx and
Fy are as in (5). By expanding det(®’) and the determinants that evolve from it in terms of
the cofactors of their first rows, it can be shown in n steps that

Afi  Af /1
J® =det(®’) = | dur Juz um | = det(Fy).
fm  fm 3fm

In particular,
J®(Xo, Up) = det(Fy(Xo, Up) # 0.

Since @ is continuously differentiable on S, Corollary 6.3.5 implies that @ is regular on
some open neighborhood M of (X¢, Up) and that M = ® (M) is open.

Because of the form of ® (see (8) or (9)), we can write points of M as (X, V), where
V € R™. Corollary 6.3.5 also implies that @ has a a continuously differentiable inverse
I' (X, V) defined on M with values in M. Since ® leaves the “X part" of (X, U) fixed, a
local inverse of ® must also have this property. Therefore, I' must have the form

X1
X2
Xn
rX,v)=1| mnX,v)

h2(X, V)

L hm(X, V)

or, in “horizontal” notation,

X, v) = X,HX.,V)),
where H : R”*” — R™ is continuously differentiable on M. We will show that G(X) =
H(X, 0) has the stated properties.

From (10), (Xo, 0/)\ eM and, since M is open, there is a neighborhood N of Xy in R”
such that (X,0) € M if X € N (Exercise 2). Therefore, (X,G(X)) = I'(X,0) € M if
X e N.Sincel' = @71, (X,0) = ®(X, A(X)). Setting X = Xy and recalling (10) shows
that G(Xo) = Uy, since P is one-to-one on M.
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Henceforth, we assume that X € N. Now,

(X, 0) = (T (X, 0)) (since ® = T'1)
= &(X, G(X)) (since T (X, 0) = (X, G(X)))
= (X,F(X,G(X))) (since ®(X,U) = (X,F(X,U))).

Therefore, F(X, G(X)) = 0; that is, G satisfies (6). To see that G is unique, suppose that
G1 : R" — R™ also satisfies (6). Then

*(X,G(X)) = X, F(X,G(X)) = (X,0)
and
*(X,G:1 (X)) = X, F(X,G1(X))) = (X,0)
for all Xin N. Since @ is one-to-one on M, this implies that G(X) = G (X).

Since the partial derivatives

oh;

9
dx;

1<i<m, 1=<j<n,

are continuous functions of (X, V) on M. , they are continuous with respect to X on the
subset {(X, 0) | XeN } of M. Therefore, G is continuously differentiable on N. To verify
(7), we write F(X, G(X)) = 0 in terms of components; thus,

filx1,x2, ..., xn,81X),22X), ..., gmX)) =0, 1<i<m, XeN.

Since f; and g1, g2, ..., gm are continuously differentiable on their respective domains,
the chain rule (Theorem 5.4.3) implies that

3ﬁ(X,G(X))+Zm:3ﬁ(X,G(X)) 3gr(X):O’ l<i<m l<j<n (D)

0x = ou, 0x
or, in matrix form,
Fx(X, G(X)) + Fy(X, G(X))G'(X) = 0. (12)

Since (X, G(X)) € M for all X in N and Fy(X, U) is nonsingular when (X, U) € M, we
can multiply (12) on the left by Fy; 1(X, G(X)) to obtain (7). This completes the proof. [

In Theorem 6.4.1 we denoted the implicitly defined transformation by G for reasons
of clarity in the proof. However, in applying the theorem it is convenient to denote the
transformation more informally by U = U(X); thus, U(Xo) = Uy, and we replace (6) and
(7) by

X, UX) eM and XX, UX)) =0 if XeN,

and
U'(X) = —[FuX.UX))]'Fx(X,U(X)). X€N,
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while (11) becomes

i, - Ofi dur

dxj 4= du, Ox;

=0, l=i=m 1=<j=n, 13)

it being understood that the partial derivatives of u, and f; are evaluated at X and (X, U(X)),
respectively.

The following corollary is the implicit function theorem for m = 1.

Corollary 6.4.2 Suppose that f : R*"*! — R is continuously differentiable on an
open set containing (Xo, ug), with f(Xo,uo) = 0 and f,(Xo,u¢) # 0. Then there is a
neighborhood M of (Xo, ug), contained in S, and a neighborhood N of X¢ in R" on which
is defined a unique continuously differentiable function u = u(X) : R” — R such that
X,uX) eM and fuX,uX))#0, XeN,
uXo) =up, and fX uX))=0, XeN.
The partial derivatives of u are given by
(X uX
uxl- (X) — _M’ f i f
Ju(X, u(X))

Example 6.4.1 Let
f,yu)y=1—-x*—y*—u?

and (xo. yo.uo) = (%,-1, «/LE)' Then f(xo, yo.Zo) = 0 and
fx(xvyvu):_zxv fy(xvyvu):_zyv fu(xvyvu):_zu‘

Since f is continuously differentiable everywhere and f; (xo. yo. 1t9) = —+/2 # 0, Corol-
lary 6.4.2 implies that the conditions

1—x2—y2—u?=0, u(l/2,-1/2)= %
determine ¥ = u(x, y) near (xo, yo) = (%, —%) so that
Selx, y u(x, y)) —X
X Y) == = ) 14
) = T e ) uy) i
and
fy(xv yvu(xv y)) -y
y)=— = . 15
) = T e ) uy) 4
|

It is not necessary to memorize formulas like (14) and (15). Since we know that f and
u are differentiable, we can obtain (14) and (15) by applying the chain rule to the identity

f(xv Vs u(-xa y)) =0.
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Example 6.4.2 Let
Fx, v, u) = x3y%u? + 3xy*u® —3x%y%u7 + 12x — 13 (16)
and (xo, yo, uo) = (1, —1,1),s0 f(xo, yo,uo) = 0. Then

feGx,you) =3x7y%u® 4 3y*ut — 18x°y%u” + 12,
Sy y ) =203y + 12xyut — 18xy°u”,
Fulr, y,1u0) = 263 y2u + 12xy*u® — 21x8y%us.

Since f,(1,—1,1) = =7 # 0, Corollary 6.4.2 implies that the conditions
flx,y,u)y=0, u(l,-1)=1 17)

determine u as a continuously differentiable function of (x, y) near (1, —1). [ ]

If we try to solve (16) for u, we see very clearly that Theorem 6.4.1 and Corollary 6.4.2
are existence theorems; that is, they tell us that there is a function v = u(x, y) that satisfies
(17), but not how to find it. In this case there is no convenient formula for the function,
although its partial derivatives can be expressed conveniently in terms of x, y, and u(x, y):

_Salxyulx, y))
Su(x, y,u(x, )’

In particular, since u(1, —1) = 1,

_fy(xv yvu(xv Y))

uy(x.y) = Sulx, you(x, )’

ux(x,y) =

0 4 4
ux(l,-1) = == 0, uy(1,-1)= ——= =7

Example 6.4.3 Let

=

X=1|y and U:I:Z:|,

N

and

2x2 +y2 + 22 +u? -2
F(X’U):[ xz)-}|-22+2u—v ’

IfXp = (1,—1,1) and Uy = (0, 2), then F(Xy, Up) = 0. Moreover,

2u —2v 4x 2 2z
FU(X’U):[z —1} and FX:[zx oyzz}’

SO
0 —4
det(Fuy(Xo, Up)) = ‘ s ‘ =8#0.
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Hence, the conditions
F(Xv U) = 0’ U(la _1’ 1) = (O’ 2)

determine U = U(X) near Xo. Although it is difficult to find U(X) explicitly, we can
approximate U(X) near X, by an affine transformation. Thus, from (7),

U'(Xo) = —[Fu(Xo. UXo))] "' Fx(Xo. U(Xo)) (18)
[0 —47'[4 —2 2
__[2 —1} [2 0 2}

—1 4774 =2 2

2 01l2 o 2

Therefore,

—1
u(x,y) 0 4 2 6 X
[v(x,y)]_[2]+§[—8 4 —4} y+1
lim 2 -1 :I:Oi|‘ ]
X—(1,-1,1) [(x_1)2+(y+1)2+(Z_1)2]1/2 0

Again, it is not necessary to memorize (18), since the partial derivatives of an implicitly
defined function can be obtained from the chain rule and Cramer’s rule, as in the next
example.

Example 6.4.4 Letu = u(x, y) and v = v(x, y) be differentiable and satisfy

x2+2y24+322+u?+v=6
(19)
2x3 4+ 4y2 + 222 +u+02=9

and
u(l,-1,0) = -1, wv(1,-1,0) =2. (20)

To find ux and vy, we differentiate (19) with respect to x to obtain

2x +2uuyx + v, =0
6x2+ux + 2vv, = 0.

][] e )

Therefore,
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and Cramer’s rule yields

2x 1
6x2 2v 6x2 — 4xv
Uy = — =
2u 1 4duv —1
1 2v
and
2u  2x
1 6x2 2x — 12x%u
‘Ux = — =
2u 1 4duv —1
1 2v
if 4uv # 1. In particular, from (20),
-2 2 14 14
ux(l,—l,()) = _—9 = 5, Ux(l,—l,o) = _— = —? |

Jacobians

It is convenient to extend the notation introduced in Section 6.2 for the Jacobian of a trans-

formation F : R” — R™. If f1, f2, ..., fm are real-valued functions of k variables,
k > m,and &1, &, ..., &, are any m of the variables, then we call the determinant
1 036 OEm

351 352 BSm

41 036 OEm
the Jacobian of fi, fa, ..., fm withrespect to &1, &, ..., &,. We denote this Jacobian by
3(513 52’ C) Sm) ’

and we denote the value of the Jacobian at a point P by

1,62, ... 6m)

P
Example 6.4.5 If

2 2
F(x,y,z)z[ 3x24+2xy 4z ]

4x% 4+ 2xy? + 23
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then
If1, /o) _ | 6x+2y 2x Wf. ) _| 2x 2z
a(x, y) 8x 42y 4xy (. 2) 4xy 3z2 |
and
A fi. f2) | 2z 6x+2y
dz.x) | 3z 8x+12)?
The values of these Jacobians at Xg = (—1, 1, 0) are
W fi. 1) ‘—4 =) ‘_4 W fi. 1) ‘—2 0 ‘_O
-6 —4| 7 -4 0] 7
) |y, 10,2 |y,
and
a( f1, —
gfl /f2) _‘8 _2‘20‘ =
(z,x) X
The requirement in Theorem 6.4.1 that Fy(Xo, Up) be nonsingular is equivalent to
a(f1, f2s.--,
a(f1 S2soos fm) 20
(ulaMZa”‘aum) (XO,UO)

If this is so then, for a fixed j, Cramer’s rule allows us to write the solution of (13) as

o(fi, fo, - fiveo s fm)

%:_3(u1,u2,...,xj,...,um)’ L<i<m,
dx, 0(f1: f2s-oes fiveoos fm)
a(”lv”Za”"u[,...,um)

Notice that the determinant in the numerator on the right is obtained by replacing the ith
column of the determinant in the denominator, which is

SPTEE - A 1
du; 0
f2 afa
du; |, by dx,
fom 3fm

L 3”[ . L E .

So far we have considered only the problem of solving a continuously differentiable
system
FX,U)=0 (F:R""" - R™) 21
for the last m variables, u1, us, ..., U, in terms of the first n, x1, x2, ..., x,. This was
merely for convenience; (21) can be solved near (Xy, Up) for any m of the variables in
terms of the other n, provided only that the Jacobian of f1, f3, ..., fin with respect to the
chosen m variables is nonzero at (Xo, Up). This can be seen by renaming the variables and
applying Theorem 6.4.1.
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Example 6.4.6 Let
fx,p.2) }
g(x.y,2)

be continuously differentiable in a neighborhood of (xo, yo, Zo). Suppose that

F(x,y,z) = [

F(xo, y0,20) =0

and

(/. g)
a(x,2)

# 0. (22)

(x0,Y0,20)

Then Theorem 6.4.1 with X = (y) and U = (x, z) implies that the conditions
S, y,2)=0, gx,y,2) =0, x(yo) =x0, 2(yo) = Zo. (23)

determine x and z as continuously differentiable functions of y near yo. Differentiating
(23) with respect to y and regarding x and z as functions of y yields

fxx/ + fy + sz/ =0
gxx' + gy + g2/ =0.

Rewriting this as

fxx/ + fzzl =—fy
gxx' + 8.7 = —gy,

and solving for x” and z’ by Cramer’s rule yields

‘ - fz (/. g)
;| 8y 8z | _ _ a(y,2)
YTTh L] e @Y
8x &z a(x,2)
and
o =f (/. g)
/ 8x —8y __B(X,y)
CTTA L] T Wy )
8x &z a(x,2)

Equation (22) implies that d( f, g)/d(x, z) is nonzero if y is sufficiently close to yo. ]

Example 6.4.7 Let Xy, = (1,1,2) and

fx,y.2) }
g(x,y,2)

[ 6x+6y+4z>—44

F(x’y’Z)z[ _[—xz—y2+8z—14]
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Then F(Xp) = 0,

It g 6 1272
ﬁ(x’z) T =2x 8 ’
and
g(f,g) =‘_g 42 ‘:1447&0.
(x,2) .

Therefore, Theorem 6.4.1 with X = (y) and U = (x, z) implies that the conditions

f(xvyvz):()v g(X,y,Z)zO,
and
x(H)=1, z(1) =2, (26)

determine x and z as continuously differentiable functions of y near yo = 1. From (24)
and (25),

A(f. g) ‘ 6 1272

v o) |2y 8 | 24y
(/. 8) 6 1222 24 xz2
a(x,2) ‘ —2x 8

and

([, g) ‘ 6 6

2/2_3(96,)’) __ —2x =2y __ry-x .

‘ (/. 8) 6 1272 4 +2xz2
a(x,2) ‘ —2x 8 ‘

These equations hold near y = 1. Together with (26) they imply that
xX'(1)y=-1, Z/(1)=0. ]

Example 6.4.8 Continuing with Example 6.4.7, Theorem 6.4.1 implies that the con-
ditions

f(x,y,2)=0, gx,y,2)=0, y()=1, z(1)=2

determine y and z as functions of x near xo = 1, since

B(f,g)_‘ 6 1272
dy,z) | 2y 8

and

a(f, 8)
(y,2)

6 48
_‘ 5 % ‘_1447é0.

(1,1,2)

However, Theorem 6.4.1 does not imply that the conditions

f(x,y,2)=0, gx,y,2)=0, x2)=1, y@2 =1
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define x and y as functions of z near z¢9 = 2, since

fe) | 6 6 ‘
a(x, y) —2x -2y
and
I(f.8) 6 6 ‘ —0
a(x,y) 112) -2 =2 ) u
We close this section by observing that the functions u1, us, ..., U, defined in Theo-

rem 6.4.1 have higher derivatives if fi, f,..., fim do, and they may be obtained by differ-
entiating (13), using the chain rule. (Exercise 17).

Example 6.4.9 Suppose that u and v are functions of (x, y) that satisfy
fx.yuv)y=x—u?—v2+9=0

gx.y,uv)=y—u?>+0v2-10=0.

Then
g | —2u —2v — 8w
3(1,[’1))_ —2u 20 | ’
From Theorem 6.4.1, if uv # 0, then
v LOofe 11 20 1
T 8uvd(x,v)  Suv |0 20 | 4y’
wo = L fg L J0 =2 1
YT 8uva(y,v)  Suv |1 20| 4y’
oo LOfe 12w 1) 1
Y 8uvd(u,x)  Suv | —2u 0 | 4y’
oo LS 12w 01
T 8uvd(u,y)  Suv | —2u 1| 40’

These can be differentiated as many times as we wish. For example,

o Ux 1
Ve =02 T T leud
Uy 1
T TE T T Tews
and
Uy 1
Vyx =
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6.4 Exercises

Solve for U = (u, ...) as a function of X = (x,...).

(a) 1 1 uol L 1 -1 x| _|0
1 -1 v 2 -3 y| |0
u—v+w+3x+2y=0

(b)) —u+v+w— x4+ y=0
u+v—w + y=0

3u+ v+ y=sinx
(c) u+2v+x =sin
=smy

2u+2v+ w+2x+2y+ z=0
(d) u— v+2w+ x— y+2z=0
3u+2v— w+4+3x+2y— z=0

Suppose that Xo € R” and Uy € R™. Prove: If N; is a neighborhood of (Xg, Up)
in R"*™ there is a neighborhood N of Xy in R” such that (X, Ug) € Ny if X € N.

Let (Xo,Up) be an arbitrary point in R"*”. Give an example of a function F :
R"+™ _ R™ such that F is continuously differentiable on R* ™ F(Xy, Up) = 0,
Fy(Xo, Up) is singular, and the conditions F(X, U) = 0 and U(Xp) = Yy

(a) determine U as a continuously differentiable function of X for all X;

(b) determine U as a continuous function of X for all X, but U is not differentiable
at Xo;

(c) do not determine U as a function of X.

Let u = u(x, y) be determined near (1, 1) by
x2yu + 2xy%u® —3x3y%° =0, u(l,1) =1.
Find ux(1,1) and u, (1, 1).
Let u = u(x, y, z) be determined near (1, 1, 1) by
x2y522u° + 2xy%ud —3x3z22u =0, u(1,1,1) = 1.

Find ux(1,1,1),u,(1,1,1), and u, (1,1, 1).

Find u(xo, y0), Ux (X0, ¥o), and u, (xo, yo).

(a) 2x2+y2+ue¥ =6, (xo,y0) = (1,2)

(b) ux+1D)+x(y+2)+yu—-2)=0, (x0,y0) = (-1,-2)
(c) 1—e*sin(x+y) =0, (xo0,y0) = (w/4,7/4)

(d) xlogu + ylogx +ulogy =0, (xo,y0) = (1,1)
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7.

10.

11.

12.

Find u(xo, y0), ux(Xo0. Yo), and u (xo, yo) for all continuously differentiable func-
tions u that satisfy the given equation near (xo, o).

(a) 2x2y* —3uxy3 +u?x*y3 =0; (x0,y0) = (1, 1)
(b) cosucosx +sinusiny = 0; (xo, yo) = (0, 7)

Suppose that U = (u, v) is continuously differentiable with respect to (x, y, z) and

satisfies
x2+4y2 + 722 -2 + 02 =—4

x+2?+u—v=-3
and

u(lv%a_l): _23 U(I’%a

-1 =1
Find U'(1, . —1).
Let u and v be continuously differentiable with respect to x and satisfy
u+2u+ 02+ x2+20-x=0
xuv + e¥sin(v + x) =0
and #(0) = v(0) = 0. Find »’(0) and v’ (0).

Let U = (u, v, w) be continuously differentiable with respect to (x, y) and satisfy

X2y +xy? +u?— (v +w)?=-3
et —u—v—w=-2
x+y)?+ut+v+wi= 3

and U(1, —1) = (1,2,0). Find U'(1, —1).

Two continuously differentiable transformations U = (u, v) of (x, y) satisfy the
system

xyu —4yu +9xv =20
2xy =3y +v2 =0

near (xg, o) = (1,1). Find the value of each transformation and its differential
matrix at (1, 1).

Suppose that u, v, and w are continuously differentiable functions of (x, y, z) that
satisfy the system

e*cosy +e“cosu +ecosw+x =3
e*siny + e?sinu + e cosw =1
e*tany + e‘tanu + e’ tanw +z =0

near (xg, yo,Z0) = (0,0,0), and u(0,0,0) = v(0,0,0) = w(0,0,0) = 0. Find
ux(0,0,0), vx(0,0,0), and w, (0, 0, 0).



13.

14.

15.

16.

17.
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Let F = (f, g, h) be continuously differentiable in a neighborhood of Py = (x¢, Y0, Zo, 40, Vo),
F(Ap) =0, and
(/. g h)

Ay, z,u)p,
Then Theorem 6.4.1 implies that the conditions

F(x,y,z,u,v) =0, y(x0,v0) =uo, 2(X0,v0) =20, u(Xp,Vo) =g

determine y, z, and u as continuously differentiable functions of (x, v) near (x¢, vo).
Use Cramer’s rule to express their first partial derivatives as ratios of Jacobians.
Decide which pairs of the variables x, y, z, u, and v are determined as functions of
the others by the system

x+2y+3z+ u+6v=0
2x+4y+ z4+2u+2v=0,

and solve for them.
Let y and v be continuously differentiable functions of (x, z, u) that satisfy
x2+4y2 + 722 -2u% + 02 =—4
(x+z2P2+u—v=-3

near (xg, Zg, Uo) = (1, —1, —2), and suppose that
1
y(1,-1,-2) = 3 v(l,—-1,-2) = 1.

Find y,(1,—1,-2) and v, (1, -1, =2).
Let u, v, and x be continuously differentiable functions of (w, y) that satisfy

X2y +xy? +u— @+ w)?=-3

x+y

e —U—v—w=-2

x+y)?+utv+uw?= 3
near (wo, yo) = (0, —1), and suppose that
u,-1) =1, v0,-1)=2, x(0,-1)=1.

Find the first partial derivatives of u, v, and x with respect to y and w at (0, —1).

In addition to the assumptions of Theorem 6.4.1, suppose that F has all partial
derivatives of order < ¢ in S. Show that U = A(X) has all partial derivatives
of order < gin N.
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18.

19.

20.
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Calculate all first and second partial derivatives at (xo, yo) = (1, 1) of the functions
u and v that satisfy

X2+ y2+u?4+02=3
X 4y +u 4v =3 u(l,1)=0, v(,1)=1.
Calculate all first and second partial derivatives at (xo, yo) = (1, —1) of the func-
tions u and v that satisfy

u? —v?=x—-y-2

ZMU:x-’—y_Z’ u(lv_l):_l, U(l,—l): 1.

Suppose that fi, f», ..., fu are continuously differentiable functions of X in a
region S in R”, ¢ is continuously differentiable function of U in a region 7" of R”,

(N1X), 2X),.... X)) €T, XeS,
P(1(X), 2(X),.... [n(X)) =0, XEe€S,

and
Y #2,(U)>0, UeT
j=1
Show that
a(flafZa”‘afn) _

=0, XeS.
0(X1,X2,...,Xpn)



CHAPTER 7

Integrals of Functions
of Several Variables

IN THIS CHAPTER we study the integral calculus of real-valued functions of several
variables.

SECTION 7.1 defines multiple integrals, first over rectangular parallelepipeds in R” and
then over more general sets. The discussion deals with the multiple integral of a function
whose discontinuities form a set of Jordan content zero, over a set whose boundary has
Jordan content zero.

SECTION 7.2 deals with evaluation of multiple integrals by means of iterated integrals.

SECTION 7.3 begins with the definition of Jordan measurability, followed by a derivation
of the rule for change of content under a linear transformation, an intuitive formulation of
the rule for change of variables in multiple integrals, and finally a careful statement and
proof of the rule. This is a complicated proof.

7.1 DEFINITION AND EXISTENCE OF THE MULTIPLE IN-
TEGRAL

We now consider the Riemann integral of a real-valued function f defined on a subset of
R”, where n > 2. Much of this development will be analogous to the development in
Sections 3.1-3 for n = 1, but there is an important difference: for n = 1, we considered
integrals over closed intervals only, but for n > 1 we must consider more complicated
regions of integration. To defer complications due to geometry, we first consider integrals
over rectangles in R”, which we now define.

Integrals over Rectangles

The Cartesian product
SIXSZX---XSn

of subsets Sy, Sz, ..., S, of R is the set of points (xq, X2, ..., X,) in R” such that x; €
S1,x2 € 82,...,x, € Sy. For example, the Cartesian product of two closed intervals,

435
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[a1.b1] x [az,by] = {(x.y)| a1 < x < by, ap <y < by},

is a rectangle in R? with sides parallel to the x- and y-axes (Figure 7.1.1).

Y
=

Q
Sl S —

Figure 7.1.1
The Cartesian product of three closed intervals,
[a1.b1] X [az.bo] X [az,b3] = {(x.y.2) |a1 S x < by, a <y < by, a3 <z < b3},

is a rectangular parallelepiped in R3 with faces parallel to the coordinate axes (Figure 7.1.2).

Zz
A

Figure 7.1.2
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Definition 7.1.1 A coordinate rectangle R in R” is the Cartesian product of n closed
intervals; that is,
R = [ay, b1] X [az, ba] X - -+ X [ay, by].

The content of R is

V(R) = (by —a1)(by —az) -+ (by — an).

The numbers b; — ay, by — as, ..., b, — a, are the edge lengths of R. If they are equal,
then R is a coordinate cube. 1f a, = b, for some r, then V(R) = 0 and we say that R is
degenerate ; otherwise, R is nondegenerate. [ ]

If n = 1, 2, or 3, then V(R) is, respectively, the length of an interval, the area of a
rectangle, or the volume of a rectangular parallelepiped. Henceforth, “rectangle” or “cube”
will always mean “coordinate rectangle” or “coordinate cube” unless it is stated otherwise.

If
R = [ay, b1] X [az, ba] X -+ X [an, by]

and
Priar=ar0<arp < - <arm, = by

is a partition of [a,, b;], | < r < n, then the set of all rectangles in R” that can be written
as

[a1,ji—1,a1j,] X [az,jo—1,a2j,] X - X [an,j,—1, anj,), 1= jr <my, 1=<r=<n,

is a partition of R. We denote this partition by

P=P xXxPyx---x P, (1)
and define its norm to be the maximum of the norms of P, P, ..., P,, as defined in
Section 3.1; thus,

[Pl = max{|| Py, | P2l ... I Pull}-

Put another way, || P || is the largest of the edge lengths of all the subrectangles in P.

Geometrically, a rectangle in R? is partitioned by drawing horizontal and vertical lines
through it (Figure 7.1.3, page 438); in R3, by drawing planes through it parallel to the
coordinate axes. Partitioning divides a rectangle R into finitely many subrectangles that we
can number in arbitrary order as Rj, R, ..., Rx. Sometimes it is convenient to write

P ={Ri,Ry...., Ry}

rather than (1).
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Figure 7.1.3

If P =P X Pyx---x Py,and P’ = P/ x Py x--- x P) are partitions of the same
rectangle, then P’ is a refinement of P if Pi’ is a refinement of P;, 1 < i < n, as defined
in Section 3.1.

Suppose that f is a real-valued function defined on a rectangle Rin R"”, P = {Ry, Ra, ..., R}
is a partition of R, and X is an arbitrary pointin R;, 1 < j < k. Then

k
o= fX)V(R))

J=1
is a Riemann sum of [ over P. Since A ; can be chosen arbitrarily in R, there are infinitely

many Riemann sums for a given function f over any partition P of R.

The following definition is similar to Definition 3.1.1.

Definition 7.1.2 Let f be a real-valued function defined on a rectangle R in R". We
say that f is Riemann integrable on R if there is a number L with the following property:
For every € > 0, there is a § > 0 such that

lo—L| <e¢

if o is any Riemann sum of f over a partition P of R such that || P|| < §. In this case, we
say that L is the Riemann integral of f over R, and write

/ fX)dX = L. n
R

If R is degenerate, then Definition 7.1.2 implies that |’ g J(X)dX = 0 for any function
f defined on R (Exercise 1). Therefore, it should be understood henceforth that whenever
we speak of a rectangle in R” we mean a nondegenerate rectangle, unless it is stated to the
contrary.
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The integral [, f(X)dX is also written as

/ Feedy) (0 ="2). / Fy. D dyz) (1= 3.
R R

or

/f(xl,xz,...,xn)d(xl,xz,...,xn) (n arbitrary).
R
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Here dX does not stand for the differential of X, as defined in Section 6.2. It merely
identifies x1, X3, ..., X, the components of X, as the variables of integration. To avoid this

minor inconsistency, some authors write simply [, f rather than [ f(X)dX.

As in the case where n = 1, we will say simply “integrable” or “integral” when we
mean “Riemann integrable” or “Riemann integral.” If n > 2, we call the integral of Defi-
nition 7.1.2 a multiple integral; forn = 2 and n = 3 we also call them double and triple
integrals, respectively. When we wish to distinguish between multiple integrals and the

integral we studied in Chapter 3 (n = 1), we will call the latter an ordinary integral.

Example 7.1.1 Find [, f(x,y)d(x, y), where
R =a,b] x[c,d]

and
S, y)=x+y.

Solution Let P; and P; be partitions of [a, b] and [c, d]; thus,

Piia=xo<x1<-<x,=b and Pr:ic=yo<y1<---<ys=d.

A typical Riemann sum of f over P = P; x P, is given by

o= > (Ej+ni) 0 —xi-)(y; = yj-1),

i=1j=1
where
Xi-1<&; <x; and y;—1 <ny; <y;.

The midpoints of [x;_1, x;] and [y;_1, y;] are

_ Xi + Xi—1 _ i+ Y-
X = 2t e 5 ! and yj = 7)}‘/ Zy/ s
and (3) implies that
— . _Xi—xi—1 _ P _ P
&7 —Xi| < = 21 =5 =5
and

yi =y _ 122l _ 2]
2 - 2 - 27

nij — 7</'| =

@)

3

“

&)

(6)
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Now we rewrite (2) as

o= D X+ —xi-)(; —yj-1)

i=1 =1

7 s Q)
D G =% + i = ¥ )] (i = xim) (= yj-1).
i=1j=1
To find [ f(x,y)d(x,y) from (7), we recall that
Y i—xii)=b-a. Y (yj—yj1)=d—c ®)
i=1 j=1
(Example 3.1.1), and
Y —xpp=b—-ad* > (i-yip)=d>-c? ©)
i=1 j=1

(Example 3.1.2).

Because of (5) and (6) the absolute value of the second sum in (7) does not exceed

IPIY D i —xie)(yj — yj-1) = | P| [Z(xi _xi—l)] Y i =yi-1)
j=1

j=1j=1 i=1
=PI —a)d —c)
(see (8)), so (7) implies that
o= Y F+T)i —xi-)(vj —yi-)| < |Pb—a)d —c¢).  (10)
i=1,=1

It now follows that

ZZ Xi(xi —xi—)(y; —yj-1) = |:Z X (x; _xi—l)] Z()’j —yj-1)

i=1j=1 i=1 j=1

=(d —¢)) _¥i(xi —xi—1) (from (8))

i=1

_ 2 ;C Y —xy)  (from (4)
i=1

_d 2_C (b2 — a?) (from (9)).

Similarly,
r N

h—
Z ZY;(XI' —xi-)(yj —yj-1) = 7 a(d2 —c?).

i=1 =1
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Therefore, (10) can be written as

R e Y [ ()

Since the right side can be made as small as we wish by choosing || P || sufficiently small,

/ x+y)dx,y) = % [(d —c)(B* —a®) + (b —a)(d* — c?)]. n
R

Upper and Lower Integrals

The following theorem is analogous to Theorem 3.1.2.

Theorem 7.1.3 If f is unbounded on the nondegenerate rectangle R in R", then f is
not integrable on R.

Proof We will show that if f is unbounded on R, P = {Ry, R», ..., Ry} is any parti-
tion of R, and M > 0, then there are Riemann sums ¢ and ¢’ of f over P such that

lo —o’| > M. (11)
This implies that f cannot satisfy Definition 7.1.2. (Why?)
Let
k
o= fX;)V(R))
Jj=1
be a Riemann sum of f over P. There must be an integer i in {1, 2, ..., k} such that
X)— f(Xi)| = 12
00 = 0| 2 (12)

for some X in R;, because if this were not so, we would have

M
If(X)—f(Xj)I<TRj)’ X € Ry, l<j=<k

If this is so, then
|f X =1/X)) + fX) = fFX) = [ /X + 1 fX) = f(X)]

M
<|fX; ———, XeR;, 1<j<k.
< |fX)I+ V(R)) J <j<

However, this implies that

f(X)] < max |f(xj>|+#m|1sjsk . XeRr

which contradicts the assumption that f is unbounded on R.
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Now suppose that X satisfies (12), and consider the Riemann sum

o' =Y fX)HV(R))

Jj=1
over the same partition P, where
! X/a j # ia
Xj = {X’ j=i.
Since
lo =o'l = | f(X) = fXD)IV(R),
(12) implies (11).

0

Because of Theorem 7.1.3, we need consider only bounded functions in connection with
Definition 7.1.2. As in the case where n = 1, it is now convenient to define the upper
and lower integrals of a bounded function over a rectangle. The following definition is

analogous to Definition 3.1.3.

Definition 7.1.4 If f is bounded on a rectangle R in R” and P = {R;, R», ...

is a partition of R, let

M; = sup f(X), mj; = inf f(X).
! XeR,; ! XeR;

The upper sum of f over P is

k
S(P) =) M;V(R;),

J=1

and the upper integral of f over R, denoted by
| reax.
R
is the infimum of all upper sums. The lower sum of f over P is
k
s(P) =) m;V(R)),
j=1
and the lower integral of f over R, denoted by

A FX)dX,

is the supremum of all lower sums.

The following theorem is analogous to Theorem 3.1.4.

, Ric}
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Theorem 7.1.5 Let f be bounded on a rectangle R and let P be a partition of R.
Then

(a) The upper sum S(P) of f over P is the supremum of the set of all Riemann sums of
f overP.

(b) The lower sum s(P) of f over P is the infimum of the set of all Riemann sums of f
over P.

Proof Exercise 5.

If
m< f(X) <M forXinR,

then
mV(R) <s(P) < S(P) < MV(R);

therefore, E f(X)dX and [, f(X)dX exist, are unique, and satisfy the inequalities

mV(R) < Z F(X)dX < MV(R)

and
mV(R) < / fX)dX < MV(R).
JR

The upper and lower integrals are also written as

/ fx.y)d(x.y) and / Feedy) (n="2).
R Jr

/f(x,y,z)d(x,y,z) and /f(x,y,z)d(x,y,z) (n = 3),
R JR
or L

/Rf(xl,xz,...,xn)d(xl,xz,...,xn)

and
/ f(x1,x2,...,xp)d(x1,x2,...,%Xn) (n arbitrary).
JR

Example 7.1.2 Find [, f(x,y)d(x,y) and [, f(x,y)d(x, ), with R = [a,b] x
[c,d] and o

S, y)=x+y,
as in Example 7.1.1. [ ]

Solution Let P; and P; be partitions of [a, b] and [c, d]; thus,

Piia=xo<x1<-<x,=b and Pr:c=yo<y1<---<ys=d.
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The maximum and minimum values of f on the rectangle [x;_1, x;]x[y;—1, y;] are x; +y;
and x; 1 + yj_1, respectively. Therefore,

S(PY=)_" (xi + y)xi = xim)(y; — yj—1) (13)
i=1j=1
and
S(PY =" (xim1 + yj—0) & = Xi—1)(yj — yj-1)- (14)
i=1j=1

By substituting

Xi+yj = %[(x,» +Xi-1) + (j +yj-1) + (i —xic1) + (v — yj-1)]
into (13), we find that
S(P) = %(21 + 2p + X3+ Xy), 15
where

Si=) (7 —x2) Y (v —yi-) =0 —a*)d —o),
i=1

J=1

3, = Z(xl' = Xi-1) Z()’? - Y?—l) = (b —a)d?—c?),

i=1 j=1

Y3 = Z(xi —xi—1)? Z()’j —yj-1) = IP[(b—a)d —c),
i=1 Jj=1

Za=) (v —xi-1) ) ;= -7 < [PI(b - a)(d — o).
i=1 Jj=1

Substituting these four results into (15) shows that
I <SP)<I+|P|(—a)d—c),

where

_d—=c)(b*—a®)+ (b —a)d* —c?)
B 2

1

From this, we see that L
| e nden =1
R
After substituting
1
Xi—1tYyj-1 = 5[(961' +Xi—) + (i +yi-1) — (i —xi—) — (y; — yj-1)]

into (14), a similar argument shows that

I —||P|[(b—a)d —c) <s(P) <,
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SO

/(x+y)d(x,y)=l. [ |
JR
We now prove an analog of Lemma 3.2.1.

Lemma 7.1.6 Suppose that | f(X)| < M if X is in the rectangle
R = [ay, b1] X [az, ba] X -+ X [ay, by].

Let P = Py X Py x---x P, and P’ = P{ x P) x ---x P, be partitions of R, where P/’-
is obtained by adding r; partition pointsto Pj, 1 < j < n. Then ‘

n

S(P) = S(P') = S(P) =2MV(R) | Y- -—L— | IP| (16)
= P Ta
and
s(P) = 5(P') 5(P) +2MV(R) | 3 7—L—| | PII. (17)
j=1 J J

Proof We will prove (16) and leave the proof of (17) to you (Exercise 7). First suppose
that P; is obtained by adding one point to P;, and P/’. = Pjfor2 < j <n If Pis
defined by

Priar=ar0<ap <---<arm, =br, 1=<r=<n,

then a typical subrectangle of P is of the form
Rjyjowjn = lar, -1, a11] X [a2,j5-1, G2 j5] X -+ X [an, j, -1, anj,]-
Let ¢ be the additional point introduced into P; to obtain P;, and suppose that
a1,k—1 < C < dig-

If ji # k, then R}, j,..j, is common to P and P’, so the terms associated with it in S(P’)
and S(P) cancel in the difference S(P) — S(P’). To analyze the terms that do not cancel,
define

1

R = lavgr, el x[az jp—1,a2)5] X -+ X [n,ju -1, njy ],
2

RE) . =le.au] x[az,j-1,a2),] X -+ X [an ju -1, dnjy ],

Mij"'jn = sup {f(X) | X e Rij"'jn} (18)

and ) )
MO = sup{f(X)|X e RY) } i=12. (19)

kj2+jn kj2Jjn
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Then S(P) — S(P’) is the sum of terms of the form

1 2
I:Mka"'jn (alk - al,k—l) - Mlij;"'jn (C - al,k—l) - Mlij;"'jn (alk - C)] (20)
X(azj, — a2,j,—1) - (Anj, — An,j,—1)-

The terms within the brackets can be rewritten as

(Mg js-ju — M;S;...jn)(c —ayk-1) + (Mgj,-.j, — M;g;...jn)(alk —0), 21
which is nonnegative, because of (18) and (19). Therefore,
S(P') < S(P). (22)

Moreover, the quantity in (21) is not greater than 2M (a1x — a1 x—1), so (20) implies that
the general surviving term in S(P) — S(P’) is not greater than

2M || P|[(azj, — az,j—1) -+ (anjy, — an,jn—1)-

The sum of these terms as j, ..., j, assume all possible values 1 < j; <m;,2 <i <n,
is
2M || P||V(R)
M P (b —az)- by —an) = 2R,
1— a1
This implies that
2M||P|| V(R
b1 —di
This and (22) imply (16) forry = landrp, =--- =r, = 0.
Similarly, if r; = 1 forsome i in {1, ...,n}and r; = 0if j # i, then
N, 2M|P|IV(R)
S(P)<S(P)+ ————.
b[ —da;
To obtain (16) in the general case, repeat this argument ry + r + -+ + r, times, as in the
proof of Lemma 3.2.1. o

Lemma 7.1.6 implies the following theorems and lemma, with proofs analogous to the
proofs of their counterparts in Section 3.2.

Theorem 7.1.7 If f is bounded on a rectangle R, then
[ rwaxs [ roax
JR R

Proof Exercise 8.

The next theorem is analogous to Theorem 3.2.3.

Theorem 7.1.8 If f is integrable on a rectangle R, then
/ fX)dX = / fX)dX = / f(X)dX.
JR R R

Proof Exercise 9.
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Lemma 7.1.9 If f is bounded on a rectangle R and € > 0, there is a § > 0 such that

Zf(X)dX <S(P) < Zf(X)dX + €
and
[ rax=sey> [ roax—e
i1P) <. - N
Proof Exercise 10.
The next theorem is analogous to Theorem 3.2.5.

Theorem 7.1.10 If f is bounded on a rectangle R and

Af@MX=memx=L

then f is integrable on R, and

/Rf(X)dX =L.

Proof Exercise 11.

Theorems 7.1.8 and 7.1.10 imply the following theorem, which is analogous to Theo-
rem 3.2.6.

Theorem 7.1.11 A bounded function f is integrable on a rectangle R if and only if
/ fX)dX = / f(X)dX.
JR R

The next theorem translates this into a test that can be conveniently applied. It is analo-
gous to Theorem 3.2.7.

Theorem 7.1.12 If f is bounded on a rectangle R, then f is integrable on R if and
only if for every € > 0 there is a partition P of R such that

S(P)—s(P) <e.

Proof Exercise 12.

Theorem 7.1.12 provides a useful criterion for integrability. The next theorem is an
important application. It is analogous to Theorem 3.2.8.

Theorem 7.1.13 If f is continuous on a rectangle R in R", then f is integrable on
R.
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Proof Lete > 0. Since f is uniformly continuous on R (Theorem 5.2.14), there is a
8 > 0 such that .
X) - X)) < —— 23
00— /)] < s (3)
if X and X’ are in R and |[X—A’| < 8. Let P = {R1, Ra, ..., Ry} be a partition of R with
| P|| < 8/+/n. Since f is continuous on R, there are points X ; and X’/ in R; such that

JX;)=M;= sup f(X) and [f(X))=m; = inf f(X)
XeR,; XeR;

(Theorem 5.2.12). Therefore,

S®) —sP) =Y (f(X;)— fFADV(R)).

J=1

Since [|P|| < 8/+/n, |X; —X;| < §, and, from (23) with X = X; and X = X,

k
€
S(P) —s(P) < TR ; V(R;) =e.

Hence, f is integrable on R, by Theorem 7.1.12.

Sets with Zero Content

The next definition will enable us to establish the existence of | g J(X)dXin cases where
f is bounded on the rectangle R, but is not necessarily continuous for all X in R.

Definition 7.1.14 A subset E of R” has zero content if for each € > 0 there is a finite
set of rectangles T4, T3, ..., Ty, such that

E C U T; (24)
j=1
and "
V() <e. (25)
j=1 [

Example 7.1.3 Since the empty set is contained in every rectangle, the empty set has
zero content. If £ consists of finitely many points X1, X5, ..., X;,, then A ; can be enclosed
in arectangle T'; such that

VT < S 1<) <m.
X m

Then (24) and (25) hold, so E has zero content. |
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Example 7.1.4 Any bounded set E with only finitely many limit points has zero con-
tent. To see this, we first observe that if E has no limit points, then it must be finite, by the
Bolzano—Weierstrass theorem (Theorem 1.3.8), and therefore must have zero content, by
Example 7.1.3. Now suppose that the limit points of E are Xj, As, ..., X;;. Let Ry, R,
..., Ry, be rectangles such that X; € R? and

VR) < —, 1<i<m. (26)
2m

The set of points of E that are not in U’;’=1Rj has no limit points (why?) and, being
bounded, must be finite (again by the Bolzano—Weierstrass theorem). If this set contains p
points, then it can be covered by rectangles R}, R}, ..., R; with

V(R)) < % 1<j<p. 27)

Now,

EC (IQ R,») g /L:Jl R,

and, from (26) and (27),
m p
D VR)+ ) V(R)) <e. n

i=1 j=1
Example 7.1.5 If f is continuous on [a, b], then the curve
y=f(x), asx=<b (28)

(that is, the set {(x, y) | y=f(x),a<x=< b}), has zero content in R%. To see this,
suppose that € > 0, and choose § > 0 such that

|f(x)— f(x")| <e if x,x' €la,b] and |x—x'| <. (29)
This is possible because f is uniformly continuous on [a, b] (Theorem 2.2.12). Let
P:a=xo<x1<--<x,=05b
be a partition of [a, b] with || P| < &, and choose &1, &3, ..., &, so that
Xi-1 <& <x;, 1=<i=<n.

Then, from (29),
|f(x) = fGEDl <e if X =x=ux.
This means that every point on the curve (28) above the interval [x;_1, x;] is in a rectangle

with area 2e(x; — x;—1) (Figure 7.1.4, page 450). Since the total area of these rectangles is
2¢e(b — a), the curve has zero content. [ ]
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y
A

———————————————————— y=f(E)+e

Y
=

Figure 7.1.4

The next lemma follows immediately from Definition 7.1.14.
Lemma 7.1.15 The union of finitely many sets with zero content has zero content.

The following theorem will enable us to define multiple integrals over more general
subsets of R”.

Theorem 7.1.16 Suppose that f is bounded on a rectangle
R =a1,b1] x[az,b2] x -+ x [an, by] (30)

and continuous except on a subset E of R with zero content. Then f is integrable on R.

Proof Suppose that € > 0. Since E has zero content, there are rectangles Ty, 1>, ...,
T:» such that

m
Ecm 31
j=1
and
m
Y V(T <e. (32)
Jj=1
We may assume that 77, 75, ..., T,, are contained in R, since, if not, their intersections

with R would be contained in R, and still satisfy (31) and (32). We may also assume that
if T is any rectangle such that

T{UT)]|=90 then TnE=0 (33)
j=1
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since if this were not so, we could make it so by enlarging 77, T3, ..., T, slightly while
maintaining (32). Now suppose that

T; = [aj, byj] X [azj, baj] X - X [anj, byj], 1= j <m,
let P;o be the partition of [a;, b;] (see (30)) with partition points
ai,bi,ai1,bir,ai2,biz, ..., aim, bim
(these are not in increasing order), 1 <i < n, and let
Py = P1o X Pyg X +-- X Pyo.

Then Py consists of rectangles whose union equals U’;’=1 T; and other rectangles 77, T,
..., T that do not intersect £. (We need (33)tobe sure that 7/ N E = @,1 <i < k.) If

we let
m k
B=|J1; and Cc=J7.
j=1

i=1

then R = B U C and f is continuous on the compact set C. If P = {Ry, Ra, ..., Ry} is
a refinement of Py, then every subrectangle R; of P is contained entirely in B or entirely
in C. Therefore, we can write

S(P) —s(P) = X1(M; —m;)V(R;) + Za(M; —m;)V(R;), (34)

where X; and X, are summations over values of j for which R; C B and R; C C,
respectively. Now suppose that

|fX)| <M forXinR.

Then

EI(M/' —m]')V(Rj) < 2M 21V(Rj) =2M Z V(T/) < ZME, (35)
j=1

from (32). Since f is uniformly continuous on the compact set C (Theorem 5.2.14), there
isad > Osuchthat M; —m; <eif|P| <§and R; C C; hence,

Ez(M/' - m,)V(R,) < €3y V(R/) < eV(R).
This, (34), and (35) imply that
S(P)—s(P)<[2M + V(R)]e

if |P|| < & and P is a refinement of Py. Therefore, Theorem 7.1.12 implies that f is
integrable on R. |
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Example 7.1.6 The function
x+y, 0<x<y<l,
S, y) =
5, 0<y=x=l1,
is continuous on R = [0, 1] x [0, 1] except on the line segment

y=x, 0=<x<1

(Figure 7.1.5). Since the line segment has zero content (Example 7.1.5), f is integrable on
R. ]

SO y)=x+y

Sy =5

Figure 7.1.5

Integrals over More General Subsets of R”

We can now define the integral of a bounded function over more general subsets of R”.

Definition 7.1.17 Suppose that f is bounded on a bounded subset of S of R”, and let
fX), XeS,

fsX) = 0. X 5.

(36)

Let R be a rectangle containing S. Then the integral of f over S is defined to be

/S FX)dX = /R f5(X) dX

if [ fs(X)dX exists. [ |
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To see that this definition makes sense, we must show that if R; and R, are two rect-
angles containing S and le fs(X)dX exists, then so does fRz fs(X)dX, and the two
integrals are equal. The proof of this is sketched in Exercise 27.

Definition 7.1.18 If S is a bounded subset of R” and the integral [¢ dX (with inte-
grand f = 1) exists, we call fS dX the content (also, area if n = 2 or volume if n = 3)
of S, and denote it by V(S); thus,

V(S) = /S dx. n

Theorem 7.1.19 Suppose that f is bounded on a bounded set S and continuous ex-
cept on a subset E of S with zero content. Suppose also that 0S has zero content. Then f
is integrable on S.

Proof Let fs be as in (36). Since a discontinuity of fg is either a discontinuity of f or
a point of 0.5, the set of discontinuities of fg is the union of two sets of zero content and
therefore is of zero content (Lemma 7.1.15). Therefore, fs is integrable on any rectangle
containing S (from Theorem 7.1.16), and consequently on S (Definition 7.1.17). a

Differentiable Surfaces

Differentiable surfaces, defined as follows, form an important class of sets of zero content
in R”.

Definition 7.1.20 A differentiable surface S in R" (n > 1) is the image of a compact
subset D of R™, where m < n, under a continuously differentiable transformation G :
R™ — R". If m = 1, S is also called a differentiable curve. |

Example 7.1.7 The circle

{(x.»)]|x*+y* =9}

is a differentiable curve in R2, since it is the image of D = [0, 2] under the continuously
differentiable transformation G : R — R? defined by

x=ao=[ 37 ] .
Example 7.1.8 The sphere
{(x.y.2) | X2+ y* 4+ 2% =4}
is a differentiable surface in R3, since it is the image of
D={0.¢)|0<60<2r,—7/2<¢ <n7/2}
under the continuously differentiable transformation G : R? — R3 defined by
2 cos 6 cos ¢
X=G(@O,¢) =| 2sinfcos¢ |. ]

2sing
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Example 7.1.9 The set
{1 x2.x3,04) | 200G =1,2,3,4), x1+x2 =1, x3+ x4 = 1}

is a differentiable surface in R*, since it is the image of D = [0, 1] x [0, 1] under the
continuously differentiable transformation G : R? — R* defined by

u

X = G(u,v) = 1;” . n

1—v
Theorem 7.1.21 A differentiable surface in R" has zero content.

Proof Let S, D, and G be as in Definition 7.1.20. From Lemma 6.2.7, there is a
constant M such that

IGX)-G(Y) <M|X-Y| if X,YeD. (37)
Since D is bounded, D is contained in a cube
C =[ai,b1] x [az, ba] X -+ X [am, bm],

where
bi—a; =L, 1<i<m.

Suppose that we partition C into N smaller cubes by partitioning each of the intervals
[ai, bi]into N equal subintervals. Let Ry, R», ..., Ry be the smaller cubes so produced that
contain points of D, and select points X1, X5, ..., Xg suchthat X; € DN R;, 1 <i <k.
IfY € D N R;, then (37) implies that

IGXi) —G(Y)| = M|X; —Y|. (38)
Since X; and Y are both in the cube R; with edge length L/ N,

Ly/m

IX; —Y| <
N

This and (38) imply that
ML./m
Gex) - 6| < S
N
which in turn implies that G(Y) lies in a cube R; in R" centered at G(X;), with sides of
length 2M L \/m/N . Now

k n n
~ 2ML 2ML
Y V(R) =k (J) <N™ (J) = QML m)"N™ ™.
P N N
Since n > m, we can make the sum on the left arbitrarily small by taking N sufficiently
large. Therefore, S has zero content. a

Theorems 7.1.19 and 7.1.21 imply the following theorem.
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Theorem 7.1.22 Suppose that S is a bounded set in R", with boundary consisting of
a finite number of differentiable surfaces. Let | be bounded on S and continuous except
on a set of zero content. Then f is integrable on S.

Example 7.1.10 Let
S = {(x,y)|x2+y2: 1, sz};

thus, S is bounded by a semicircle and a line segment (Figure 7.1.6), both differentiable
curves in R?. Let

F6o9) (1=x2=yHV2 (x,y) €S8, y=0,
X,y) =

—(1=x2=y)V2 (x,y) €S, y <0.
Then f is continous on S except on the line segment

y=0, 0<x<1,

which has zero content, from Example 7.1.5. Hence, Theorem 7.1.22 implies that f is
integrable on S. [ ]

<

Figure 7.1.6

Properties of Multiple Integrals

We now list some theorems on properties of multiple integrals. The proofs are similar to
those of the analogous theorems in Section 3.3.

Note: Because of Definition 7.1.17, if we say that a function f is integrable on a set S,
then S is necessarily bounded.
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Theorem 7.1.23 If f and g are integrable on S, then so is f + g, and
/S(f +9X)dX = /S f(X)dX-i—/Sg(X)dX.

Proof Exercise 20.

Theorem 7.1.24 If f is integrable on S and c is a constant, then cf is integrable on
S, and

/(Cf)(X)dX = C/ f(X)dX.
S S
Proof Exercise 21.
Theorem 7.1.25 If f and g are integrable on S and f(X) < g(X) for X in S, then
[ rmax = [ gax
S S
Proof Exercise 22.

Theorem 7.1.26 If f is integrable on S, then so is | f |, and

VS f(X)dX

< / |/ (X)|dX.
S

Proof Exercise 23.
Theorem 7.1.27 If f and g are integrable on S, then so is the product fg.
Proof Exercise 24.

Theorem 7.1.28 Suppose that u is continuous and v is integrable and nonnegative on
a rectangle R. Then

/ uXX)dX = u(Xo)/ v(X)dX
R R

for some Xy in R.
Proof Exercise 25.

Lemma 7.1.29 Suppose that S is contained in a bounded set T and f is integrable
on S. Then fs (see (36)) is integrable on T, and

/T f5(X)dX = /S FX)dX.

Proof From Definition 7.1.17 with f and S replaced by fs and T,



Section 7.1 Definition and Existence of the Multiple Integral =~ 457

(fs)rX) = ({S(X)’ i;;

Since S C T, (fs)r = fs. (Verify.) Now suppose that R is a rectangle containing 7.
Then R also contains S (Figure 7.1.7),

Figure 7.1.7
o)
/S fX)dX = /R fs(X)dX (Definition 7.1.17, applied to f and S)
= /R(fs)T(X)dX (since (fs)T = fs)
= /T fs(X)dX (Definition 7.1.17, applied to fs and T'),
which completes the proof. a

Theorem 7.1.30 If f is integrable on disjoint sets S1 and Sy, then f is integrable on
S1US,, and

/ f(X)dXz/ f(X)dA+/ f(X)dX. 39)
S1US> S1 So
Proof Fori =1,2,]let
f(X)v Xe Si,
f5:X) 0. X¢5s;

From Lemma 7.1.29 with S = S; and T = S; U S5, fs, is integrable on S U S5, and

/ fSi(X)dXZ/ fXydX, i=1.2.
S1US2 S;
Theorem 7.1.23 now implies that fs, + fs, is integrable on S; U S, and

/ (fs, + fs,)(X)dX = / FX)dX + / F(X)dX. (40)
S1US> S1 S»
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Since S1 NS, =@,

(fs) + f5,) X) = f5,X) + [f5,(A) = f(X), X €S US,.
Therefore, (40) implies (39). a

We leave it to you to prove the following extension of Theorem 7.1.30. (Exercise 31(b)).

Corollary 7.1.31 Suppose that f is integrable on sets S1 and Sy such that S1 N S
has zero content. Then f is integrable on S1 U S, and

/SIUSZf(X)dsz f(X)dA-q—/Szf(X)dx.

Example 7.1.11 Let

Si={(x.»)]0<x<1,0<y=<l+x}
and

S={(x.y)|-1<x<0,0<y=<1-x}
(Figure 7.1.8).

-1 ‘ 1

Figure 7.1.8
Then
SinS={0.y|0=y=<1}

has zero content. Hence, Corollary 7.1.31 implies that if f is integrable on S; and S,, then
f is also integrable over

S=85US={(x.y)]-1<x<1,0=<y=<1+]x|}

(Figure 7.1.9), and

f. oo F0ax= [ ro0aas [ ro0ax .
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Figure 7.1.9

We will discuss this example further in the next section.

7.1 Exercises

Prove: If R is degenerate, then Definition 7.1.2 implies that [, f(X)dA = 0if f
is bounded on R.

Evaluate directly from Definition 7.1.2.
(@) [oBx+2y)d(x,y); R=1[0,2]x]l,3]
(b) [rxyd(x,y); R=1[0,11x[0,1]

Suppose that fab f(x)dx and fcd g(y) dy exist,and let R = [a, b] x[c, d]. Criticize
the following “proof” that fR f(x)g(y)d(x,y) exists and equals

(/abf(x)dx) (/Cdg(y)dy).

(See Exercise 30 for a correct proof of this assertion.)
“Proof.” Let

Piia=xo<x1<---<xp=b and Pr:c=yo<y;<---<ys=d

be partitions of [a, b] and [c, d], and P = P; X P,. Then a typical Riemann sum of
fg over P is of the form

o= fENEn)xi —xi—)(y; — yj-1) = 0102,
i=1j=1

where

or=)_ fE)(xi—xi-1) and op =Y g(;))(y; —yj-1)

i=1 j=1
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®

10.
11.
12.
13.
14.

15.

are typical Riemann sums of f over [a, b] and g over [c,d]. Since f and g are
integrable on these intervals,

b d
o1 — / FOdx| and |os - / ¢(y)dy

can be made arbitrarily small by taking || P1|| and || P2| sufficiently small. From
this, it is straightforward to show that

a-(/abﬂx)dx) (/jg(y)dy)‘

can be made arbitrarily small by taking || P || sufficiently small. This implies the
stated result.

Suppose that f(x,y) > 0 on R = [a,b] X [c,d]. Justify the interpretation of
fR f(x,y)d(x, y), if it exists, as the volume of the region in R3 bounded by the
surfaces z = f(x,y) and theplanesz = 0,x =a,x =b,y =c,andy =d.

Prove Theorem 7.1.5. HINT: See the proof of Theorem 3.1.4.

Suppose that
0 if x and y are rational,
¥ ) = 1 if x is rational and y is irrational,
(x,5) = 2 if x is irrational and y is rational,
3 if x and y are irrational.
Find

/ f(x,y)d(x,y) and / fx,y)d(x,y) if R=]a,b]x]|c,d].
R JR

Prove Eqn. (17) of Lemma 7.1.6.

Prove Theorem 7.1.7 HINT: See the proof of Theorem 3.2.2.

Prove Theorem 7.1.8 HINT: See the proof of Theorem 3.2.3.

Prove Lemma 7.1.9 HINT: See the proof of Lemma 3.2.4.

Prove Theorem 7.1.10 HINT: See the proof of Theorem 3.2.5.

Prove Theorem 7.1.12 HINT: See the proof of Theorem 3.2.7.

Give an example of a denumerable set in R? that does not have zero content.
Prove:

(a) If S7 and S, have zero content, then S; U S, has zero content.
(b) If S; has zero content and S, C S, then S5 has zero content.
(c) 1If S has zero content, then S has zero content.

Show that a degenerate rectangle has zero content.



16.

17.

18.

19.

20.
21.
22,
23.
24.
25.
26.

27.

28.
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Suppose that f is continuous on a compact set S in R”. Show that the surface
z = f(X), A € S, has zero content in R**!. HINT: See Example 7.1.5.

Let S be a bounded set such that S N 9S does not have zero content.

(a) Suppose that f is defined on S and f(A) > p > 0 on asubset 7 of S N 3S
that does not have zero content. Show that f is not integrable on S

(b) Conclude that V(S) is undefined.

(a) Suppose that & is bounded and /#(X) = 0 except on a set of zero content.
Show that [¢ #(X) dX = 0 for any bounded set S.

(b) Suppose that [ f(X) dX exists, g isbounded on S, and f(X) = g(X) except
for X in a set of zero content. Show that g is integrable on S and

/Sg(X)dxzfsf(X)dx.

Suppose that f is integrable on a set S and Sy is a subset of S such that 0.5y has
zero content. Show that f is integrable on Sp.

Prove Theorem 7.1.23 HINT: See the proof of Theorem 3.3.1.
Prove Theorem 7.1.24.

Prove Theorem 7.1.25 HINT: See the proof of Theorem 3.3.4.
Prove Theorem 7.1.26 HINT: See the proof of Theorem 3.3.5.
Prove Theorem 7.1.27 HINT: See the proof of Theorem 3.3.6.
Prove Theorem 7.1.28 HINT: See the proof of Theorem 3.3.7.

Prove: If f is integrable on a rectangle R, then f is integrable on any subrectangle
of R. HINT: Use Theorem 7.1.12; see the proof of Theorem 3.3.8.

Suppose that R and R are rectangles, R C R, g is bounded on R, and g(X) =0if

X ¢ R.

(a) Show that (% g(X)dX exists if and only if [ g(X)dX exists and, in this
case,

[Izg(X)dX:/Rg(X)dX.

HINT: Use Exercise 26.

(b) Use (a) to show that Definition 7.1.17 is legitimate; that is, the existence and
value of |, s J(X)dX does not depend on the particular rectangle chosen to
contain S.

(a) Suppose that f is integrable on a rectangle R and P = {Ry, Ra, ..., R} is
a partition of R. Show that

k
/R F(X)dX = ; /R ,,- F(X)dA.

HINT: Use Exercise 26.
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(b) Use (a) to show thatif f is continuous on R and P is a partition of R, then
there is a Riemann sum of f over P that equals (5 f(X) dX.

29. Suppose that f is continuously differentiable on a rectangle R. Show that there is a
constant M such that

<M|P|

o— / fX)dX
R
if o is any Riemann sum of f over a partition P of R. HINT: Use Exercise 28(b)
and Theorem 5.4.5.
30. Suppose that fab f(x)dx and fcd g(y) dy exist, and let R = [a, b] X [c, d].
(a) Use Theorems 3.2.7 and 7.1.12 to show that

/ F()d(x.y) and / ¢ d(x.y)
R R

both exist.
(b) Use Theorem 7.1.27 to prove that [ f(x)g(y) d(x, y) exists.
(c) Justify using the argument given in Exercise 3 to show that

b d
/R F)g() d(x.y) = ( / f(x)dx) ( / g(y)dy).

31. (a) Suppose that f is integrable on S and Sy is obtained by removing a set of
zero content from S. Show that f is integrable on Sy and | So fX)dX =

[ f(X)dX.
(b) Prove Corollary 7.1.31.

7.2 ITERATED INTEGRALS AND MULTIPLE INTEGRALS

Except for very simple examples, it is impractical to evaluate multiple integrals directly
from Definitions 7.1.2 and 7.1.17. Fortunately, this can usually be accomplished by evalu-
ating n successive ordinary integrals. To motivate the method, let us first assume that f is
continuous on R = [a, b] x [c, d]. Then, for each y in [c, d], f(x, y) is continuous with
respect to x on [a, b], so the integral

b
F(y) = / Fx.y)dx

exists. Moreover, the uniform continuity of f on R implies that F is continuous (Exer-
cise 3) and therefore integrable on [c, d]. We say that

I 2[1 F(y)dy =/Cd (/abﬂx,y)dx) dy
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is an iterated integral of f over R. We will usually write it as

11=/Cddy/abf(x,y)dx.

Another iterated integral can be defined by writing

d
G(x>=/ fendy. a<x<b,

12=/;bG(x>dx=/;b (/d f(m)dy) dx.

which we usually write as

and defining

Izz/;bdx/Cd fx,y)dy.

Example 7.2.1 Let
fx.y)=x+y
and R = [0, 1] x [1, 2]. Then

1 1 X2 1 1
For = [ sear = [ pax = (S o) | =54
0 0 x=
and
2 2 7 y 2\ P
Li=| F = 5 =(s+=]| =2
1 /1 (»)dy /1 (2+y) dy (2+ 2) 1
Also,
2 y2 2 1 3
G(x)z/(x+y)dy=(xy+—) =(2x+2)—(x+—)=x+—,

. 2 )| 2 2

and
1

1 1 2
3 X 3x
12=/ G(x)dxz/ (x+—)dx=(—+—) =2.
0 0 2 2 2 /1
In this example, I; = I,; moreover, on settinga = 0, b = 1,¢ = 1,and d = 2 in
Example 7.1.1, we see that

/(x+y>d(x,y> —2,
R

so the common value of the iterated integrals equals the multiple integral. The following
theorem shows that this is not an accident.
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Theorem 7.2.1 Suppose that f is integrable on R = [a, b] X [c, d] and

b
F(y) = / Fx.y)dx

exists for each y in [c,d]. Then F is integrable on [c, d], and

that is,

Proof Let

Piia=xp<x1<--<x,=b

d
/ F()dy = /R £y d(x.y):

/Cd dy /ab f(x,y)dxszf(x’y)d(x’y).

and Pr:c=yo<y1 <---<ys=d

be partitions of [a, b] and [c, d], and P = P; x P5. Suppose that

SO

yi-1=nj=yj, 1=<j=s,

o= Fm);—yj-1)

Jj=1

is a typical Riemann sum of F over P,. Since

b r x
Fop = [ reapax =3 [ fendx,

(3) implies that if

and

then

i=1Y%i—1

mij =inf { f(x,y) | xic1 < x < xi, yjo1 <y < )}

M =sup{f(x.y)|xic1 Sx<xi,yj-1 <y <y},

Zmij(xi —xi—1) < F(nj) < ZMU(xi = Xi-1).

i=1

i=1

Multiplying this by y; — y;—1 and summing from j = 1 to j = s yields

YD miii —xim) )y = yj-0) < ) F@)(v = yim1)

j=li=1

Jj=1

< Z ZMij(xi —xi—1)(y; —yj-1).

j=li=1

ey

@)

3)

“
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which, from (4), can be rewritten as
sr(P) <o < Sr(P), (5)

where s ¢ (P) and S ;7 (P) are the lower and upper sums of f* over P. Now let sz (P) and
SF (P2) be the lower and upper sums of F over P;; since they are respectively the infimum
and supremum of the Riemann sums of F over P, (Theorem 3.1.4), (5) implies that

sr(P) <sp(P2) < Sp(P2) < Sy(P). (6)

Since f is integrable on R, there is for each € > 0 a partition P of R such that S ¢ (P) —
s r(P) < ¢, from Theorem 7.1.12. Consequently, from (6), there is a partition P, of [c, d]
such that Sp(P2) —sF(P2) < €, so F is integrable on [c, d], from Theorem 3.2.7.

It remains to verify (1). From (4) and the definition of |, Cd F(y)dy, there is for each
€ > 0aé > 0 such that

d
/ Fo)dy —a| <€ if [Py <3:

that is,
d
o—¢ </ F(y)dy <o+4¢€ if [P <38.
c
This and (5) imply that

d
sr(P)—e< / F(y)dy <Sy(®)+e€ if |P| <3,
and this implies that
d _
| rendey e [T Foar < [ fendente @

(Definition 7.1.4). Since

| remaey = [ rende.y

JR R
(Theorem 7.1.8) and € can be made arbitrarily small, (7) implies (1). a

If f is continuous on R, then f satisfies the hypotheses of Theorem 7.2.1 (Exercise 3),
so (2) is valid in this case.

If [ f(x,y)d(x,y) and

d
/ f(x,y)dy, a=<x<bh,



466 Chapter 7 Integrals of Functions of Several Variables

exist, then by interchanging x and y in Theorem 7.2.1 we see that

/ab dx/Cd f(x,y)dy Z/Rf(x,y)d(x,y),

This and (2) yield the following corollary of Theorem 7.2.1.

Corollary 7.2.2 If f is integrable on [a, b] x [c, d], then

/;bdx/Cdf(x,Y)dy=/Cddy/;bf(x’y)dx’

provided thatfcd f(x,y)dy exists fora <x <b andfab f(x,y)dx exists forc <y <d.
In particular, these hypotheses hold if f is continuous on [a, b] X [c, d].

Example 7.2.2 The function

fx.y)=x+y

is continuous everywhere, so (2) holds for every rectangle R. For example, let R = [0, 1] x
[1,2]. Then (2) yields

2 1 2| rx2 !
/R(x+y)d(x,y)=/1 dy/()(””dxzfl [(7’””) x=o] dy
2 /) Y
L) (+3)

=2.
Since f also satisfies the hypotheses of Theorem 7.2.1 with x and y interchanged, we
can calculate the double integral from the iterated integral in which the integrations are
performed in the opposite order; thus,
2
dx
y=1

B 1 2 B 1 32
/R(x+y)d(x,y)—/0 dx/1 (x+y)dy—/0 |:(xy+7)

[ (o) = (53]

=) T2 T T

1

=2.
0

A plausible partial converse of Theorem 7.2.1 would be that if |, Cd dy [, ab fx,y)dx
exists then so does [ f(x, ) d(x, y); however, the next example shows that this need not
be so.

Example 7.2.3 If f is defined on R = [0, 1] x [0, 1] by

2xy if y is rational,
y if y is irrational,

fx,y) =
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then .
/ fG.y)dx =y, 0=y=l,
0
and
1 1 1 1
/ dy/ f(x,y)dx=/ ydy = .
0 0 0
However, f is not integrable on R (Exercise 7). [ ]

The next theorem generalizes Theorem 7.2.1 to R”.

Theorem 7.2.3 Let Iy, I», ..., I, be closed intervals and suppose that | is integrable
on R =11 X Ip x---x I,. Suppose that there is an integer p in {1,2, ..., n — 1} such that
Fo(Xps1, Xp42,...,Xn) = / fler, x2, .0, xn)d(X1, X2, ..., Xp)

Iy xIpxx1Ip
exists for each (Xpy1, Xp42,...,Xp) inIpp1 X Ipyp X oo x I Then

/ Fp(Xps1, Xp42. s Xn) d(Xpt1, Xp42s ooy Xp)
Ip 1 X pyoXxIpy

exists and equals [ f(X) dX.

Proof For convenience, denote (Xp+1,Xp4+2,....Xn) by A. Denote R = I xIx---%
Iyand T = Ip1 X Ipia x+--x I, LetP = {Ry, Ry, ... . Ri}and Q = {Ty, T, ..., Ty}
be partitions of R and T, respectively. Then the collection of rectangles of the form ﬁi xT;
(1<i<k,1<j <s)isapartition P of R; moreover, every partition P of R is of this
form.

Suppose that
Y; eT;, 1<j<s, )
SO S
o= Fp(Y)V(T)) ©)
Jj=1

is a typical Riemann sum of F, over Q. Since

F,(Y;) = /Af(xl,xz,...,xp,Yj)d(xl,xz,...,x,,)
R

k
=Z/§ S x2, .00, xp, Y ) d(x1, X2, ..., Xp),
j=1"%i

(8) implies that if
mj; = inf{f(xl,xz, ...,x,,,Y) | (xl,xz, ...,x,,) € ﬁ[, Y € T/}

and
Mi; = Sup{f(xl,xz,...,xp,Y)|(x1,x2,...,x,,) € ﬁ, Y e T,-},
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then

k k
Y miV(R) < Fp(Yy) <) Mi;V(R)).
i=1 i=1

Multiplying this by V(7;) and summing from j = 1to j = s yields

sk s s k
Y Y my VIR)V(T) < Y Fp(Y)V(T) < Y Y My V(R)V(T)),

j=1i=1 Jj=1 Jj=1li=1
which, from (9), can be rewritten as
s7(P) <o < Sp(P), (10)

where s ¢ (P) and S s (P) are the lower and upper sums of f over P. Now let s, (Q) and
SF,(Q) be the lower and upper sums of £, over Q; since they are respectively the infimum
and supremum of the Riemann sums of F, over Q (Theorem 7.1.5), (10) implies that

srP) <s5r,(Q) =SF,(Q) = Sy(P). (1)

Since f is integrable on R, there is for each € > 0 a partition P of R such that S ¢ (P) —
sr(P) < €, from Theorem 7.1.12. Consequently, from (11), there is a partition Q of T’
such that S, (Q) —sF,(Q) < €, so F), is integrable on T', from Theorem 7.1.12.

It remains to verify that
/ f(X)dX:/ F,(Y)dY. (12)
R T
From (9) and the definition of fT F,(Y)dY, there is for each € > 0 a § > 0 such that

<e if Q] <4

/ Fp(Y)dY — o
T

that is,
a—e</Fp(Y)dY<a+e it Q| <.
T

This and (10) imply that
sr(P)—e< / Fp(Y)dY < Sy(P) +€ if |P| <3,
T

and this implies that

/f(X)dX—ef/ FP(Y)dY§7f(X)dX+e. (13)
JR T R

Since / fX)dX = / f(X)dX (Theorem 7.1.8) and € can be made arbitrarily small,
JR R
(13) implies (12). O
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Theorem 7.2.4 Let I; = [a;,b;], 1 < j < n, and suppose that f is integrable on
R =11 x I, x---x I,. Suppose also that the integrals

Fp(Xpitn-. . n) =/ FAY (1 xae oo xp). 1< p<n—l,
Iy xIzx1Ip

exist for all
(xp+1,...,xn) in Ip+1X---XIn.

Then the iterated integral

bn bn—l b2 bl
/ dxn/ dx,_1 / dx, f(X)dx;
an ap—1 az ai

exists and equals [ f(X)dX.

Proof The proofis by induction. From Theorem 7.2.1, the propositionis true forn = 2.
Now assume n > 2 and the proposition is true with n replaced by n — 1. Holding x,, fixed
and applying this assumption yields

bp—1 bp—2 ba b
Faxa) = / dxnt / dxns - / do [ FX)da.

n—1 n—2 2 ai

Now Theorem 7.2.3 with p = n — 1 completes the induction. a
Example 7.2.4 Let R = [0, 1] x [1,2] x [0, 1] and

fx,y,2)=x+y+z.

Then

1 X2 1 1
Fl(y,z)=/ (x+y+z)dx=(—+xy+xz) ==-+4+y+z
0 2 = 2
2 2 1
Fz(Z)=/ Fl(y,z)dy=/ (§+y+2) dy
1 1
2 2
=(X+y—+yz) =2+z,

2 2 =1

and

1
Z

1 1 2
/Rf(x,y,z)d(x,y,z)=/0 Fz(z)dz=/0(2+z)dz=(22+?) =§. [ |

0

The hypotheses of Theorems 7.2.3 and 7.2.4 are stated so as to justify successive in-
tegrations with respect to xj, then x,, then x3, and so forth. It is legitimate to use other
orders of integration if the hypotheses are adjusted accordingly. For example, suppose that
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{i1,i2,...,I} 18 a permutation of {1,2,...,n} and fR f(X) dX exists, along with
/ f(X)d(xil,xiz,...,xij), 1 fj fn—l, (14)
Ill xIl2x~~~xIl-j

for each

(Xij s XijqnreeesXiy) A0 L Xy X oo X (15)

ne

Then, by renaming the variables, we infer from Theorem 7.2.4 that
biy bij,_, bi, bi,
/ f(X) dX = dxi,, / dxin_l / dxiZ/ f(X) dxil. (16)
R aiy ain—l al-z al-l

Since there are n! permutations of {1,2, ..., n}, there are n! ways of evaluating a mul-
tiple integral over a rectangle in R”, provided that the integrand satisfies appropriate hy-
potheses. In particular, if f is continuous on R and {i1,i2,...,i,} is any permutation of
11,2,...,n}, then f is continuous with respect to (x;;, Xi5, ..., Xi;) on Ijy X Ijy X+ -+ X I;;
for each fixed (x,'j+l s Xij e xi,) satisfying (15). Therefore, the integrals (14) exist
for every permutation of {1,2,...,n} (Theorem 7.1.13). We summarize this in the next
theorem, which now follows from Theorem 7.2.4.

Theorem 7.2.5 If f is continuous on
R =[ay,b1] x a2z, bs] x -+ X [an, by],
then fR f(X) dX can be evaluated by iterated integrals in any of the n! ways indicated in

(16).

Example 7.2.5 If f is continuous on R = [a1, b1] X [az, b2] X [a3, b3], then
b3 b> b
/f(x,y,z)d(x,y,z)=/ dZ/ dy f(x,y,2)dx
R as az a

bs b3 by

=/ dy/ dz f(x,y,z)dx
ar as a
b b

3 1 ba
:/ dz/ dx f(x.y.2)dy

1 az
b3 by

3
by
=/ dx/ dz |~ f(x.y.z)dy

1 3
bs by b3
=/ dy/ dx/ f(x,y,2)dz
a a as
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Integrals over More General Sets

We now consider the problem of evaluating multiple integrals over more general sets. First,
suppose that f is integrable on a set of the form

S={(x.y)|u(y) <x<v(y). c<y<=<d} (17)

(Figure 7.2.1).
Ifu(y) >aandv(y) <bforc <y <d,and

f(x.y), (x,y) €S,
,y) = (18)
Jsy §o, (x.y) €5,

then

[ e = [ fsenden.
where R = [a, b] X [c¢, d] (Definition 7.1.17). From Theorem 7.2.1,

| fsnaen = /Cd dy/ab f5(x.y)dx

provided that fab fs(x,y)dx exists for each y in [c, d]. From (17) and (18), this integral

can be written as
v(y)

f(x,y)dx. (19)

u(y)
Thus, we have proved the following theorem.

Figure 7.2.1
Theorem 7.2.6 If f is integrable on the set S in (17) and the integral (19) exists for
¢ <y <d,then

v(y)

d
/ Feoy)d(x.y) = / dy [ feoy)dx. 20)
S c u(y)
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From Theorem 7.1.22, the assumptions of Theorem 7.2.6 are satisfied if f is continuous
on S and u and v are continuously differentiable on [c, d].

Interchanging x and y in Theorem 7.2.6 shows that if f is integrable on
S = {(x,y) | ux) <y <vx),a<x=< b} 21
(Figure 7.2.2) and

v(x)
) fx.y)dy

u(x

exists fora < x < b, then

b v(x)
[ emdey = [Cax [ Sy (22)
y
A
y=v(x)
y=u(x)|
. ! -
a b

Figure 7.2.2

Example 7.2.6 Suppose that

f(x,y) =xy

and S is the region bounded by the curves x = y2 and x = y (Figure 7.2.3). Since S can
be represented in the form (17) as

S={(x.»]|y*<x<y. 0<y<l},

1 y
/xyd(x,y)=/ dy/ xy dx,
S 0 y2

which, incidentally, can be written as

1 y
/xyd(x,y)=/ ydy/ xdx,
S 0 y2

(20) yields
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since y is independent of x. Evaluating the iterated integral yields

12 1t X
/xyd(x,y)=/ 5 ydy:g/(y —y7)dy
s 0 32 0

1 (y4 y(’) 1_ 1
2\4 6 )|, 24
y
A
xX=
(1,1
S
> X
Figure 7.2.3

In this case we can also represent S in the form (21) as

S={x.y|[x<y<Vx. 0<x=<1}:

Jx
xdx
y=x

L |
o 24

hence, from (22),

1 Jx 1 2
/xyd(x,y)=/ xdx/ ydy:/ (—
s 0 x 0o \ 2

x3

I 1 4
=—/ (x? = x¥dx = _(__x_)
2 Jo 2\3 4

Example 7.2.7 To evaluate

/ (x + ) d(x. y).
S

where
S={(,»)|-1<x<1,0<y<1+lx|}

473
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(see Example 7.1.11 and Figure 7.2.4),

‘ !
Figure 7.2.4

we invoke Corollary 7.1.31 and write

/(x+y)d(x,y)=/ (x+y)d(x,y>+/ (x4 ) d(x. y),
S S1 S>

where
Si={x.»[0<x<1,0<y<1+x}
and
S={(x.y)|-1<x<0,0<y<1-x}
(Figure 7.2.5).
From Theorem 7.2.6,
1 1+x 1 2 1+x
+
| wrmawn = [ ax [ arna= [ [u ]dx
S 0 0 0 2 y=0
1 1
= —/ [2x + 1)* —x*]dx
2 Jo
CITex+ 1) X3 1_2
S 2 6 310
and

(x+y)?

/Sz(x+y)d(x,y)=/_idx/01_x(x+y)dy=/_i[ s
:%/j(l—xz)dxzé(x—x;)

Therefore,
1 7
[t mden =245 =1
N 3 3

1—x
] dx

y=0

-1
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Figure 7.2.5

Example 7.2.8 To find the area A of the region bounded by the curves
y=x>4+1 and y=9—x?

(Figure 7.2.6), we evaluate
A :/ d(x,y),
S

S={(x,y)|x2+l§y§9—x2,—2§x§2}.

where

According to Theorem 7.2.6,

A=/_22dx/xg_xzdy=/2 [(9—x?) — (x> + 1)] dx

241 -2
2 3\ |2
2 64
=/ (8—2x2)dx=(8x—i) = —
_ 3 )1, 3
y
y=x?+1
(-2,5) 2,5)
y=9-x?

Figure 7.2.6

475
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Theorem 7.2.6 has an analog forn > 2. Suppose that f is integrable on a set S of points
X = (x1, X2, ..., Xp) satisfying the inequalities

Uj(Xjp1, oo Xn) X5 S V(X410 x0), 1=/ <n—1,

and
an < Xp < by.

Then, under appropriate additional assumptions, it can be shown by an argument analogous
to the one that led to Theorem 7.2.6 that

bn v (xn) v2(X3,...,%0) v1(xX2,..,Xn)
/ f(X)dXz/ dxn/ dxn_l---/ de/ f(X)dx;.
N an un (xn) u2(X3,....%n) U (x2,..,%n)
These additional assumptions are tedious to state for general n. The following theorem
contains a complete statement for n = 3.

Theorem 7.2.7 Suppose that f is integrable on
S={(x.y.2) |u1(y.2) <x <v1(y.2), u2(z) <y <v2(2). c <z <d},
and let

S@) ={(x.y) |u1(y.2) < x < v1(y,2), u2(2) <y < v2(2)}
foreach z in[c,d]. Then

d v2(2) v1(y,2)
/f(x’yaz)d(‘xvyvz):/ dZ/ dy/ f(‘x’y’z‘)dx’
S c u u

2(2) 1(3,2)

provided that
v1(y.2)
[ rwynas
u

1(3,2)

exists for all (y, z) such that
c<z<d and ux(z) <y <v2(2),

and

/ Feoy.2)d(x.y)
S(z)

exists forall z in [c, d].

Example 7.2.9 Suppose that f is continuous on the region S in R3 bounded by the
coordinate planes and the plane
x+y+2z=2

(Figure 7.2.7); thus,
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Zz

Figure 7.2.7

S={(x,y,z)|0§x§2—y—22, 0<y<2-2g, szfl}.
From Theorem 7.2.7,

/Sf(x’yvz) d(x,y,2) = /01 dz /02_22 dy /OZ—y—Zz f(x,y,2)dx.

There are five other iterated integrals that equal the multiple integral. We leave it to you
to verify that

2 1-y/2 2—y—2z
/L;f(xvyvz)d(xvyvz):/(; dy/(; dZ/(; f(x,y,z)dx

1 2-27 2—-x—2z
:/ dz/ dx/ flx,y.2)dy
0 0 0
2 1-x/2 2—x—27
:/ dx/ dZ/ f(xayaz)dy
0 0 0
2 2—x 1-x/2—y/2
:/ dx/ dy/ flx,y,z)dz
0 0 0

2 2—y 1-x/2—y/2
—[av [ ax foydz  m
0 0 0

Thus far we have viewed the iterated integral as a tool for evaluating multiple integrals.
In some problems the iterated integral is itself the object of interest. In this case a result

(Exercise 15).
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like Theorem 7.2.6 can be used to evaluate the iterated integral. The procedure is as follows.

(a) Express the given iterated integral as a multiple integral, and check to see that the
multiple integral exists.

(b) Look for another iterated integral that equals the multiple integral and is easier to
evaluate than the given one. The two iterated integrals must be equal, by Theo-
rem 7.2.6.

This procedure is called changing the order of integration of an iterated integral.

Example 7.2.10 The iterated integral

1 y 5
I :/ dy/ e~ D7y
0 0

. 2 S .
is hard to evaluate because e ~*~1” has no elementary antiderivative. The set of points
(x, y) that enter into the integration, which we call the region of integration, is

S={x.y)]0<x<y,0=<y=<1}
(Figure 7.2.8).

Figure 7.2.8

Therefore,
I= / e~ d(x. y), (23)
S

and this multiple integral exists because its integrand is continuous. Since S can also be
written as

S={x»|r<y<1L0<x<1},
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Theorem 7.2.6 implies that

1 1 1
/ e~x=1? d(x,y) = / e_(x_l)zdx/ dy = —/ (x— l)e_(x_l)zdx
S 0 x 0

1
= le_(x_l)2 = l(1 —eh).
2 o 2
This and (23) imply that
1
I=—-(1—-e". ]
S—e)

Example 7.2.11 Suppose that f is continuous on [a, 00) and y satisfies the differen-
tial equation

Y'(x) = f(x), x>a, (24)
with initial conditions
y(a) =y'(a) = 0.
Integrating (24) yields

Y (x) = / £,

since y’(a) = 0. Integrating this yields

v = [Cas [ s

since y(a) = 0. This can be reduced to a single integral as follows. Since the function
gls.0) = f(@0)
is continuous for all (s, #) such that # > a, g is integrable on
S={(s,t)|a§t§s, a<s<ux}
(Figure 7.2.9, page 480), and Theorem 7.2.6 implies that
X N
| rwden = [ as [ rod =, es)
S a a
However, S can also be described as
S={@0|t<s<x a<t<x}

so Theorem 7.2.6 implies that

/Sf(f)d(S,t)=/axf(t)dt/txds=/ax(x—t)f(t)dt.

Comparing this with (25) yields

yx) = / (r — 1) /(1) d. -
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t
A

/S:l

S h—_—

Figure 7.2.9

7.2 Exercises

1. Evaluate

(a) /Ozdy/_II(x+3y)dx (b) /lzdx/()l(x3+y4)dy

27

2 log2 1 5
(c) xdx/ sinxy dy (d)/ ydy/ xe* Vdx
1 0 0

/2

2. Letl; =[a;,b;],1 < j <3,andsupposethat f is integrable on R = I; x [ x I3.
Prove:

(a) If the integral
by

G(y,z) = f(x,y,2)dx

ai

exists for (y, z) € I x I3, then G is integrable on I, x I3 and

/f(x,y,z)d(x,y,z)z/ G(y,Z)d(y,Z)
R I>xx1I3

(b) If the integral
Ho = [ feyadey
I xI»
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exists for z € I3, then H is integrable on /3 and

b3
[ reradera = [ o
R

as

HINT: For both parts, see the proof of Theorem 7.2.1.

Prove: If f is continuous on [a, b] X [c, d], then the function

b
F(y) = / Fx.y)dx

is continuous on [c, d]. HINT: Use Theorem 5.2.14.

Suppose that
J&Y) = fey) if asx=x'<b csy=<)y =d

Show that f satisfies the hypotheses of Theorem 7.2.1 on R = [a, b] X [c, d]. HINT:
See the proof of Theorem 3.2.9.

Evaluate by means of iterated integrals:

(a) /R<xy+1>d(x,y>; R=1[0.1]x[1.2]
() [ @x+amdy: R=13x01.2)

Xy . ~
(c) /R \/Tiyz d(x,y); R=10,1]x]0,1]
(d) [rxcosxycos2mxd(x,y); R=1[0,1]x[0,2x]

Let A be the set of points of the form (27" p, 27" q), where p and g are odd integers
and m is a nonnegative integer. Let

1, (x,y) €A,

S y) = §O, (x,y) € A.

Show that f is not integrable on any rectangle R = [a, b] X [c, d], but

/abdx/Cd f(X,Y)dy:/Cddy/abf(x,y)dx:(b_a)(d_c)‘ (A)

HINT: For (A), use Theorem 3.5.6 and Exercise 3.5.6.

Let
2xy if y is rational,
y if y is irrational,

f(x,y)={

and R = [0, 1] x [0, 1] (Example 7.2.3).
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(a) Calculate f_Rf(x, y)d(x,y) and Ef(x, y)d(x, y), and show that f is not
integrable on R.

(b) Calculate fol (f_olf(x, y) dy) dx and fol (f_olf(x, y) dy) dx.
8. LetR=1[0,1]x[0,1]x[0,1], R = [0, 1] x [0, 1], and

2xy + 2xz if y and z are rational,

fx ) = y+2xz if y is irrational and z is rational,
V2= 2xy + z if y is rational and z is irrational,

y+z if y and z are irrational.
Calculate

(a) /Rf(x, y,z)d(x,y,z)and /R f(x,y.2)d(x,y,2)

) [ reyadead [ feyde
JR R
1 1 1 1 1
(c) /0 dY/O f(x,y,z)dxand/O dZ/O dy/0 f(x,y.2)dx.
9. Suppose that f is bounded on R = [a, b] X [c, d]. Prove:
b d
(a) /f(x, y)d(x,y) < / (/ f(x,y) dy) dx. HINT: Use Exercise 3.2.6(a).
JR Ja_ \Jc
a b [ pd
(b) /f(x, y)d(x,y) > / (/ f(x,y) dy) dx. HINT: Use Exercise 3.2.6(b).
R a c

10. Use Exercise 9 to prove the following generalization of Theorem 7.2.1: If f is
integrable on R = [a, b] X [c, d], then

b d
/f(x,y)dy and /f(x,y)dy

are integrable on [a, b], and

/:7 (ff(x,y)dy) dxz/;b (ﬁf(&”@’) dx=/Rf(xa)’)d(x’y)‘

11. Evaluate
(a) /(x —2y+32)d(x,y,2); R=1[-2,0]%][2,5]x[-3,2]
R

(b) /e_xz_yzsinxsinzd(x,y,z); R =[~1,1]x [0,2] x [0, /2]
R

(c) /R(xy +2xz 4+ yz2)d(x,y.2); R=[-1,1]x[0,1] x[-1,1]



12.

13.

14.

15.

16.

17.

18.
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(d) / x2y3zexy222 d(x,y,2); R=10,1]x[0,1]x[0,1]
R
Evaluate

(a) /S(2x+y2)d(x,y); S={x»[0=<x=<9-y%-3<y<3}

(b) / 2xyd(x,y); Sisboundedbyy = x2?andx = y?
s

(c) /exSHly d(x,y); S ={(x,y)|logy <x <log2y, n/2 <y <n}
N y

Evaluate [¢(x + y)d(x,y), where S is bounded by y = x2 and y = 2x, using
iterated integrals of both possible types.

Find the area of the set bounded by the given curves.
(@) y=x>+9y=x2-9,x=-1Lx=1
(b) y=x+2,y=4—x,x=0

(c) x=y2—4,x=4—)2

(d) y=e>y=-2x,x=3

In Example 7.2.9, verify the last five representations of [ f(x,y,z)d(x,y,z) as
iterated integrals.

Let S be the region in R® bounded by the coordinate planes and the plane x +
2y 4+ 3z = 1. Let f be continuous on S. Set up six iterated integrals that equal

fS f(x,y,Z)d(x,y,z).

Evaluate

(a) / xd(x,y,z); S isbounded by the coordinate planes and the plane
S

3x+y+z=2

(b) /yezd(x,y,z);S= {(x..2)[0=sx<1,0=<y<x, 0=z <y}
S

(c) /Xyzd(x,y,Z);
S
s={0r00sys10sxs T2 022 /a2 + )7

(d) /yzd(x,y,z);S={(x,y,z)lzzfxf«/?, 0<y<z 0<z=<1}
S

Find the volume of S

(a) S is bounded by the surfaces z = x2 + y? and z = 8 — x2 — y2.

(b) S ={(x,y,2) 10 <z <x2+ % (x,y,0) is in the triangle with vertices
(0,1,0),(0,0,0),and (1,0,0)}

() S={(x.y.2)]|0<y=<x20=<x<2,0<z=<)y?

(d) s= {(x,y,z)|x20, y>0,0<z<4—4x?—4y?}



484 Chapter 7 Integrals of Functions of Several Variables

19. Let R = [a1, b2] X [az, ba] X -+ X [ay, by]. Evaluate
(a) [r (1 +x2 4+ xp) dX (b) [x (xf +x3 + .-+ +x])dX

(c) Jrx1x2,---xndX
20. Assuming that f is continuous, express

1 J J1-y2 y
/1/2 y/_mf(x,y) x

as an iterated integral with the order of integration reversed.

21. Evaluate [¢(x+y)d(x, y) of Example 7.2.7 by means of iterated integrals in which
the first integration is with respect to x.

1 V1—x2 dy
22. Evaluate/ xdx/ —_—
0 0 Vx2+y?
23. Suppose that f is continuous on [a, 00),
YP ) = f(x). 1za,

and y(a) = y'(a) = --- = y""D(a) = 0.
(a) Integrate repeatedly to show that

y(x) = / i, / " iy - / "ty / Y fydn. @)

(b) By successive reversals of orders of integration as in Example 7.2.11, deduce
from (A) that

1 X
y(x) = rF—] /a (x =)L f(@t)dr.

24. LetT, =0, p] x [0, p], p > 0. By calculating

I(a) = lim e sinaxd(x,y)
p—oo J1,

in two different ways, show that

o -
/ smaxdx:z if a>0.
0 X 2

7.3 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

In Section 3.3 we saw that a change of variables may simplify the evaluation of an ordinary
integral. We now consider change of variables in multiple integrals.
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Prior to formulating the rule for change of variables, we must deal with some rather in-
volved preliminary considerations.

Jordan Measurable Sets

In Section 7.1 we defined the content of a set S to be
V(S) = / dX (1)
S

if the integral exists. If R is a rectangle containing S, then (1) can be rewritten as

V(S) = /R Vs (X) dX.

where g is the characteristic function of S, defined by

s =y s

From Exercise 7.1.27, the existence and value of V(S) do not depend on the particular
choice of the enclosing rectangle R. We say that S is Jordan measurable if V(S) exists.
Then V(S) is the Jordan content of S.

We leave it to you (Exercise 2) to show that S has zero content according to Defini-
tion 7.1.14 if and only if S has Jordan content zero.

Theorem 7.3.1 A bounded set S is Jordan measurable if and only if the boundary of
S has zero content.

Proof Let R be a rectangle containing S. Suppose that V(3S) = 0. Since g is
bounded on R and discontinuous only on 95 (Exercise 2.2.9), Theorem 7.1.19 implies that
Jr ¥s(X) dX exists.

For the converse, suppose that dS does not have zero content, let P be a partition of R,
and let P = {R1, Ry, ..., R} be a partition of R. For each j in {1,2,...,k} there are
three possibilities:

1. R; C S;then
min {ys(X) | X € R;} = max {ys(X) | X € R;} = L.
2.R; NS #@and R; NS¢ # @; then
min {ys(X) | X € R;} =0 and max{ys(X)|X € R;}=1.
3. R; C §¢; then

min {ys(X) | X € R;} = max {y5(X) | X € R;} = 0.



486 Chapter 7 Integrals of Functions of Several Variables

Let
Uy={j|R;CS} and Up={j|R;NS#PandR; NS #0}. (2

Then the upper and lower sums of s over P are

S(Py= D V(R)+ 3 V(R))
JeU, JeU2 (3
= total content of the subrectangles in P that intersect S

and
s(P)= " V(R))
JeU, “
= total content of the subrectangles in P contained in S.
Therefore,

S(P)—s(P)= Y V(R)).

JjeUz

which is the total content of the subrectangles in P that intersect both S and S¢. Since
these subrectangles contain 9.5, which does not have zero content, there is an €9 > 0 such
that

S(P)—s(P) = €0

for every partition P of R. By Theorem 7.1.12, this implies that s is not integrable on R,
so § is not Jordan measurable. a

Theorems 7.1.19 and 7.3.1 imply the following corollary.

Corollary 7.3.2 If f is bounded and continuous on a bounded Jordan measurable set
S, then f is integrable on S.

Lemma 7.3.3 Suppose that K is a bounded set with zero content and €, p > 0. Then
there are cubes Cy, Ca, ..., C, with edge lengths < p such thatC; N K #@,1 < j <r,

kclJc, 5)
j=1

and

,
Y V() <e.
j=1
Proof Since V(K) =0,
/ Yvr(X)dX =0
c
if C is any cube containing K. From this and the definition of the integral, there isa § > 0
such that if P is any partition of C with || P|| < § and o is any Riemann sum of g over

P, then
0<o0 <e. (6)
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Now suppose that P = {Cy, C3, ..., C} is a partition of C into cubes with
|7 < min(p, §), )

and let Cy, Cs, ..., Cx be numbered sothat C; N K #QPif 1 < j <randC; N K =0 if
r + 1 < j < k. Then (5) holds, and a typical Riemann sum of {x over P is of the form

o= VX)V(C))
Jj=1

withX; € C;, 1 < j < r. In particular, we can choose X; from K, so that ¢ (X;) = 1,
and

,
o= V().
Jj=1
Now (6) and (7) imply that Cy, C,, ..., C, have the required properties. a

Transformations of Jordan-Measurable Sets

To formulate the theorem on change of variables in multiple integrals, we must first con-
sider the question of preservation of Jordan measurability under a regular transformation.

Lemma 7.3.4 Suppose that G : R* — R" is continuously differentiable on a bounded
open set S, and let K be a closed subset of S with zero content. Then G(K) has zero
content.

Proof Since K is a compact subset of the open set S, there is a p; > 0 such that the
compact set
Kp, = {X| dist(X. K) < p1}

is contained in S (Exercise 5.1.26). From Lemma 6.2.7, there is a constant M such that
IG(YY) -GX)| =< M|Y-X| if X,YeK,. 8)

Now suppose that € > 0. Since V(K) = 0, there are cubes Cy, C;, ..., C, with edge
lengths 51, 52, ..., s, < p1/4/nsuchthat C; NK # @, 1< j <r,

,
K C U Cj,
j=1

and

Z V(C;j) <e )

j=1
(Lemma 7.3.3). For1 < j <r,letX; € C; N K. If X € C}, then

X —X;| <s;/n < pr,
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soX € K and |G(X) — G(X;)| < M|X - X| < M /ns;, from (8). Therefore, G(C;) is
contained in a cube C; with edge length 2M /n s, centered at A(X). Since
V(Cj) = @M /n)"s" = @M /n)"V(C;),
we now see that
,
G(K)c |JG
Jj=1
and
r - r

D V(C)) =@M Vn)* Y V(C)) < @M Vi),

J=1 j=1
where the last inequality follows from (9). Since (2M /n)" does not depend on ¢, it follows
that V(G(K)) = 0. a

Theorem 7.3.5 Suppose that G : R" — R" is regular on a compact Jordan measur-
able set S. Then G(S) is compact and Jordan measurable.

Proof We leave it to you to prove that G(S) is compact (Exercise 6.2.23). Since S
is Jordan measurable, V(dS) = 0, by Theorem 7.3.1. Therefore, V(A(3dS)) = 0, by
Lemma 7.3.4. But G(3S) = 9(G(S)) (Exercise 6.3.23), so V(3(G(S))) = 0, which
implies that G(S) is Jordan measurable, again by Theorem 7.3.1. o

Change of Content Under a Linear Transformation

To motivate and prove the rule for change of variables in multiple integrals, we must know
how V(L(S)) is related to V(S) if S is a compact Jordan measurable set and L is a nonsin-
gular linear transformation. (From Theorem 7.3.5, L(S) is compact and Jordan measurable
in this case.) The next lemma from linear algebra will help to establish this relationship.
We omit the proof.

Lemma 7.3.6 A nonsingularn x n matrix A can be written as

A =EiEr1---Eq, (10)
where each E; is a matrix that can be obtained from the n x n identity matrix I by one of
the following operations:
(a) interchanging two rows of I;
(b) multiplying a row of I by a nonzero constant;
(c) adding a multiple of one row of 1 to another.

Matrices of the kind described in this lemma are called elementary matrices. The key to
the proof of the lemma is that if E is an elementary n x n matrix and A is any n X n matrix,
then EA is the matrix obtained by applying to A the same operation that must be applied
to I to produce E (Exercise 6). Also, the inverse of an elementary matrix of type (a), (b),
or (c) is an elementary matrix of the same type (Exercise 7).

The next example illustrates the procedure for finding the factorization (10).
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Example 7.3.1 The matrix

A=

N - O
N O =
O = =

is nonsingular, since det(A) = 4. Interchanging the first two rows of A yields

1 0 1 R
A= 0 1 1 =EA,
2 20
where
R 010
E, = 1 00
0 0 1

1 0 1 R
A= 0 1 1 = E;E A,
0o 2 =2
where
R 1 00
E, = 010
-2 0 1

1 0 1 L
A= 0 1 1 = E;E;E (A,
0 0 —4
where
R 1 0 0
E;=| 0 1 0
0o -2 1
Multiplying the third row of A3 by —% yields
1 0 1 o
As=] 0 1 1 | =E4A3EE{A,
0 0 1
where
R 1 0 0
E;,=| 0 1 0
00 -1

489
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Subtracting the third row of A4 from the first yields

1 0 0
As=| 0 1 1 | =EsA4E;EE A,
0 0 1
where
R 1 0 -1
Es=| 0 1 0
0 0 1

AA A A A A

where

AA A A A~

Therefore,
A = EcEsE4 EzExEq,
where
R 1 0 R 1 1]
E, = Egl = 1 1 |, E, = E;l = 0 1 s
| 0 1 | 0 1]
R 1 0 0 R 1 0]
E3=AZI= 0 1 0 |, E4=E§1= 0 1 ,
| 0 0 —4 | 0 1]
R 1 0 0 R 01 0
E5=E;1= 1 0 |, E6=E1_1= 1 0
| 2 0 1 0 0 1
(Exercise 7(c)).

(1)

Lemma 7.3.6 and Theorem 6.1.7(c) imply that an arbitrary invertible linear transforma-

tion L : R” — R”, defined by
X = L(Y) =AY,

can be written as a composition
L=LkOLk_1 O---OLl,

where
LI(Y) =EY, 1<ic<k.

12)

13)
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Theorem 7.3.7 If S is a compact Jordan measurable subset of R" and A : R" — R"
is the invertible linear transformation X = L(Y) = AY, then

V(L(S)) = | det(A)[V(S). (14)
Proof Theorem 7.3.5 implies that L(S) is Jordan measurable. If
V(L(R)) = [ det(A)[V(R) (15)

whenever R is a rectangle, then (14) holds if S is any compact Jordan measurable set. To
see this, suppose that e > 0, let R be a rectangle containing S, and let P = {R;, R, ..., R}
be a partition of R such that the upper and lower sums of /s over P satisfy the inequality

S(P) —s(P) <e. (16)

Let U and U5 be as in (2). From (3) and (4),

s(P)y= Y V(R)) <V(S)< Y V(R))+ Y V(Rj)=S(P). (17
JeU JeUy JeU2
Theorem 7.3.7 implies that L(R;), L(R2), ..., L(R) and L(S) are all Jordan measurable.
Since
| Ricsc |J rs

JjeU JES1US2

it follows that

Ll JRr|csce| |J w

JjeUy JES1US2

Since L is one-to-one on R”, this implies that

S VIR < VLS) = Y VLR + Y VLR))). (18)

JjeUi JjeUi JjeUz
If we assume that (15) holds whenever R is a rectangle, then

V(L(R))) = |det(A)|[V(R)), 1=] =<k,

so (18) implies that
V(L(S))
S(P)fmfs(l))-
This, (16) and (17) imply that
V(L(S)) .
V(S) — m <€,

hence, since € can be made arbitrarily small, (14) follows for any Jordan measurable set.
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To complete the proof, we must verify (15) for every rectangle
R =ay,b1] x a2, ba] X -+ X [an,by] = Iy X Iy X --- X I,.
Suppose that A in (12) is an elementary matrix; that is, let
X =L(Y) =EY.
CASE 1. If E is obtained by interchanging the ith and j th rows of I, then

yr ifr#iandr # j;
xXp=1y; ifr=i,;
yi ifr=j.
Then L(R) is the Cartesian product of Iy, I, ..., I, with I; and [; interchanged, so

V(L(R)) = V(R) = |det(E)[V(R)

since det(E) = —1 in this case (Exercise 7(a)).
CASE 2. If E is obtained by multiplying the rth row of I by a, then
|y ifr #i,
" \ay; ifr =i.
Then

L(R) = 11 Xoeee X Ii—l X Ii/ X Ii+1 X eee X ]n’
where 1/ is an interval with length equal to |a| times the length of /;, so
V(L(R)) = |a|V(R) = | det(E)|V(R)

since det(E) = a in this case (Exercise 7(a)).
CASE 3. If E is obtained by adding a times the jth row of I to its ith row (j # i), then

_ ) ifr #1i;
T i +ay; ifr=i.

Then
L(R) = {(xl,xz,...,xn)|ai +ax; <x; <bj+ax;anda, < x, <b,ifr # i},

which is a parallelogram if n = 2 and a parallelepiped if n = 3 (Figure 7.3.1). Now
vy = [ ax.
L(R)

which we can evaluate as an iterated integral in which the first integration is with respect
to x;. For example, if i = 1, then

bn bp—1 b> by+ax;
V(L(R)) =/ dxn/ dx,_1 / dxz/ dxy. (19)
an an—1 ar ajtax;
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Since

by+ax; by
/ dy, = dy1,
a

1tax; a

(19) can be rewritten as

bn bn—l b2 bl
V(L(R)) :/ dxn/ dxn_l / de dx1

n—1 2 ai

= (bn _an)(bn—l _an—l)"'(bl _al) = V(R)

Hence, V(L(R)) = | det(E)|V(R), since det(E) = 1 in this case (Exercise 7(a)).

:yz

Vi

Figure 7.3.1

From what we have shown so far, (14) holds if A is an elementary matrix and S is any
compact Jordan measurable set. If A is an arbitrary nonsingular matrix,
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then we can write A as a product of elementary matrices (10) and apply our known result
successively to L, Lo, ..., L (see (13)). This yields

V(L(S)) = | det(Er)| | det(Ex—1)| - - | detEq [V(S) = [det(A)[V(S).

by Theorem 6.1.9 and induction. |

Formulation of the Rule for Change of Variables

We now formulate the rule for change of variables in a multiple integral. Since we are for
the present interested only in “discovering” the rule, we will make any assumptions that
ease this task, deferring questions of rigor until the proof.

Throughout the rest of this section it will be convenient to think of the range and domain
of a transformation G : R” — R" as subsets of distinct copies of R”. We will denote the
copy containing D¢ as E”, and write G : E” — R” and X = G(Y), reversing the usual
roles of X and Y.

If G is regular on a subset S of E”, then each X in G(S) can be identified by specifying
the unique point Y in S such that X = G(Y).

Suppose that we wish to evaluate /. r J(X)dX, where T is the image of a compact Jordan
measurable set S under the regular transformation A = G(Y). For simplicity, we take S to
be a rectangle and assume that f is continuouson 7' = G(S).

Now suppose that P = {Ry, R», ..., R} is a partition of § and T; = G(R;) (Fig-
ure 7.3.2).

v y
A A
E; X =G(U)_
s
Figure 7.3.2
Then
k
/ fX)dx=>" / f(X)dX (20)
T i=17Tj

(Corollary 7.1.31 and induction). Since f is continuous, there is a point X; in 7'; such that

/ FX)dX = f(X)) / dX = f(X;)V(T))
T; T;
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(Theorem 7.1.28), so (20) can be rewritten as
k
| rax =3 s, e
j=1

Now we approximate V(7). If
X; =G(Y)), 22)
then Y; € R; and, since G is differentiable at Y ;,
G(Y) ~ G(Y;) + G'(Y))A - Y)). (23)

Here G and Y — Y are written as column matrices, G’ is a differential matrix, and “~x”
means “approximately equal” in a sense that we could make precise if we wished (Theo-
rem 6.2.2).

It is reasonable to expect that the Jordan content of G(R ) is approximately equal to the
Jordan content of A(R ), where A is the affine transformation

A®Y) =G(Y;)) +G'(Y,))A-Y))
on the right side of (23); that is,
V(G(R;)) =~ V(A(R))). (24)

We can think of the affine transformation A as a composition A = Az o A, o Ay, where

A(Y)=Y-Y,,

A2(Y) =G (Y)Y,

and
A3(Y) = G(Y,) + Y.

Let R’/. = A((R}). Since A merely shifts R to a different location, R’/. is also a rectangle,
and ‘
V(R;) = V(Rj). (25)

Now let R’/ = Az(R’;). (In general, R’/ is not a rectangle.) Since A is the linear transfor-
mation with nonsingular matrix G'(Y j), Theorem 7.3.7 implies that

V(R))) = [detG'(Y)|V(R]}) = |[TG(Y))|V(R)), (26)

where JG is the Jacobian of G. Now let R = A3(R’/). Since A3 merely shifts all points

in the same way,
V(Rf/-”) = V(Rf;). 27

Now (24)—(27) suggest that
V(Tj) ~ [JGY )IV(R)).
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(Recall that T; = G(R}).) Substituting this and (22) into (21) yields
k
/T SX)dX ~ Y fGANIIGY)IV(R)).
j=1

But the sum on the right is a Riemann sum for the integral

/S FGY)IIGY)|dY.

which suggests that

/f(X)dX=/f(G(Y))|JG(Y)|dY.
T S

We will prove this by an argument that was published in the American Mathematical
Monthly [Vol. 61 (1954), pp. 81-85] by J. Schwartz.

The Main Theorem
We now prove the following form of the rule for change of variable in a multiple integral.

Theorem 7.3.8 Suppose that G : E" — R" is regular on a compact Jordan measur-
able set S and f is continuous on G(S). Then

Fayax = /S FGOY)]TG(Y)| dA. 28)

G(S

Since the proof is complicated, we break it down to a series of lemmas. We first observe
that both integrals in (28) exist, by Corollary 7.3.2, since their integrands are continuous.
(Note that S is compact and Jordan measurable by assumption, and G(S) is compact and
Jordan measurable by Theorem 7.3.5.) Also, the result is trivial if V(S) = 0, since then
V(G(S)) = 0 by Lemma 7.3.4, and both integrals in (28) vanish. Hence, we assume that
V(S) > 0. We need the following definition.

Definition 7.3.9 If A = [g;;] is an n x n matrix, then

n
max Z|aij||1§i§n
j=1

is the infinity norm of A, denoted by || A||co- ]

Lemma 7.3.10 Suppose that G : E" — R" is regular on a cube C inE", and let A be
a nonsingularn x n matrix. Then

V(G(C)) < |det(A)| [max {|AT'G' (V)]0 | Y € C}]" V(C). (29)
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Proof Let s be the edge length of C. Let Ag = (¢1,¢2, ..., ¢y) be the center of C, and
suppose that A = (y1, y2,...,yn) € C. f H = (hy, hy, ..., hy) is continuously differen-
tiable on C, then applying the mean value theorem (Theorem 5.4.5) to the components of
H yields

" 0hi (A7)

hi(Y) —hi(Yo) = By
J

J=1

(yj—cj), 1=i=n,

where Y; € C. Hence, recalling that

H(Y) = [ah’} ,
ay; i,j=1

applying Definition 7.3.9, and noting that |y; —c;| < s/2,1 < j < n, we infer that
s .
|hi (Y) — hi(Yo)| < 5 max {IHY)llw |YeC}, 1<i=<n.
This means that H(C) is contained in a cube with center Xo = H(Y() and edge length
s max {|H'(Y)|oo | Y € C}.

Therefore,
V(H(C)) < [max {|H'(A)[cc]” |Y € C} 5"

(30)
= [max {|H'(Y)[l]" | Y € C} V(C).

Now let
LX) =A"'X

and set H = L o G; then
H(C) =L(G(C)) and H =A"'G/,

so (30) implies that

VIL(G(C))) < [max {|AT'GC'(V)]lo | Y € C}]" V(C). 31)
Since L is linear, Theorem 7.3.7 with A replaced by A~! implies that

VIL(G(C))) = [det(A)~'[V(G(C)).
This and (31) imply that
| det(A™H[V(G(C)) < [max {JAT'G'(V)l|ls |Y € C}]" V(C).

Since det(A™!) = 1/ det(A), this implies (29). o

Lemma 7.3.11 IfG : E" — R” is regular on a cube C in R", then

V(G(C)) < /C IJG(Y)| dY. (32)



498 Chapter 7 Integrals of Functions of Several Variables

Proof Let P be apartition of C into subcubes Cy, Cs, ..., Cy with centers Yy, Yo, ...,
Ag. Then
k
V(G(C)) = Y V(G(C))). (33)
Jj=1

Applying Lemma 7.3.10 to C; with A = G’(A ;) yields
V(G(C))) < [JG(Y,)| [max {I(G'(Y;) ™' G'(A)lleo | Y € C;}]" V(C)). (34)
Exercise 6.1.22 implies that if € > 0, there is a § > 0 such that
max {[(G'(Y;,) "G (V)| |A€Cj} <14e€, 1<j<k if |P|<S.
Therefore, from (34),
V(G(C)) = (1 +&)"'[JGYHIV(C)).
so (33) implies that

k
V(G(C) < (1+)" Y |JGAHIV(C)) if [P] <3,

Jj=1
Since the sum on the right is a Riemann sum for [ |[JG(A)| dY and € can be taken arbi-
trarily small, this implies (32). |

Lemma 7.3.12 Suppose that S is Jordan measurable and €, p > 0. Then there are
cubes Cy, Ca, ..., C; in S with edge lengths < p, such that C; C S, 1 < j < r,
CONCY=0ifi # j,and

V() <Y V(C)) +e. (35)

j=1
Proof Since S is Jordan measurable,
[ vsax =)
Cc

if C is any cube containing S. From this and the definition of the integral, thereisa é > 0
such that if P is any partition of C with || P|| < § and o is any Riemann sum of s over
P, theno > V(S) — €/2. Therefore, if s(P) is the lower sum of s over P, then

sP)>V(S)—e if |A| <3. (36)
Now suppose that P = {Cy,Ca,...,Ck} is a partition of C into cubes with | P| <
min(p, 8), and let Cy, Cz, ..., Cx be numbered so that C; C S if 1 < j < r and

C;NS¢#@Pif j > r.From (4),s(P) = Z;=1 V(Cg). This and (36) imply (35). Clearly,
CONC)=0ifi #j. a
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Lemma 7.3.13 Suppose that G : E" — R” is regular on a compact Jordan measur-
able set S and f is continuous and nonnegative on G(S). Let

0(s) = / FX)dX / FGY)ITGY)| dY. 37
G(S) S

Then Q(S) < 0.

Proof From the continuity of JG and f on the compact sets S and G(S), there are
constants M and M such that

IJG(Y)| <M, if YeS (38)

and
/X <M, if XeG(S) (39)

(Theorem 5.2.11). Now suppose that € > 0. Since f o G is uniformly continuous on §
(Theorem 5.2.14), there is a § > 0 such that

| F(G(Y)) — f(G(Y))]| <e if |[Y-Y|<8andY,Y €8S. (40)
Now let C1, C», ..., C, be chosen as described in Lemma 7.3.12, with p = §/4/n. Let

SI:{YES|Y¢OC,-}.

Jj=1
Then V(S1) < € and

S = (U C‘,-) US;. (41)
j=1

Suppose that Y, Yo, ..., Y, are pointsin C1, Co, ..., Cr and X; = G(Y;), 1 < j <.
From (41) and Theorem 7.1.30,

0(8) = / FOX)dX / FGOY)ITGY)] dY
G(S1) S1

+ X)dX — G(Y))|JG(Y)|dY
J'=1/(;(Cj)f( ) /Z=:1 /Cj SGMIGX)]
=/ f(X)dX—/ FANY))|JGY)|dY

G(Sy1) S

X)— f(A;)dX

+3 | o, U074

+ 3 [ e - feanIGmIay
j=17Ci

+Y 1% (V(G(cm - [ vew) dY) .
j=1 ¢
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Since f(X) > 0,
| remsemiay = o
S1
and Lemma 7.3.11 implies that the last sum is nonpositive. Therefore,
0S)<=h + 1L+ I, (42)
where .
n=[ seax. m=Y [ |re0-fexlax
G(S1) j=1 G(C))
and

=Y [ @) - FGaIIGmaY.
i=17Ci

We will now estimate these three terms. Suppose that € > 0.

To estimate /;, we first remind you that since G is regular on the compact set S, G is
also regular on some open set O containing S (Definition 6.3.2). Therefore, since S C S
and V(S1) < €, S1 can be covered by cubes T4, T, ..., Ty, such that

DoV <e (43)
j=1
and G is regular on [ J7_, T;. Now,
Iy = MaV(G(S1)) (from (39))
<M, Y V(G(T))) (since S1 C UT_| T))

j=1
m
<M, Z/ |JG(Y)|dY (from Lemma 7.3.11)
- T:
Jj=1""J
< M,M;e (from (38) and (43)).

To estimate I, we note that if X and X; are in G(C;) then X = G(Y) and X; = G(Y)
for some Y and Y, in C;. Since the edge length of C; is less than §//n, it follows that
Y -Y;| <d,s0|f(X)— f(X/)| < e, by (40). Therefore,

L<e) V(G(C)))
j=1

er/ |JG(Y)|dY (from Lemma 7.3.11)
j=17C;

<eMy ) V(C)) (from (38))
Jj=1
<eMV(S) (since U’;_; C; C S).
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To estimate /3, we note again from (40) that | f(G(Y;)) — f(G(Y))| < e€if Yand Y;
are in C;. Hence,

Iy <e / 1JG(Y)|dY

< Me ) V(Cj) (from(38)
j=1
< M V(S)e

because | J;_, C; C S and con C? =0ifi # j.

From these inequalities on Iy, I, and I3, (42) now implies that
0(S) < Mi(M, + 2V(S))e.
Since € is an arbitrary positive number, it now follows that Q(S) < 0. |

Lemma 7.3.14 Under the assumptions of Lemma 7.3.13, Q(S) > 0.

Proof Let
G =G, S1=G(S), fi=(JG|)f oG, (44)

and

01(51) = /G o Ay - /S AGI (X)) TG (X)] dX. 4s)

Since G is regular on S; (Theorem 6.3.3) and f; is continuous and nonnegative on
G1(S1) = S, Lemma 7.3.13 implies that Q1(S1) < 0. However, substituting from (44)
into (45) and again noting that G;(S;) = S yields

0.(81) = /S FGE)IIGY)| dA

(46)
- /m) FGGT X))JGG (X)JGT (X)| dA.

Since G(G™' (X)) = X, f(G(G™'(X))) = f(X). However, it is important to interpret the
symbol JG(G~! (X)) properly. We are not substituting G~ (X) into G here; rather, we are
evaluating the determinant of the differential matrix of G at the point Y = G~!(X). From
Theorems 6.1.9 and 6.3.3,

VGG X)IIGT X)) = 1,
so (46) can be rewritten as

01(851) =/Sf(G(Y))|JG(Y)IdY—/G(S) fX)dX =-0(S).

Since Q1(S1) < 0, it now follows that Q(S) > 0. a
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We can now complete the proof of Theorem 7.3.8. Lemmas 7.3.13 and 7.3.14 imply (28)
if f is nonnegative on S. Now suppose that

m =min{f(X)|X € G(S)} <0.

Then f — m is nonnegative on G(S), so (28) with f replaced by f — m implies that
[ F0 =max = [ (5&@) —mlse)ay. 1)

However, setting f = 1 in (28) yields

/ dX=/ 1JG(Y)| Y,
G(S) S

so (47) implies (28). a

The assumptions of Theorem 7.3.8 are too stringent for many applications. For example,
to find the area of the disc

{.y) [ x>+ y* <1},

itis convenient to use polar coordinates and regard the circle as G(S), where

rcos 6
G(r.6) = [ rsinf i| (48)
and § is the compact set
S={(r0)|0<r<10<6<2m} (49)
(Figure 7.3.3).
y
A
0
A X2 +y2 =1
2n
G(S)

X=G(r, )
e

Figure 7.3.3
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Since

G (r.0) = [ cosf —rsinf i|

sinf  rcosf

Il
—_

it follows that JG(r, ) = r. Therefore, formally applying Theorem 7.3.8 with f

yields
1 2n
A:/ dX:/rd(r,@):/rdr db = .
G(S) s 0 0

Although this is a familiar result, Theorem 7.3.8 does not really apply here, since G(r, 0) =
G(r,2m),0 <r <1, s0 G is not one-to-one on S, and therefore not regular on .

The next theorem shows that the assumptions of Theorem 7.3.8 can be relaxed so as to
include this example.

Theorem 7.3.15 Suppose that G : E* — R" is continuously differentiable on a
bounded open set N containing the compact Jordan measurable set S, and regular on
SO. Suppose that also that G(S) is Jordan measurable, f is continuous on A(S), and
G(C) is Jordan measurable for every cube C C N. Then

F(X)dX = /S FGY)IIGY)|dY. (50)

G(S)

Proof Since f is continuouson G(S) and (|JG|) f oG is continuous on S, the integrals
in (50) both exist, by Corollary 7.3.2. Now let

o = dist (3S, N°)

(Exercise 5.1.25), and
. p
P =1Y| dist(Y,0S5)} < =.
(v | disiy,95)) = £

Then P is a compact subset of N (Exercise 5.1.26) and 3S C P (Figure 7.3.4, page 504).
Since S is Jordan measurable, V(3S) = 0, by Theorem 7.3.1. Therefore, if € > 0, we

can choose cubes Cj, Cs, ..., Ci in P? such that
k
asc | jcy (51)
j=1
and
k
Y V() <e (52)

J=1

Now let S; be the closure of the set of points in S that are not in any of the cubes Cj,
C,, ..., Ci; thus,

S =S8N (u";=lc‘,-)c.
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Because of (51), St N dS = @, so Sp is a compact Jordan measurable subset of SO
Therefore, A is regular on Sy, and f is continuous on G(S;). Consequently, if Q is as
defined in (37), then Q(S1) = 0 by Theorem 7.3.8.

as

o

N = open set bounded by outer curve
S = closed set bounded by inner curve

Figure 7.3.4

Now
0(S) = 0(S1) + (SN ST) = 0(S N ST) (53)

(Exercise 11) and

10(S N SPI = +

/ fX)dX / FG(Y)|JG(Y)|dY]|.
G(SNSY) sns¢

‘ /S _ SGDIG|AY] = My MzV(S 0 S5) (54)
nSY

where My and M, are as defined in (38) and (39). Since § N 7 C U];=1Cj, (52) implies
that V(S NS {‘ ) < €; therefore,

< M Mze, (55)

‘ / FGY)TGY)] dY
NN

from (54). Also

k
| redx| s mvGE s =M VEE). 66
G(SNSS)

Jj=1
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By the argument that led to (30) with H = G and C = C},
V(G(C))) = [max {|G'(V) oo | A € C;}]" V(C)).

so (56) can be rewritten as

[ rax| = M [max (16 (e | Y € P},

G(SNSE)

because of (52). Since € can be made arbitrarily small, this and (55) imply that Q(S N
S7) = 0. Now Q(S) = 0, from (53). 0

The transformation to polar coordinates to compute the area of the disc is now justified,
since G and S as defined by (48) and (49) satisfy the assumptions of Theorem 7.3.15.

Polar Coordinates

If G is the transformation from polar to rectangle coordinates

I:;]:G(r’e)zl:rCOSQ] 7)

rsinf

then JG(r, ) = r and (50) becomes

/ fx,y)d(x,y) = / f(rcos@,rsin®)rd(r,0)
G(S) s

if we assume, as is conventional, that S is in the closed right half of the »8-plane. This
transformation is especially useful when the boundaries of S can be expressed conveniently
in terms of polar coordinates, as in the example preceding Theorem 7.3.15. Two more
examples follow.

Example 7.3.2 Evaluate

_ 2
I= /T(x +y)d(x.y),

where T is the annulus
T ={x.y]|1<x*+y*> <4

(Figure 7.3.5(b), page 506).

Solution We write T = G(S), with A as in (57) and

S={r.0|1<r<2 0<6<2m}
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(Figure 7.3.5(a)). Theorem 7.3.15 implies that

I = /(r2 cos? 0 + rsinO)r d(r, 6),
N

which we evaluate as an iterated integral:
2 2r
I:/ r2dr (r cos? 0 + sin6) db
1

0
2 2r

[ ryr - i 291

_/1 r dr/0 (2 + 200329+sm9) do [smce cos” 0 = 2(1 +00329)]
2

9 27 2 42 15
:/ rzl:r—+£sin29—coséi| dr:n/ r3dr=ﬂr =—ﬂ.
1 2 4 6=0 1 40 4
0
- ———
T

S (N
N/

(a) (b)
Figure 7.3.5

Example 7.3.3 Evaluate
I = / yd(x,y),
T

where T is the region in the xy-plane bounded by the curve whose points have polar coor-
dinates satisfying

r=1-—cosf, 0<6<nm

(Figure 7.3.6(b)).

Solution We write T = G(S), with G as in (57) and S the shaded region in Fig-
ure 7.3.6(a). From (50),

I = /;(r sin@)r d(r, 0),
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which we evaluate as an iterated integral:

4 1—cos 6 1 b4
I:/ sin@d@/ rzdrz—/ (1 —cos 6)3sinf db
0 0 3Jo

(1

1 4
= E(l —cos )

Wl s

= |
0
r y
A A
S
T
> 0 > X
T
(@ (b)
Figure 7.3.6
Spherical Coordinates
If G is the transformation from spherical to rectangular coordinates,
X r cos 0 cos ¢
y | =G, 0,90) =| rsinfcos¢ |, (58)
z rsin¢
then
cosfcos¢p —rsinfcos¢p —rcosfsing
G'(r,0,9) = | sinfcos¢p rcosfcos¢p —rsinfsing
sin¢ 0 rcos¢
and JG(r, 0, ) = r?cos ¢, so (50) becomes
Sy, 2)d(x, y,2)
G(S)
(59

= / f(rcosfcosg,rsinf cosg, rsing)r?cosg d(r, 6, p)
N

if we make the conventional assumption that |¢| < 7/2 and r > 0.
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Example 7.3.4 Leta > 0. Find the volume of

2

T={(x.y.2)|[x*+)*+z><a’> x>0, y=0, 2>0},

which is one eighth of a sphere (Figure 7.3.7(b)).

o
K
2
I
I
I
I
P >0
7 2
Y 2
s
s/
a
" ()
Z
a
~ y
a
X
(b)
Figure 7.3.7

Solution We write T = G(S) with G as in (58) and

S={(r0.¢)|0<r<a, 0<60<n/2,0<¢ <m/2}
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(Figure 7.3.7(a)), and let f = 1in (59). Theorem 7.3.15 implies that

_ _ 2
V(T)_/G(S)dX_/Sr cosgp d(r,0, )

:/Oarzdr/o”/zdefo”/zcowwz (?) (%) (1) = ”Ta3. n

Example 7.3.5 Evaluate the iterated integral

a Var—x2 Ja2—x2—y2
I=/ xdx/ dy/ zdz (a >0).
0 0 0

Solution We first rewrite I as a multiple integral

1 :/ xz d(x,y,2)
G(S)

where G and S are as in Example 7.3.4. From Theorem 7.3.15,

1 :/(rcos@coscp)(r sing)(r? cos ) d(r, 6, $)
s
a /2 /2 as 1 as
_ 4 2 _ [+ Yy _a
_/0 r dr/0 cos@d@/o cos ¢31n¢d¢—(5)(1)(3)_15. [ ]

Other Examples

We now consider other applications of Theorem 7.3.15.
Example 7.3.6 Evaluate
1= [ @ranaeo.
where T is the parallelogram bounded by the lines
x+y=1 x+y=2, x—-2y=0, and x—-2y=3
(Figure 7.3.8(b), page 510).

Solution We define new variables u and v by

u _ _ X+y
v ]ren=[005 ]
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\
3.__
X
S =F"'(u,v)
y
_—
> U
1 2
(a)
y
\
x-2y=0
x—=2y=3
— T > x
x+y=2
x+y=1
(b)
Figure 7.3.8
Then
2u+v
X _
[y }=F 'wny=1| ,3, |
3
2 1 1
—1 _ 3 3 _ -
JF (u,v)—‘ L ‘— 3
3 3

and T = F~1(S), where

S:{(u,v)|l§u§2,0§v§3}
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(Figure 7.3.8(a)). Applying Theorem 7.3.15 with G = F~! yields

I_/S(2u+v+4 ;41})( )d(u v) = /(zu—v)d(u v)
:—/ dv/ Qu—v)du = - /(M —MU)
1 1 v 3

3/(3—v)dv—§(3v—?)

Example 7.3.7 Evaluate

dv
=1

0 2 .

I = / e(xz_yz)ze4xzyz(x2 + 3y d(x,y).
T

where T is the annulus 7 = {(x, y) | a? <x?+4y% < bz} witha > 0 and b > 0 (Fig-
ure 7.3.9(a)).

Figure 7.3.9

Solution The forms of the arguments of the exponential functions suggest that we
introduce new variables u and v defined by

u x2—y?
R =[]

and apply Theorem 7.3.15 to G = F~!. However, F is not one-to-one on 7° and therefore
has no inverse on 7° (Example 6.3.4). To remove this difficulty, we regard T as the union
of the quarter-annuli 71, T3, T3, and T4 in the four quadrants (Figure 7.3.9)(b)), and let

T

J
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Since the pairwise intersections of 77, T, T3, and T4 all have zero content, I = I} + I, +
I3 + 14 (Corollary 7.1.31). Theorem 7.3.8 implies that I} = I, = Iz = 14 (Exercise 12),
so I = 41I;. Since I; does not contain any pairs of distinct points of the form (x¢, yo) and
(—x0, —Y0), F is one-to-one on 7 (Example 6.3.4),

F(T1)=S1={(u,v)|a4§u2+v2§b4,v20}

(Figure 7.3.10(b)),

>
>

(a) (®)
Figure 7.3.10

and a branch G of F~! can be defined on S; (Example 6.3.8). Now Theorem 7.3.15 implies
that

I = / P2 o4x%y2 (\2 4 2y TG (u, v)| d(u, v),
S1
where x and y must still be written in terms of u and v. Since it is easy to verify that
JE(x,y) = 4(x* +)?)

and therefore

1
JGu,v) = —,
(. ) 4(x2 + y?)
doing this yields
1
I =- / e d(u, v). (60)
4 Js,

To evaluate this integral, we let p and « be polar coordinates in the uv-plane (Figure 7.3.11)

and define H by
u | | pcosa |
[ v i|_ H(p,a)—[ psina i|’

then S§; = H(Svl), where

Si={(p.0)]a®<p=<b’ 0<a=<n}
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(Figure 7.3.10(a)); hence, applying Theorem 7.3.15 to (60) yields

1 1
; /~ e |7H(p. o) d(p. ) = / pe” d(p. )

/ doc/bzpe" dp—g;

4

[ =4I, = %(eb4 Y

I

hence,

(u,v)

Y
<

Figure 7.3.11
Example 7.3.8 Evaluate

I:/ex‘+x2+"'+x”d(x1,x2,...,xn),
T

where T is the region defined by

ai <x1+xp2+--+x; <b;, 1<i<n.

Solution We define the new variables y1, ys, ..., v, by A = F(X), where
fiX)y=x1+x2+--4+x;, 1<i<n.
If G = F ! then T = G(S), where
S =[a1,b1] X [az, ba] X -+ X [an, by],

and JG(Y) = 1, since JF(X) = 1 (verify); hence, Theorem 7.3.8 implies that

513
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I=/ey”d(y1,y2,u.’)’n)
S

bl b2 bn—l bn
=/ dy, dyz---/ dyn_1/ e?"dyy
ai as a an

n—1

= (b1 —a1)(by — az) -+ (b1 — an—1) (e’ — ). u

7.3 Exercises

1.

Give a counterexample to the following statement: If S; and S, are disjoint subsets
of a rectangle R, then either

/ Vs, (X) dX + / Vs, (X) dX = / Usius, (X) dX
R R R

or

/1//SI(X)dX+/I//S2(X)dX=/I//SlUS2(X)dX.
JR JR JR

Show that a set E has content zero according to Definition 7.1.14 if and only if E
has Jordan content zero.

Show that if S; and S, are Jordan measurable, then so are S; U S, and S; N S5.

Prove:

(a) If S is Jordan measurable then so is S, and V(S) = V(S). Must S be Jordan
measurable if S is?

(b) If T is a Jordan measurable subset of a Jordan measurable set S, then S — T
is Jordan measurable.

Suppose that H is a subset of a compact Jordan measurable set S such that the inter-
section of H with any compact subset of S has zero content. Show that V(H) = 0.

Suppose that E is an n x n elementary matrix and A is an arbitrary n X p matrix.
Show that EA is the matrix obtained by applying to A the operation by which E is
obtained from the n x n identity matrix.

(a) Calculate the determinants of elementary matrices of types (a), (b), and (c)
of Lemma 7.3.6.

(b) Show that the inverse of an elementary matrix of type (a), (b), or (c) is an
elementary matrix of the same type.

(c) Verify the inverses given for E;, ..., Egin Example 7.3.1.



10.

11.

12.
13.

14.
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Write as a product of elementary matrices.

101 2 3 =2
(@1 1 0] (|0 -1 5
01 1 0 —2 4

Suppose that ad —bc # 0,u; < us, and vy < v,. Find the area of the parallelogram
bounded by the lines

ax +by = uy, ax + by = us,
cx +dy = vy, cx +dy = vs.
Find the volume of the parallelepiped defined by

1<2x+4+3y—-2z<2, 5<—x+4+5y<7 1=<-2x+4y <6.

In writing Eqn. (53) we assumed that

fmmxzf

G(S;

f(A)dX+/ f(X)dX.
) G

G(S) (SNS¢)

Justify this. HINT: Show that G(S1) N G(S N S7) has zero content.
Use Theorem 7.3.8 to show that I} = I, = I3 = I4 in Example 7.3.7.
Lete; = £1,0 <i < n. Let T be a bounded subset of R” and

T = {(e1x1.€2X2, ..., €nXn) | (X1, X2.....xn) € T}.
Suppose that f is defined on T and define g on T by

gleixi,eaxa, ..., enxn) = e€g f(X1,X2,...,Xn).

(a) Prove directly from Definitions 7.1.2 and 7.1.17 that f is integrable on 7 if
and only if g is integrable on f, and in this case

AﬂWMYzmAfmmx

(b) Suppose that T =T,
fleixy exxa, ... enxn) = — f(x1,x2,..., Xn),
and f is integrable on 7". Show that

Afmmxza

Find the area of

(@) {(x.y)|y=<x<dy. 1<x+2y <3}
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(b) {(x.»)|2=<xy <4 2x<y=<5x
15. Evaluate
/ (Bx% +2y +2)d(x,y,2),
T
where
T={xy2)|lx—yl<Lly—zl <L |z+x[<1}.
16. Evaluate
[ 0252y — 26
T
where T is the region bounded by the curves

xy=1, xy=2, y=x% y=x>+1

17. Evaluate
[ ot =r4e )
where T is the region in the ﬁth quadrant bounded by the hyperbolas
xy=1, xy=2, x2—y?2=2, x2-y?=3.
18. Find the volume of the ellipsoid
2 2 2

X y Z
a_2+b_2+c_2:1 (a,b,c>0).

19. Evaluate
exz +y2422

T /x2+y2+272

T ={(x,y,2)|9< x>+ ) +27 <25}

d(x,y,z),

where

20. Find the volume of the set T bounded by the surfaces z = 0, z = /x2 + y2, and
x2+y? =4
21. Evaluate
/TxyZ(X“ —yHd(x.y.2).

where

T={y2)|1l<x?-y><2,3<x?+)?<4,0<z<1}.

22. Evaluate
«/E N/ 4—y2 dx 2 «/m 2,2
(a)/ dy/ _ (b)/ dx/ et dy
0 y 0 0

14+x24y2

1 V1-x2 1-x2—y2
(c)/ dx/ dy/ 72 dz
-1 —V1-x2 0
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23. Use the change of variables

X1 1 cos 61 cos 0, cos 03
X3 7 sin 67 cos 6, cos 63
X3 = A(r.01,62.03) = 7 sin 05 cos 63

X4 7 sin 03

to compute the content of the 4-ball

T = {(x1,x2,x3,x4) | x] + x5 + x5 + x] < a?}.

24. Suppose that A = [a;;] is a nonsingular n x n matrix and T is the region in R”
defined by

o1 < aj1x1 + aizxa + -+ ainxp < Bi, 1<i<n.

(a) Find V(7).
(b) Show thatif ¢y, ¢3, ..., ¢, are constants, then

/T Zc,ixj dA:@Zdi(ai'Fﬂi)’
=1

i=1

where
dq C1
d> C2
— (At)—l )
dy Cn

25. If V, is the content of the n-ball T = {X| IX| < 1}, find the content of the n-
dimensional ellipsoid defined by

3
|
~N

<.

N
LAY

Jj=1

Leave the answer in terms of V,.



CHAPTER 8

Metric Spaces

IN THIS CHAPTER we study metric spaces.

SECTION 8.1 defines the concept and basic properties of a metric space. Several examples
of metric spaces are considered.

SECTION 8.2 defines and discusses compactness in a metric space.

SECTION 8.3 deals with continuous functions on metric spaces.

8.1 INTRODUCTION TO METRIC SPACES

Definition 8.1.1 A metric space is a nonempty set A together with a real-valued
function p defined on A x A such that if , v, and w are arbitrary members of A4, then

(a) p(u,v) > 0, with equality if and only if u = v;

(b) p(u,v) = p(v,u);

(c) pu,v) < p(u,w)+ p(w, v).

We say that p is a metric on A. [ ]

Ifn > 2 and uy, us, ..., u, are arbitrary members of A, then (c) and induction yield
the inequality

n—1

Pt ) < D p(ui, uits).

i=1

Example 8.1.1 The set R of real numbers with p(u,v) = |u — v| is a metric space.
Definition 8.1.1(c) is the familiar triangle inequality:

U —v| <|u—w|+ |w—ul. [ |

Motivated by this example, in an arbitrary metric space we call p(u, v) the distance from
u to v and we call Definition 8.1.1(c) the triangle inequality.

518
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Example 8.1.2 If A4 is an arbitrary nonempty set, then

) = 0 ifu=wv,
POLVY =01 ify £y

is a metric on A (Exercise 5). We call it the discrete metric. |

Example 8.1.2 shows that it is possible to define a metric on any nonempty set A. In
fact, it is possible to define infinitely many metrics on any set with more than one member
(Exercise 3). Therefore, to specify a metric space completely, we must specify the couple
(A, p), where A is the set and p is the metric. (In some cases we will not be so precise; for
example, we will always refer to the real numbers with the metric p(u, v) = |u — v| simply
as R.)

There is an important kind of metric space that arises when a definition of length is
imposed on a vector space. Although we assume that you are familiar with the definition
of a vector space, we restate it here for convenience. We confine the definition to vector
spaces over the real numbers.

Definition 8.1.2 A vector space A is a nonempty set of elements called vectors on
which two operations, vector addition and scalar multiplication (multiplication by real
numbers) are defined, such that the following assertions are true for all U, V, and W in
A and all real numbers r and s:

.U+ Ve 4;
2.U+V=V+1;
3U4+(V+-W)=U+V)+ W,
4. There is vector 0 in A such that U + A = U;
5. There is a vector —U in A such that U 4 (—=U) = 0;
6.rU € A4;
7.r(U+V)=rU+rV;
8. (r+s)U=rU+sU;
9. r(sU) = (rs)U;
10. 1U = U. [ |

We say that A is closed under vector addition if (1) is true, and that A is closed under
scalar multiplication if (6) is true. It can be shown that if B is any nonempty subset of A
that is closed under vector addition and scalar multiplication, then B together with these
operations is itself a vector space. (See any linear algebra text for the proof.) We say that
B is a subspace of A.

Definition 8.1.3 A normed vector space is a vector space A together with a real-valued
function N defined on A, such that if ¥ and v are arbitrary vectors in A and a is a real
number, then

(a) N(u) > 0 with equality if and only if u = 0;
(b) N(au) = |a|N(u);
(¢) Nu+v)<N@) + N@).

We say that N is a norm on A, and (A, N) is a normed vector space. [ ]
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Theorem 8.1.4 If (A, N) is a normed vector space, then
p(x,y) = N(x—y) (1
is a metric on A.
Proof From (a) withu = x — y, p(x,y) = N(x — y) > 0, with equality if and only
if x = y. From (b) withu = x — y anda = —1,
Py, x) = N(y—=x) = N(=(x =y)) = N(x —y) = p(x, y).
From (c) withu = x —zandv =z — y,

p(x,y)=Nx—y) <N@x—-2z)+ Niz—y) =px,2)+ py). a

We will say that the metric in (1) is induced by the norm N. Whenever we speak of
a normed vector space (A4, N), it is to be understood that we are regarding it as a metric
space (4, p), where p is the metric induced by N.

We will often write N (u) as ||u]|. In this case we will denote the normed vector space as

(A - 1D
Theorem 8.1.5 Ifx and y are vectors in a normed vector space (A, N), then
IN(xX) = N(»)| = N(x — y). 2

Proof Since
x=y+((x-y),
Definition 8.1.3(c) with u = y and v = x — y implies that
N(x) = N(y) + N(x — ),

or
N(x) = N(y) = N(x —y).

Interchanging x and y yields
N(y) = N(x) = N(y — x).

Since N(x — y) = N(y — x) (Definition 8.1.3(b) withu = x — y and a = —1), the last
two inequalities imply (2). |

Metrics for R”

In Section 5.1 we defined the norm of a vector A = (xy, x2,...,X,) in R” as

1 = (fx?)m.

i=1
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The metric induced by this norm is

; 1/2
pX,Y) = (Z(Xi - yi)z) .

i=1

Whenever we write R” without identifying the norm or metric specifically, we are referring
to R” with this norm and this induced metric.

The following definition provides infinitely many norms and metrics on R”.

Definition 8.1.6 If p > 1 and X = (x1, x2, ..., Xp), let

n 1/p
nmu=(2]mv) . 3)

i=1

The metric induced on R” by this norm is

n 1/p
ppX.Y) = (Z |xi _yi|p) . ]

i=1

To justify this definition, we must verify that (3) actually defines a norm. Since it is clear
that ||X]|| , > 0 with equality if and only if X = 0, and ||aA||, = |a|||X]|, if @ is any real
number and X € R”, this reduces to showing that

IX+ Y, < IX]lp + 1Yl 4)
for every X and Y in R”. Since
|xi + yil < [xi| + [yil,

summing both sides of this equation from i = 1 to n yields (4) with p = 1. To handle the
case where p > 1, we need the following lemmas.

Lemma 8.1.7 (Hlder’s Inequality) Suppose that p1, ji2, ..., pn and vy, vz,
..., Yy are nonnegative numbers. Let p > 1 andq = p/(p — 1); thus,

—+-=1 5)
P q
Then
n n 1/p n 1/q
> Hivi < (Z uf’) (Z v;’) : (©)
i=1 i=1 i=1
Proof Leta and B be any two positive numbers, and consider the function
q

18y =2+ P _ap,
)4 q



522 Chapter 8 Metric Spaces

where we regard « as a constant. Since f/(8) = 47! —a and f"(B) = (g —1)B972 >0
for B > 0, f assumes its minimum value on [0, 00) at B = a/@~1) = ¢P~1 But

p (p—D)g 1 1
p q

P 4q
Therefore,
a? q
af < —+ — if «,f>0. (7)
p q
Now let
" —-1/p —1/q
o = [ Zuf and B; = v Zv‘ll
j=1 j=1
From (7),
n -1 q n -1
p
M V)
a;fi < — Zﬂf + = ZV?
P \j=1 =1
From (5), summing this fromi = 1 to n yields Z7=1 a;Bi < 1, which implies (6). a
Lemma 8.1.8 (Minkowski’s Inequality) Suppose thatuy,us, ..., u, and vy,
V2, ..., Uy are nonnegative numbers and p > 1. Then

n 1/p n 1/p n 1/p
(Z(u,~+v,~)p) f(Zu;’) +(Zv;’) : ®)

i=1 i=1 i=1

Proof Again,letg = p/(p —1). We write

Y+ v)? =Y wil + o)+ v+ )P ©)

i=1 i=1 i=1

From Holder’s inequality with u; = u; and v; = (u; + v;)P7 L,

n n 1/p n 1/q
D i + )P < (Z M,”) (Z(”i + Ui)p) , (10)

i=1 i=1 i=1

since g(p — 1) = p. Similarly,

n n 1/p n 1/q
Z vi(u; +v;)Pt < (Z vf) (Z(u’ + Ui)p> .

i=1 i=1

This, (9), and (10) imply that

n n 1/p n 1/p n 1/q
Z(”i +v)f < (Z M,”) + (Z Uf’) (Z(”i + Ui)p) .

i=1 i=1 i=1

i=
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Since 1 — 1/q = 1/ p, this implies (8), which is known as Minkowski’s inequality. 0
We leave it to you to verify that Minkowski’s inequality implies (4) if p > 1.

We now define the co-norm on R” by
[Xloo = max {|x;| |1 <i <n}. (1D
We leave it to you to verify (Exercise 15) that || - | 0 is @ norm on R”. The associated metric
is
Poo(X,Y) = max{|x,~ — yil | 1<i < n}

The following theorem justifies the notation in (11).

Theorem 8.1.9 IfX € R" and p> > p1 > 1, then

Al p, = 1IXIlp,: (12)
moreover,
Jim 1X]l, = max {|xi| [1 <7 <nj. (13)
Proof Letuy,us, ..., u, be nonnegative and M = max {ui | 1<i < n} Define

n 1/p
o(p) = (Z ulp) )

i=1

Since u; /o (p) < 1 and pr > p1,

U; D1 u; P2
(U(Pz)) _(U(Pz)) ’

o(p1) n . i\ VPt n ” o\ /P
U(Pz):(g(a(l?z)) ) 2(;(0(172)) ) -h

so o(p1) > o(p2). Since M < o(p) < Mn'/?, limp_0o 0(p) = M. Letting u; = |x;|
yields (12) and (13). ad

Since Minkowski’s inequality is false if p < 1 (Exercise 19), (3) is not a norm in this
case. However, if 0 < p < 1, then

therefore,

n
Xl = Ixil?

i=1

is a norm on R” (Exercise 20).

Vector Spaces of Sequences of Real Numbers

In this section and in the exercises we will consider subsets of the vector space R con-
sisting of sequences X = {x;}72, with vector addition and scalar multiplication defined
by

X+Y={x;i+y}2, and rX={rx;}72,.
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Example 8.1.3 Suppose that 1 < p < oo and let

o0
by =X eR®| ) |xi|? <oo§ :
i=1
Let
00 1/p
1XI1, = (Z |xi|1’) :
i=1
Show that (£, || - || ) is a normed vector space.

Solution Suppose that X, Y € £,. From Minkowski’s inequality,
n 1/p n 1/p n 1/p
(Z |x; + ym’) < (Z |xi|f’> + (Z |yi|”)
i=1 i=1 i=1
for each n. Since the right side remains bounded as n — oo, so does the left, and
00 l/p 00 I/P 00 I/P
(Z Jx; + y#’) < (va) + (Z lyi|”> : (14)
i=1 i=1 i=1

so X+ Y € {,. Therefore, £, is closed under vector addition. Since £, is obviously closed
under scalar multiplication, £, is a vector space, and (14) implies that | - || , is a norm on
Lp. ]

The metric induced by || - ||, is

00 1/p
pp(X,A) = (Z |xi _yi|p> .

i=1
Henceforth, we will denote (£, || - || 5) simply by £,.
Example 8.1.4 Let

lo = {X €R® | {xi}72, is bounded} .

Let
IXlloo = sup {|x;| |7 = 1}.
We leave it to you (Exercise 26) to show that (¢, || - ||oo) is @ normed vector space. ]
The metric induced by || - || oo 18

Poo(X.Y) = sup {|x; — yi| |i = 1}.

Henceforth, we will denote (£oo, || + ||oo) Simply by £oo.
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Familiar Definitions and Theorems

At this point you may want to review Definition 1.3.1 and Exercises 1.3.6 and 1.3.7, which
apply equally well to subsets of a metric space (4, p).

We will now state some definitions and theorems for a general metric space (4, p) that
are analogous to definitions and theorems presented in Section 1.3 for the real numbers. To
avoid repetition, it is to be understood in all these definitions that we are discussing a given
metric space (4, p).

Definition 8.1.10 If ug € A and € > 0, the set
Ne(ug) = {u e A |p(u0, u) < e}

is called an e-neighborhood of ug. (Sometimes we call S¢ the open ball of radius € centered
at ug.) If a subset S of A contains an e-neighborhood of uy, then S is a neighborhood of
ug, and ug is an interior point of S. The set of interior points of S is the interior of S,
denoted by S°. If every point of S is an interior point (that is, S = S), then S is open. A
set S is closed if S€ is open. [ ]

Example 8.1.5 Show that if > 0, then the open ball
Sr(ug) = {u cA | p(ug, u) < r}

is an open set. [ ]

Solution We must show that if u; € S, (ug), then there is an € > 0 such that
Se(u1) C Sr(uo). (15)
Ifu; € Sy(ug), then p(uy, ug) < r. Since

p(u,ug) < p(u,ur) + p(u1, uo)

for any u in A, p(u,ug) < rif p(u,uy) < r — p(uy1,ug). Therefore, (15) holds if ¢ <
r — p(uy, uop). |

The entire space A is open and therefore @ (= A€) is closed. However, @ is also open,
for to deny this is to say that it contains a point that is not an interior point, which is absurd
because @ contains no points. Since @ is open, A (= 0¢) is closed. If A = R, these are the
only sets that are both open and closed, but this is not so in all metric spaces. For example,
if p is the discrete metric, then every subset of A is both open and closed. (Verify!)

A deleted neighborhood of a point ug is a set that contains every point of some neigh-
borhood of ug except ug itself. (If p is the discrete metric then the empty set is a deleted
neighborhood of every member of A!)

The proof of the following theorem is identical to the proof Theorem 1.3.3.
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Theorem 8.1.11
(a) The union of open sets is open.

(b) The intersection of closed sets is closed.

Definition 8.1.12 Let S be a subset of A. Then
(a) ug is alimit point of S if every deleted neighborhood of uo contains a point of S.

(b) wuo is a boundary point of S if every neighborhood of uo contains at least one point
in § and one not in S. The set of boundary points of S is the boundary of S, denoted
by 0S. The closure of S, denoted by S, is defined by S = S U 9S.

(c) Uy is an isolated point of S if ug € S and there is a neighborhood of 1 that contains
no other point of S.

(d) wuo is exterior to S if ug is in the interior of S¢. The collection of such points is the
exterior of §. ]

Although this definition is identical to Definition 1.3.4, you should not assume that con-
clusions valid for the real numbers are necessarily valid in all metric spaces. For example,
if A =R and p(u,v) = |u — v|, then

f,(uo) = {u |p(u, Ug) < r}.
This is not true in every metric space (Exercise 6).

For the proof of the following theorem, see the proofs of Theorem 1.3.5 and Corol-
lary 1.3.6.

Theorem 8.1.13 A set is closed if and only if it contains all its limit points.

Completeness

Since metric spaces are not ordered, concepts and results concerning the real numbers that
depend on order for their definitions must be redefined and reexamined in the context of
metric spaces. The first example of this kind is completeness. To discuss this concept, we
begin by defining an infinite sequence (more briefly, a sequence) in a metric space (4, p) as
a function defined on the integers n > k with values in A. As we did for real sequences, we
denote a sequence in A by, for example, {u,} = {u,}52,. A subsequence of a sequence
in A is defined in exactly the same way as a subsequence of a sequence of real numbers
(Definition 4.2.1).

Definition 8.1.14 A sequence {u,} in a metric space (A4, p) converges tou € A if
lim p(un,u) = 0. (16)
n—>o00
In this case we say that lim, o, U, = u. ]

We leave the proof of the following theorem to you. (See the proofs of Theorems 4.1.2
and 4.2.2.)
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Theorem 8.1.15

(a) The limit of a convergent sequence is unique.

(b) Iflimy—o0 un = u, then every subsequence of {un} converges to u.

Definition 8.1.16 A sequence {u,} in a metric space (4, p) is a Cauchy sequence if
for every € > O there is an integer N such that

p(Up,um) <€ and m,n > N. (17)
|
We note that if p is the metric induced by a norm | - || on A, then (16) and (17) can be
replaced by
lim ||u, —u|| =0
n—>o00
and
lun —uml| <€ and m,n > N,
respectively.

Theorem 8.1.17 If a sequence {u,} in a metric space (A, p) is convergent, then it is
a Cauchy sequence.

Proof Suppose that lim, ooty = u. If € > 0, there is an integer N such that
p(un,u) < €/2if n > N. Therefore, if m, n > N, then

P(Un, Um) < p(Un, u) + p(U, uy) < €. a

Definition 8.1.18 A metric space (4, p) is complete if every Cauchy sequence in A4
has a limit. [ ]

Example 8.1.6 Theorem 4.1.13 implies that the set R of real numbers with p(u, v)
= |u — v| is a complete metric space. ]

This example raises a question that we should resolve before going further. In Section 1.1
we defined completeness to mean that the real numbers have the following property:

Axiom (I). Every nonempty set of real numbers that is bounded above has a supremum.

Here we are saying that the real numbers are complete because every Cauchy sequence
of real numbers has a limit. We will now show that these two usages of “complete” are
consistent.

The proof of Theorem 4.1.13 requires the existence of the (finite) limits inferior and
superior of a bounded sequence of real numbers, a consequence of Axiom (I). However,
the assertion in Axiom (I) can be deduced as a theorem if Axiom (I) is replaced by the
assumption that every Cauchy sequence of real numbers has a limit. To see this, let T’ be a
nonempty set of real numbers that is bounded above. We first show that there are sequences
{u; 172, and {v; }?2 | with the following properties for all i > 1:
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(a) u; <tforsomet € T andv; > forallt € T;
(b) (vi —ui) < 271wy —uy).
(C) Ui SU+1 S Vi41 SV

Since T is nonempty and bounded above, u; and v; can be chosen to satisfy (a) with
i = 1. Clearly, (b) holds withi = 1. Let w; = (u; + v1)/2, and let

(2, v2) = (wy,v1) ifw; <t forsomet €T,
22 7 \(uy,wy)  ifwy > tforallt € T.

In either case, () and (b) hold with i = 2 and (c) holds with i = 1. Now suppose that
n > 1and {uy,...,u,} and {vy,...,v,} have been chosen so that (a) and (b) hold for
1 <i <nand(c)holdsforl <i <n—1.Let wy, = (uy + vy)/2 and let

(wp,v,) ifw, <tforsometeT,

(Unt1. Vnt1) = {(u,,, wy,) ifw, >tforallt eT.

Then (a) and (b) hold for 1 <i < n + 1 and (c) holds for 1 < i < n. This completes
the induction.

Now (b) and (c) imply that
0<ujt+1 —u; §2i_1(v1—u1) and 0 <v; —vj4; §2i_1(v1—u1), i >1.

By an argument similar to the one used in Example 4.1.14, this implies that {u;}?°, and
{v;i}72, are Cauchy sequences. Therefore the sequences both converge (because of our
assumption), and (b) implies that they have the same limit. Let

lim »; = lim v; = B.

1—>00 1—>00
Ift € T,then v; > ¢ forall i, so f = lim;_, v; > t; therefore, § is an upper bound of
T. Now suppose that € > 0. Then there is an integer N such that uy > 8 — €. From the
definition of u y, there is a ti in T such that 1y > uy > f — €. Therefore, 8 =sup T. O

Example 8.1.7 (The Metric Space C[a,b]) Let C[a, b] denote the set of all
real-valued functions f continuous on the finite closed interval [a, b]. From Theorem 2.2.9,
the quantity

11l = max {| f(x)| | a < x < b}

is well defined. We leave it to you to verify that it is a norm on C|a, b]. The metric induced
by this norm is

p(f.8) = IIf —gll = max {| f(x) — g(x)| |a < x < b}.

Whenever we refer to Cla, b], we mean this metric space or, equivalently, this normed
linear space. [ ]

From Theorem 4.4.6, a Cauchy sequence { f,,} in C|[a, b] converges uniformly to a func-
tion f on[a, b], and Corollary 4.4.8 implies that f isin C|a, b]; hence, C[a, b] is complete.
|
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The Principle of Nested Sets

We say that a sequence {7, } of sets is nested if T, C T, for all n.

Theorem 8.1.19 (The Principle of Nested Sets) A metric space (4, p) is
complete if and only if every nested sequence {T,} of nonempty closed subsets of A such
that limy,_,, d(T,,) = 0 has a nonempty intersection.

Proof Suppose that (4, p) is complete and {7, } is a nested sequence of nonempty
closed subsets of A such that lim,,_,~, d(7,) = 0. For each n, choose t, € T,,. If m > n,
then t,,, t, € Ty, s0 p(tn,tm) < d(Ty). Since lim,_,o0 d(T,) = 0, {t,} is a Cauchy se-
quence. Therefore, lim, o0 t, = I exists. Since 7 is a limit point of T, and T}, is closed
forall n, t € T, for all n. Therefore, f € NS, Ty,; in fact, NS, T,, = {f}. (Why?)

Now suppose that (4, p) is not complete, and let {t,} be a Cauchy sequence in A that
does not have a limit. Choose n; so that p(ty,t,,) < 1/2ifn > ny, and let T; =
{t |,0(t,tnl) < 1}. Now suppose that j > 1 and we have specified ny, na, ..., nj_;
and 71, 1>, ..., Tj—1. Choose n; > n;_1 so that p(tn,tnj) <27 ifn > nj, and let
T; = {t |,0(t,tnj) < 2‘j+1}. Then T; is closed and nonempty, 74+ C T for all j,
and lim;_,o d(T;) = 0. Moreover, t, € T; if n > n;. Therefore, if € ﬂ;’.°=1Tj,
then p(t,,1) < 27/ n > nj, so limy o0ty = 7, contrary to our assumption. Hence,
N5, T; = 0.

Equivalent Metrics

When considering more than one metric on a given set A we must be careful, for example,
in saying that a set is open, or that a sequence converges, etc., since the truth or falsity of
the statement will in general depend on the metric as well as the set on which it is imposed.
In this situation we will alway refer to the metric space by its “full name;" that is, (4, p)
rather than just A.

Definition 8.1.20 If p and ¢ are both metrics on a set A, then p and o are equivalent
if there are positive constants o and § such that

o < plx. ) <p forall x,ye A suchthat x # y. (18)
o(x,y)

Theorem 8.1.21 If p and o are equivalent metrics on a set A, then (A, p) and (A, o)
have the same open sets.

Proof Suppose that (18) holds. Let S be an open set in (4, p) and let xo € S. Then
there is an € > 0 such that x € S if p(x, x¢) < €, so the second inequality in (18) implies
that xo € S if o(x, xo) < €/B. Therefore, S is open in (4, o).
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Conversely, suppose that S is open in (4,0) and let xo € S. Then there is an € > 0
such that x € S if o(x,xp) < €, so the first inequality in (18) implies that xo € S if
p(x, x0) < ea. Therefore, S is open in (4, p). |

Theorem 8.1.22 Any two norms N1 and N, on R" induce equivalent metrics on R".

Proof It suffices to show that there are positive constants « and 8 such
Ni(X) .
o< ——< < if X#0. (19)
N2 (X) P ?

We will show that if N is any norm on R”, there are positive constants ay and by such
that
an|X[l2 = NX) <bny[X]l2 if X#0 (20)

and leave it to you to verify that this implies (19) with « = ay, /by, and B = by, /an,.

We write X — Y = (x1, X2,...,X,) as
n
X-Y=) (x-ykE,
i=1

where E; is the vector with i th component equal to 1 and all other components equal to 0.
From Definition 8.1.3(b), (c), and induction,

NX=Y) <> |xi — yi| N(E);

i=1
therefore, by Schwarz’s inequality,
NX-Y) = K[X-Y]2, @21
where

n 1/2
K = (Z Nz(Ei)> .

i=1

From (21) and Theorem 8.1.5,
INX) = N(Y)| = KX =Y,

so N is continuous on R} = R"”. By Theorem 5.2.12, there are vectors Uy and U, such
that [|Ur ]2 = [|Azfl2 = 1,

N@U;) =min{N(U) | |Ullz =1}, and N(Up) =max {N(U)||U|> = 1}.
Ifay = N(U;) and by = N(U,), then ay and by are positive (Definition 8.1.3(a)), and

X
aNfN( )be if X#O
X112

This and Definition 8.1.3(b) imply (20). a

We leave the proof of the following theorem to you.
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Theorem 8.1.23 Suppose that p and o are equivalent metrics on A. Then
(a) A sequence {un} converges tou in (A, p) if and only if it converges to u in (A, o).

(b) A sequence {uy} is a Cauchy sequence in (A, p) if and only if it is a Cauchy sequence
in (A, 0).

(c) (A, p) is complete if and only if (A, &) is complete.

8.1 Exercises

1. Show that (a), (b), and (c) of Definition 8.1.1 are equivalent to
(i) p(u,v) =0ifand onlyifu = v;
(if) p(u.v) < p(w,u) + p(w, v).

2. Prove: If x, y, u, and v are arbitrary members of a metric space (4, p), then
lp(x.y) — p(u, v)| < p(x,u) + p(v, y).

3. (a) Suppose that (4, p) is a metric space, and define

p(u, v)

= T ey

Show that (A4, p1) is a metric space.

(b) Show that infinitely many metrics can be defined on any set A with more than
one member.

4. Let (A, p) be a metric space, and let
oG v) = L)
1+ p(u,v)
Show that a subset of A is open in (4, p) if and only if it is open in (4, 0).

5. Show that if A is an arbitrary nonempty set, then

0 ifv=u,
POLV) =01 ify £,
is a metric on A.
6. Suppose that (A4, p) is a metric space, ug € 4, and r > 0.
(a) Show that S, (ug) C {u | p(u,up) < r} if A contains more than one point.
(b) Verify that if p is the discrete metric, then S1(uo) # {u | p(u,uo) < 1}.
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7.

10.
11.

12.

13.

14.

15.

16.

Prove:

(a) The intersection of finitely many open sets is open.

(b) The union of finitely many closed sets is closed.

Prove:

(a) If U is a neighborhood of ug and U C V, then V is a neighborhood of u.
(b) IfUy, U, ..., U, are neighborhoods of ug, so is N?_, U;.

Prove: A limit point of a set S is either an interior point or a boundary point of S.
Prove: An isolated point of § is a boundary point of S€.

Prove:

(a) A boundary point of a set S is either a limit point or an isolated point of S.
(b) AsetS isclosed if and only if S = S.

Let S be an arbitrary set. Prove: (a) 95 isclosed. (b) S?is open. (c) The exterior
of S is open. (d) The limit points of S form a closed set. (e) @ =5.

Prove:

(a) (51N S0 = S? n Sg (b) S? ) Sg C(S1US,)°
Prove:

(a) 9(S1 U S2) C aS1 UDS, (b) 3(S1 N S2) C3S; UIS,
(c) S cas (d) as = as¢
(e)a(S—T)casuaT

Show that

IX]l = max{|xi], [x2[, ..., |xnl}
is a norm on R”.
Suppose that (4;, p;), 1 <i <k, are metric spaces. Let
A=A X Ay XX A} = {Xz(xl,xz,...,xk)|x,- € A;, lfifk}.
If X and Y are in A, let

k
p(X,Y) = p(xi, yi).

i=1

(a) Show that p is a metric on A.



17.

18.
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(b) Let {X;}%2, = {(x1r, X2, ..., Xkr)}22; be a sequence in A. Show that
lim X, =X = (31, %, ..., X%)
r—>00
if and only if

lim x;, =%;, 1<i<k.

r—>00
(c) Show that {X,}%2, is a Cauchy sequence in (4, p) if and only if {x;,}2° , isa

Cauchy sequence in (4;, p;), | <i <k.

(d) Show that (4, p) is complete if and only if (A4;, p;) is complete, 1 <i < k.
For each positive integer i, let (4;, p;) be a metric space. Let A be the set of all
objects of the form X = (x1, x2,..., Xp,...), Wwhere x; € A;,i > 1. (For example,
if A; =R,i > 1,then A = R*)) Let {0;}$2, be any sequence of positive numbers
such that Y 72, o < oo.
(a) Show that

—  pilxi, i)
p(X,Y) = o — e T
; "1+ pi(xi, pi)
is a metric on A.
(b) Let X322, ={(x1r, X2, ., Xnr, ... )}72, be a sequence in A. Show that
lim X, =X = (31, %2, ... %n....)
r—00

if and only if
lim x;, =%;, i>1.
r—00
(c) Show that {X,}%2, is a Cauchy sequence in (4, p) if and only if {x;,}2° | isa
Cauchy sequence in (A;, p;) foralli > 1.
(d) Show that (4, p) is complete if and only if (4;, p;) is complete forall i > 1.
Let C[0, co) be the set of all real-valued functions continuous on [0, c0). For each
nonnegative integer n, let

£l = max [ £0] [0 < x <)

and T
_ — gl
P8 = T = el
Define
21
P& =) (S 2).
n=1

(a) Show that p is a metric on C[0, c0).
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19.
20.

21.

22,

23.

24.

(b) Let { fi}32, be a sequence of functions in C[0, 00). Show that
lim fi = f
k—o00
in the sense of Definition 8.1.14 if and only if
lim fi(x) = f(x)
k—o00

uniformly on every finite subinterval of [0, 00).
(c) Show that (C[0, 00), p) is complete.
Show that Minkowski’s inequality is false if 0 < p < 1.

Show that if u and v are nonnegative and 0 < p < 1, then
(u +v)? <uf +v?.

Use this to show that

n

Xl =" |xil”

i=1
isanormonR" if 0 < p < 1.
Suppose that X = {x;}°2, isin £,, where p > 1. Show that
(a) X e, foralr > p;
(b) Ifr > p, then X[, < [IX]p;
(€) limy oo |A]l; = [[X]|oo-
Let (A, p) be a metric space.
(a) Suppose that {u,} and {v, } are sequences in A4, limy, 00 Uy = U, and limy, 00 Uy =
v. Show that lim, o p(un, vy) = p(u, v).
(b) Conclude from (b) that if lim; 0o 4, = u and v is arbitrary in A, then

limy, 00 p(Uy, v) = p(u, v).

Prove: If {u,}22, is a Cauchy sequence in a normed vector space (4, | - ||), then

{llur 1392, is bounded.

Let
o0
A = { X € R* | the partial sums Zx,-, n>1, are bounded§ .

i=1
(a) Show that

n
D xi

i=1

IX]| = sup

n>1

is anorm on A.
(b) Let p(X,Y) = ||X —Y]|. Show that (4, p) is complete.
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25. (a) Show that
b
||f||=/ ()] dx

isanorm on Cla, b],
(b) Show that the sequence { f,} defined by

o= (22

is a Cauchy sequence in (Cla, b], | - ||)-
(c) Show that (C[a, b], | - ||) is not complete.
26. (a) Verify that £ is a normed vector space.
(b) Show that £ is complete.
27. Let A be the subset of R consisting of convergent sequences X = {x; }$2,. Define

[X]| = sup; > |x;|. Show that (4, || - ||) is a complete normed vector space.

28. Let A be the subset of R*™ consisting of sequences X = {x;}72, such thatlim; o x; =

0. Define | X|| = max {|xi| | i> 1}. Show that (4, ||-||) is a complete normed vector
space.

29. (a) Show that R’ is complete if p > 1.
(b) Show that £, is complete if p > 1.

30. Show thatif X = {x;}{2, € £, and A = {y;}?2, € £y, where 1/p 4+ 1/q = 1,
then Z = {x;y;} € {1.

8.2 COMPACT SETS IN A METRIC SPACE

Throughout this section it is to be understood that (A, p) is a metric space and that the sets
under consideration are subsets of A.

We say that a collection H of open subsets of A is an open covering of T if T C
U {H | HeH } We say that T has the Heine—Borel property if every open covering H of

T contains a finite collection H such that

T CUlH|H e Y.

From Theorem 1.3.7, every nonempty closed and bounded subset of the real numbers
has the Heine-Borel property. Moreover, from Exercise 1.3.21, any nonempty set of reals
that has the Heine—Borel property is closed and bounded. Given these results, we defined
a compact set of reals to be a closed and bounded set, and we have the following theorem:

A nonempty set of real numbers has the Heine—Borel property if and only if it is compact.
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The definition of boundedness of a set of real numbers is based on the ordering of the
real numbers: if @ and b are distinct real numbers then either @ < b or b < a. Since there
is no such ordering in a general metric space, we introduce the following definition.

Definition 8.2.1 The diameter of a nonempty subset S of A is
d(S) = sup {p(u, v) | u,veT}.
If d(S) < oo then S is bounded. ]

As we will see below, a closed and bounded subset of a general metric space may fail
to have the Heine—Borel property. Since we want “compact” and “has the Heine—Borel
property" to be synonymous in connection with a general metric space, we simply make
the following definition.

Definition 8.2.2 A set T is compact if it has the Heine-Borel property. [ |

Theorem 8.2.3 Aninfinite subset T of A is compact if and only if every infinite subset
of T has a limit point in T.

Proof Suppose that T has an infinite subset £ with no limit pointin 7. Then, if t € T,
there is an open set H; such that7 € H; and H; contains at most one member of E. Then
H=U {H, | te T} is an open covering of 7', but no finite collection { H;, , Hy,. ..., Hy }
of sets from H can cover E, since E is infinite. Therefore, no such collection can cover T';
that is, T is not compact.

Now suppose that every infinite subset of 7" has a limit pointin 7', and let H be an open
covering of T'. We first show that there is a sequence {H;}?2, of sets from H that covers
T.

If € > 0, then T can be covered by e-neighborhoods of finitely many points of 7. We
prove this by contradiction. Let #; € T. If N¢(f1) does not cover T, thereisat, € T such
that p(#1,7;) > €. Now suppose that n > 2 and we have chosen 1, ?, ..., #, such that
p(ti tj) =€, 1 <i < j <n. If U'_ Ne(t;) does not cover T, there is a t,4+1 € T such
that p(t;, th+1) > €, 1 < i < n. Therefore, p(t;,7;) > €, 1 <i < j < n + 1. Hence,
by induction, if no finite collection of e-neighborhoods of points in 7" covers T, there is an
infinite sequence {t,}52, in T such that p(;,¢;) > €, i # j. Such a sequence could not
have a limit point, contrary to our assumption.

By taking € successively equal to 1, 1/2, ..., 1/n, ..., we can now conclude that, for
each n, there are points t1,, f24, ..., Ik, » such that
kn

T C U Nl/n(tin)‘
i=1

Denote Bi, = Ni/,(tin), 1 <i <n,n > 1, and define

{Gla GZa G3a } = {Blla e Bkl,la BIZa ey Bkz,Za Bl3a e Bk3,3a e }
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Ift € T, there is an H in H such that7 € H. Since H is open, there is an € > 0 such
that Ne(¢) C H. Since ¢ € G| for infinitely many values of j and lim; o d(G;) =0,

G, CN.(t)CH

for some j. Therefore, if {G j;}72, is the subsequence of {G} such that G ; is a subset of
some H; in H (the { H;} are not necessarily distinct), then

T c|JH:. (1)

We will now show that

N
rc|JH. @)
i=1

for some integer N . If this is not so, there is an infinite sequence {f,}5>, in T such that

et \JH, n=1. (3)

i=1

From our assumption, {#,}5, has a limit 7 in 7. From (1), ¥ € Hj for some k, so
N(t) C Hy, for some € > 0. Since lim, 0 1, = 1, there is an integer N such that

n
tneNe(?)chcUH,», n >k,

i=1
which contradicts (3). This verifies (2), so T is compact. a

Any finite subset of a metric space obviously has the Heine—Borel property and is there-
fore compact. Since Theorem 8.2.3 does not deal with finite sets, it is often more convenient
to work with the following criterion for compactness, which is also applicable to finite sets.

Theorem 8.2.4 A subset T of a metric A is compact if and only if every infinite se-
quence {t,} of members of T has a subsequence that converges to a member of T.

Proof Suppose that T is compact and {t,} C T. If {¢,} has only finitely many distinct
terms, there is a 7 in T such that t,, = 7 for infinitely many values of x; if this is so for
ny <np <---, thenlimj oo ty; = t. If {t, } has infinitely many distinct terms, then {¢, }
has a limit point 7 in 7', so there are integers ny < ny < --- such that p(t,,,7) < 1/j;
therefore, lim; oo In; =1.

Conversely, suppose that every sequence in 7" has a subsequence that converges to a limit
in T. If S is an infinite subset of 7', we can choose a sequence {¢,} of distinct points in
S. By assumption, {¢,} has a subsequence that converges to a member 7 of T'. Since 7 is a
limit point of {z,}, and therefore of T', T is compact. 0

Theorem 8.2.5 IfT is compact, then every Cauchy sequence {t,}52 | in T converges
toalimitinT.
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Proof By Theorem 8.2.4, {1,} has a subsequence {¢,, } such that
lim 1, =TT, )

Jj—o0
We will show that limy,—se0 tn = 7.

Suppose that € > 0. Since {t,} is a Cauchy sequence, there is an integer N such that
p(tn.tm) < €,n > m > N. From (4), thereis an m = n; > N such that p(t;s.7) < €.
Therefore,

o(tn, 1) < pltu,tm) + p(tm, 1) <2¢, n>m. a

Theorem 8.2.6 If T is compact, then T is closed and bounded.

Proof Suppose that 7 is a limit point of 7. For each n, choose t, # 7 € By;,(f) N T.
Then lim, o f, = f. Since every subsequence of {t,} also converges to 7, f € T, by
Theorem 8.2.3. Therefore, T is closed.

The family of unit open balls H = {Bl(t) | t e T} is an open covering of T'. Since T is
compact, there are finitely many members ?1, #5, ..., t, of T such that S C U’}=lBl(tj).
If u and v are arbitrary members of T, then u € B (t,) and v € By (t;) for some r and s in
{1,2,...,n},s0

,O(M, U) f ,O(M,lr) + p(trvtS) + p(tSv U)
<2+ p(r,ts) <24+ max {p(t;,1;) |1 <i < j <n}.

Therefore, T is bounded. a

The converse of Theorem 8.2.6 is false; for example, if A is any infinite set equipped
with the discrete metric (Example 8.1.2.), then every subset of 4 is bounded and closed.
However, if T is an infinite subset of A, then H = {{t} | t e T} is an open covering of T,
but no finite subfamily of H covers T'.

Definition 8.2.7 A set T is totally bounded if for every € > 0 there is a finite set T
with the following property: if # € T, there is an s € T¢ such that p(s, ) < €. We say that
Te is a finite e-net for T . |

We leave it to you (Exercise 4) to show that every totally bounded set is bounded and
that the converse is false.

Theorem 8.2.8 If T is compact, then T is totally bounded.

Proof We will prove that if T is not totally bounded, then T is not compact. If T is not
totally bounded, there is an € > 0 such that there is no finite e-net for 7. Let t; € 7. Then
there must be a #, in T such that p(t1, 1) > €. (If not, the singleton set {¢;} would be a
finite e-net for 7.) Now suppose that » > 2 and we have chosen 1?1, #3, ..., #; such that
p(ti,tj) > €,1 <i < j =< n. Then there must be a #,+1 € T such that p(#;, t4+1) > €,
1 <i <n. (fnot, {t1,1,...,1,} would be a finite e-net for 7'.) Therefore, p(;,1;) > €,
1 <i < j < n+ 1. Hence, by induction, there is an infinite sequence {¢,}>, in T such
that p(#;,¢;) > €,i # j. Since such a sequence has no limit point, 7" is not compact, by
Theorem 8.2 .4. a
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Theorem 8.2.9 If (A, p) is complete and T is closed and totally bounded, then T is
compact.

Proof Let S be aninfinite subset of T, and let {s; }?° | be a sequence of distinct members
of §. We will show that {s; }? | has a convergent subsequence. Since 7 is closed, the limit
of this subsequence is in 7', which implies that 7" is compact, by Theorem 8.2.4.

Forn > 1, let Ty, be a finite 1/n-net for T. Let {s;0}{2, = {s5:}72,. Since Tj is
finite and {s;o}72, is infinite, there must be a member #; of T} such that p(s;o,?1) < 1
for infinitely many values of i. Let {s;1}72, be the subsequence of {s;o}72, such that
p(sit,t1) < L.

We continue by induction. Suppose that n > 1 and we have chosen an infinite subse-
quence {s; 17>, of {s;n—2}$2,. Since Ty, is finite and {s;,—1}$2, is infinite, there
must be member 7, of Ty/, such that p(s;n—1,%) < 1 /n for infinitely many values of
i. Let {s;,}72, be the subsequence of {s; ,—1}72, such that p(s;s, ;) < 1/n. From the
triangle inequality,

PGinsSjn) =2/n, i, j =1, n=1 )
Now lets; = s;;,i > 1. Then {5; };’il is an infinite sequence of members of 7. Moroever,
ifi, j > n, thens; ands; are both included in {s;, }$2 , so (5) implies that p(5;,5;) < 2/n;
that is, {5;}72, is a Cauchy sequence and therefore has a limit, since (4, p) is complete. O

Example 8.2.1 Let T be the subset of £, such that |x;| < u;, i > 1, where lim; o0 ;i
0. Show that T is compact. [ ]

Solution We will show that T is totally bounded in £, Since £, is complete (Exer-
cise 8.1.26), Theorem 8.2.9 will then imply that 7" is compact.

Let e > 0. Choose N so that u; < eifi > N. Let u = max{p,i | 1<i < n} and let p
be an integer such that pe > u. Let Q. = {rie | r; = integer in[—p, p]} Then the subset
of £oo such that x; € Q¢, 1 <i < N,and x; =0,i > N, is a finite e-net for 7. ]

Compact Subsets of C|a,b]

In Example 8.1.7 we showed that Ca, b] is a complete metric space under the metric

p(f.8) = If —gll = max {| f(x) — g(x)| |a < x < b} .

We will now give necessary and sufficient conditions for a subset of C[a, b] to be compact.
Definition 8.2.10 A subset T of Cla, b] is uniformly bounded if there is a constant M

such that
|f) <M if a<x<b and [feT. (6)

A subset T of Cla, b] is equicontinuous if for each € > 0 there is a § > 0 such that

|l f(x1)— f(x2)| <€ if xi1,x2€la,b], |x1—x2/<é, and [feT. (7)
|
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Theorem 2.2.8 implies that for each f in C[a, b] there is a constant M y which depends
on f, such that

/() =My if a=<x=<b,

and Theorem 2.2.12 implies that there is a constant § y which depends on f and € such that
[f(x1) = f(x2)| <€ if xy,x2€a,b] and |x; —x3| <§f.

The difference in Definition 8.2.10 is that the same M and § apply to all f in T.

Theorem 8.2.11 A nonempty subset T of Cla, b] is compact if and only if it is closed,
uniformly bounded, and equicontinuous.

Proof For necessity, suppose that T is compact. Then T is closed (Theorem 8.2.6)

and totally bounded (Theorem 8.2.8). Therefore, if € > 0, there is a finite subset T, =

{g1,82,-.., 8k} of Cla,b]suchthatif f € T, then| f—g;| < eforsomeiin{l,2,...,k}.
If we temporarily let € = 1, this implies that

1A =11 —g)+ gl =IIf —gill + llgill =1+ llgill,
which implies (6) with

M:l+max{||g,~|||l§i§k}.

For (7), we again let € be arbitary, and write

| f(x1) = f(2)] < [f(x1) — gi(x0)] + |gi(x1) — gi (x2)| + |gi(x2) — f(x2)]
<|gi(x1) —gi(x2)| +2/1f —gill ®
<|gi(x1) — gi(x2)| + 2e.

Since each of the finitely many functions g1, g2, ..., gk is uniformly continuous on [a, b]
(Theorem 2.2.12), there is a § > 0 such that

gi(x1) —gi(x2)| <€ if |x1—x2| <6, 1=ic<k.
This and (8) imply (7) with € replaced by 3e. Since this replacement is of no consequence,

this proves necessity.

For sufficiency, we will show that T is totally bounded. Since T is closed by assumption
and CJa, b] is complete, Theorem 8.2.9 will then imply that 7" is compact.
Let m and n be positive integers and let
r sM
& =a+—0b—-a), 0<r<m, and ny=—, -—-n=<s<mn;
m n
thatis,a = & < & < --- < &, = b is a partition of [a, b] into subintervals of length
b —a)/m,and —M = n_y < N—py1 < --+ < Nu—1 < Ny = M is a partition of the
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segment of the y-axis between y = —M and y = M into subsegments of length M/n.
Let Sy, be the subset of C[a, b] consisting of functions g such that

{g(50). g(€1). ... g(Em)} C{N—nN-nt1 .- a1, 1n}
and g is linear on [§;_1, &], 1| <i < m. Since there are only (m + 1)(2n + 1) points of the
form (&, 15), Smn is a finite subset of C|a, b].

Now suppose that € > 0, and choose § > 0 to satisfy (7). Choose m and n so that
(b—a)/m <§and2M/n < €. If f is an arbitrary member of 7', there is a g in S,,,, such
that

g — fEDl <e. 0=<i=<m. )

f0<i <m-—1,

lgi) —gEi+)| = 18G) — fEDI + 1 fE) — fEi+D)| + 1 fGiv1) —gGit)]. (10)
Since &4+1 — & < 8, (7), (9), and (10) imply that

lg(&i) —gGiv1)] < 3e.

Therefore,
1g(€i) —g(x)| <3e, & <x <&, an
since g is linear on [£;, & 41].

Now let x be an arbitrary point in [a, ], and choose i so that x € [£;, & 4+1]. Then

| () =gl = [f o) = fED + /) — gDl + [g(5:) — g,

0 (7), (9), and (11) imply that | f(x) — g(x)| < 5¢,a < x < b. Therefore, Sy, is a finite
S5e-netfor T', so T is totally bounded. a

Theorem 8.2.12 (Ascoli-Arzela Theorem) Suppose that F is an infinite uni-
Sformly bounded and equicontinuous family of functions on [a, b]. Then there is a sequence
{fu} in F that converges uniformly to a continuous function on [a, b].

Proof Let T be the closure of F; thatis, f € T if and only if either /' € T or f
is the uniform limit of a sequence of members of F'. Then T is also uniformly bounded
and equicontinuous (verify), and T is closed. Hence, T is compact, by Theorem 8.2.11.
Therefore, F has a limit point in 7. (In this context, the limit point is a function f in
T.) Since f is a limit point of F, there is for each integer n a function f, in F such that
| /o — fll < 1/n;thatis { f,} converges uniformly to f on [a, b]. 0

8.2 Exercises

1. Suppose that T, Tz, ..., Ty are compact sets in a metric space (A4, p). Show that
U]/‘.=1 T'; is compact.
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2.

10.

11.

(a) Show that a closed subset of a compact set is compact.

(b) Suppose that T is any collection of closed subsets of a metric space (4, p),
and some 7 in T is compact. Show that N {T | T e T} is compact.

(c) Show thatif T isa collection of compact subsets of a metric space (4, p), then
N {T | T e T} is compact.

If S and T are nonempty subsets of a metric space (4, p), we define the distance
from S to T by
dist(S, T) = inf {p(s.1) | s € S, 1 € T}.

Show that if S and 7" are compact, then dist(S, 7) = p(s,?) for some s in S and
some?in T.

(a) Show that every totally bounded set is bounded.

(b) Let
5. — 1 ifi =,
0 ifi #
and let 7' be the subset of £, consisting of the sequences X, = {3;7}72,,

r > 1. Show that T is bounded, but not totally bounded.

Let 7 be a compact subset of a metric space (A, p). Show that there are members s
and 7 of T such that d(s,7) = d(T).

Let T be the subset of £1 such that |x;| < u;,i > 1, where Z;’il Wi < oo. Show
that 7" is compact.

Let T be the subset of £, such that |x;| < i, i > 1, where Zloo M,Z < 00. Show
that 7" is compact.

Let S be a nonempty subset of a metric space (A, p) and let up be an arbitrary
member of A. Show that S is bounded if and only if D = {p(u, Uop) | u e S} is
bounded.

Let (A, p) be a metric space.

(a) Prove: If S is a bounded subset of A, then S (closure of S) is bounded. Find
d(S).

(b) Prove: If every bounded closed subset of A is compact, then (4, p) is com-
plete.

Let (A, p) be the metric space defined in Exercise 8.1.16 Let
T = T1 XT2X---XTk,

where 7; C A; and T; # @, 1 <i < k. Show that T is compact if and only 7; is
compact for 1 <i <k.

Let (A, p) be the metric space defined in Exercise 8.1.17. Let

T=T1 xTyx--+xTyx---,
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where 7; C A; and T; # @,i > 1. Show that if 7' is compact, then 7; is compact
foralli > 1.

12.  Let {T,}$2, be a sequence of nonempty closed sets of a metric space such that (a)
Ty is compact; (b) Ty4+1 C Ty, n > 1; and (c) limy—o00 d(T,) = 0. Show that
Mg, T, contains exactly one member.

8.3 CONTINUOUS FUNCTIONS ON METRIC SPACES

In Chapter 5 we studied real-valued functions defined on subsets of R”, and in Chapter 6
we studied functions defined on subsets of R” with values in R”. These are examples of
functions defined on one metric space with values in another metric space.(Of course, the
two spaces are the same if n = m.)

In this section we briefly consider functions defined on subsets of a metric space (4, p)
with values in a metric space (B, o). We indicate that f is such a function by writing

f (4, p) = (B,o).
The domain and range of f are the sets
Dy = {u €A | fu)is deﬁned}

and
Ry = {v € B|v = f(u) forsomeuian}.

Definition 8.3.1 We say that
lim f(u) =%
Uu—>u

ifu e Ef and for each € > 0 there is a § > 0 such that

o(f(u),v) <e if ueDs and 0<p(u,u)<34. (1)

Definition 8.3.2 We say that f is continuous at i if i € D y and for each € > 0 there
isa § > 0 such that

o(f(u), f()) <e if wue DyN Ns). 2)
If f is continuous at every point of a set S, then f is continuous on S. ]

Note that (2) can be written as

f(Dy N Ns@)) C Ne(f (@)

Also, f is automatically continuous at every isolated point of D y. (Why?)
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Example 8.3.1 If (4, || - ||) is a normed vector space, then Theorem 8.1.5 implies that

f(u) = ||lu| is a continuous function from (4, p) to R, since
el = N2l ] < [lw — 2]
Here we are applying Definition 8.3.2 with p(u, %) = ||u — u]| and o (v, ?) = |v — ].
|
Theorem 8.3.3 Suppose thatu € D . Then
lim f(u) =7 3)
Uu—>u
if and only if
lim f(uy) =70 “4)
n—>o0
for every sequence {uy} in D s such that
lim u, = u. (5)

n—>o00

Proof Suppose that (3) is true, and let {u,} be a sequence in Dy that satisfies (5).
Let € > 0 and choose § > 0 to satisfy (1). From (5), there is an integer N such that
o(uy,u) < 8ifn > N. Therefore, o(f(u,), V) < € if n > N, which implies (4).

For the converse, suppose that (3) is false. Then there is an €p > 0 and a sequence {u,}
in D ¢ such that p(u,, %) < 1/n and o (f(un), V) > €9, s0 (4) is false. 0

We leave the proof of the next two theorems to you.
Theorem 8.3.4 A function f is continuous at U if and only if
lim f(u) = f(@).
Uu—>u
Theorem 8.3.5 A function f is continuous at U if and only if
lim f(un) = f(u)
n—>o00
whenever {u,} is a sequence in D s that converges to 1.
Theorem 8.3.6 If f is continuous on a compact set T, then f(T) is compact.

Proof Let {v,} be an infinite sequence in f(T'). For each n, v,, = f(u,) for some u, €
T. Since T is compact, {u,} has a subsequence {u,} such that lim; oo up, = U € T
(Theorem 8.2.4). From Theorem 8.3.5, lim; 00 f(tn;) = S (@); that is, lim; oo Un; =
f @). Therefore, f(T) is compact, again by Theorem 8.2.4. 0

Definition 8.3.7 A function f is uniformly continuous on a subset S of D ¢ if for each
€ > 0 there isa § > 0 such that

o(f(u), f(v)) <e whenever p(u,v)<é and u,veSs. [ ]
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Theorem 8.3.8 If f is continuous on a compact set T, then f is uniformly continuous
onT.

Proof If f is not uniformly continuous on 7', then for some €y > 0 there are sequences
{u,} and {v,} in T such that p(u,, v,) < 1/n and

o(f(un), f(vn)) = €o. (6)

Since T is compact, {u,} has a subsequence {u,, } that converges to a limit % in 7" (Theo-
rem 8.2.4). Since p(Un; , Un, ) < 1/ng, liMg_so0 Upy, = u also. Then

lim f(un) = lim f(vp,) = f(0)
k—o00 k—o00
(Theorem 8.3.5), which contradicts (6). a

Definition 8.3.91f 1 : (4, p) — (4, p) is defined on all of 4 and there is a constant «
in (0, 1) such that

o(f(u), f(v)) <ap(u,v) forall (u,v)e AxA, @)

then f is a contraction of (A, p). ]
We note that a contraction of (A4, p) is uniformly continuous on A.

Theorem 8.3.10 (Contraction Mapping Theorem) If f is a contraction

of a complete metric space (A, p), then the equation

Sfu) =u ®)

has a unique solution.

Proof To see that (8) cannot have more than one solution, suppose that u = f(u) and
v = f(v). Then

p(u,v) = p(f(u), f(v)). ©)
However, (7) implies that

p(f@). f(v) < apu,v). (10)
Since (9) and (10) imply that

p(u,v) < ap(u, v)

and o < 1, it follows that p(u, v) = 0. Hence u = v.

We will now show that (8) has a solution. With u¢ arbitrary, define

Up = f(up—1), n=>1. (1)

We will show that {u, } converges. From (7) and (11),

pUnt1,un) = p(f(WUn), f(Un—1)) < ap(un,un—1). (12)
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The inequality
follows by induction from (12). If n > m, repeated application of the triangle inequality
yields

pQn Um) < pQUn,Un—1) + p(Un—1,Un—2) + -+ + p(Umt1, Um),

and (13) yields

Pltn, um) < plur,uo)a™ (I 4" < .

Now it follows that

p(ul,uo)aN

1 if n,m>N,

P, Um) <

and, since limy o0 ¥ = 0, {u,} is a Cauchy sequence. Since A is complete, {u,} has a
limit 7. Since f is continuous at i,

f@) = lim f(u,—1)= lim u, = u,
n—00 n—00
where Theorem 8.3.5 implies the first equality and (11) implies the second. a
Example 8.3.2 Suppose that 4 = h(x) is continuous on [a, b], K = K(x, y) is con-

tinuous on [a, b] x [a,b], and |K(x,y)| < M ifa < x,y < b. Show that if |A| <
1/M(b — a) there is a unique u in Ca, b] such that

b
u(x) = h(x) + A/ K(x,y)u(y)dy, a<x<b. (14)

(This is Fredholm’s integral equation.)

Solution Let 4 be C|a, b], which is complete. If u € C|a, b], let f(u) = v, where

b
v(x) = h(x) + A/ K(x,y)u(y)dy, a<x<bh.

Since v € Cla, b], f : Cla,b] — CJa, b]. If uy, up € Cla, b], then

b
01 () — v2(3)] < |A|/ KCe )l () — v )] .

SO
vy = vl < [AIM(b — a)|lur — uz].

Since |A|M (b —a) < 1, f is a contraction. Hence, there is a unique u in C|[a, b] such that
f(u) = u. This u satisfies (14). ]
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8.3 Exercises

Suppose that f : (4,p) — (B,0) and Dy = A. Show that the following state-

ments are equivalent.

(a) f is continuous on A.

(b) If V is any open set in (B, o), then f~!(V) is open in (4, p).

(c) If Visany closed setin (B, o), then f~1(V) is closed in (4, p).

A metric space (4, p) is connected if A cannot be written as A = Ay U A,, where

A1 and A, are nonempty disjoint open sets. Suppose that (A4, p) is connected and

f (A p)— (B,0),where Dy = A, Ry = B, and f is continuous on A. Show

that (B, o) is connected.

Let f be a continuous real-valued function on a compact subset S of a metric space

(4, p). Let o be the usual metric on R; that is, o(x, y) = |x — y|.

(a) Show that f is bounded on S.

(b) Leta = infyes f(u) and B = sup,cg f(u). Show that there are points u;
and uy in [a, b] such that f(41) = @ and f(uz) = B.

Let f : (A4, p) — (B, o) be continuous on a subset U of A. Let u be in U and
define the real-valued function g : (4, p) — R by

gu) =o(f), f@)). uel.

a ow that g is continuous on U.
Show that g i i U
(b) Show that if U is compact, then g is uniformly continuous on U .
(c) Show that if U is compact, then there is a # € U such that g(u) < g(u),
uel.

Suppose that (4, p), (B, o), and (C, y) are metric spaces, and let
f:(4,p) > (B,o) and g:(B,0)— (C,y),

where Dy = A, Ry = Dy = B, and f and g are continuous. Define 4 : (4, p) —
(C,y) by h(u) = g(f(u)). Show that & is continuous on A.

Let (A, p) be the set of all bounded real-valued functions on a nonempty set S,
with p(u,v) = sup,eg |u(s) — v(s)|. Let s1, $2, ..., S be members of S, and
fu) = g(u(sy), u(sz), ..., u(sg)), where g is real-valued and continuous on R¥.
Show that f is a continuous function from (4, p) to R.

Let (A, p) be the set of all bounded real-valued functions on a nonempty set S,
with p(u, v) = sup,eg [U(s) — v(s)|. Show that f(u) = infses u(s) and g(u) =
sup,c s U(s) are uniformly continuous functions from (4, p) to R.
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8. Let I[a,b] be the set of all real-valued functions that are Riemann integrable on

b
[a, b], with p(u, v) = sup, ., [u(x) — v(x)|. Show that f(u) = / u(x)dxisa

uniformly continuous function from / [a, b] to R.
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Answers to Selected

Exercises

Section 1.1 pp. 9-10

1. (a) 2max(a,b) (b)2min(a,b) (c)4max(a,b,c¢) (d) 4min(a,b,c)
5. (a) 0o (no); —1 (yes) (b) 3 (no); =3 (no) (c) /7 (yes); —+/7 (yes)

(d) 2 (no); =3 (mo) (&) 1 (no); —1 (no) (f) +/7 (no); —v/7 (no)
Section 1.2 pp. 15-19

9.(a)2"/2n)!  (b)2-3/@n+ 1) (c)27"@n)Y/n)> (d)n"/n!
10. (b) no 11. (b) no

x" "1
20. A, = — (mx—Z—,)

=1/
21. fu(x1. %2, ..., Xn) = 2" ' max(xy, xa, ..., Xn),
gn(x1, %2, ..., Xp) = 2" ' min(xy, Xz, . . ., Xn)

Section 1.3 pp. 27-29
1‘ (a) [%’ 1)7 (—OO, %) u [lv OO); (—OO, O] u (%v OO);
(Ov %]7 (—OO, O] u (%v OO); (—OO, %] u [lv OO)
(b) (=3,-2) U (2,3); (—o0, —3] U [-2,2] U [3, 00);
@; (—00,00); @; (—o0, =31 U [-2,2]U[3,00)
(c) B; (—o0, 00); B; (—00, 00); B; (—00, o0)
(d) @; (—OO, OO); [_lv 1]’ (—OO, _1) u (lv OO); [_lv 1]’ (—OO, OO)
4.(a)g (b)g ()6 (d)1
5. (a) neither; (—1,2) U (3, 00); (o0, —1) U (2,3); (—oo, —1] U (2,3);
(—o0,—1] U [2,3]
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(b) open; S; (1,2);[1,2]

(c) closed; (—3,—2) U (7,8); (—o0, —3) U (=2,7) U (8, 00);
(o0 —=3] U[-2,7] U8, 0)

(d) closed; @; (J {(n,n + 1) | n = integer}; (—00, 00)

20. (a) {x|x=1/n,n=1,2,...}:(b) @ (c).(d) S, = rationals, S, = irrationals
(e) any set whose supremum is an isolated point of the set
(f). (g) the rationals (h) S; = rationals, S, = irrationals

Section 2.1 pp. 48-53

2.Dy =[-2,1)U[3,00), Dg = (—00,—=3] U [3,7) U (7, 00),
Dyig =Dyg =[3.7)U(7.00), Dysg = (3,4 U(4,7) U (7,00)
3. (a). (b) {x|x # (2k 4+ 1)m/2 where k = integer}
(c) {x|x#0.1} (d){x|x#0} (e)][l.o0)
4.(a)4 (b)12 (¢)-1 (d)2 (e)—2
6.(a) 7 (P)-3 (0)3 (d)2
7.(a)0,2 (b)0,none (c)—1,1 (d)none,0
15.(a)0 (b)0 (c)none (d)O0 (e)none(f)0
18.(a)0 (b)0 (c)none (d)none (e) none (f)0
20. (a) oo (b) =00 (c)oo (d)oo (€)oo (f) —c0
22. (a) none (b)oo (c)oco (d) none
24.(a)oco (b)oo (c)oo (d) —oc (e)none (f) oo
W@ )3 @ @)-o (€)oo ()
32. limy_00 r(x) = 00 if n > m and a, /by, > 0; = —o0 ifn > m and a, /by, < 0;
=ay/bmifn =m;=0ifn <m. limy_,_o r(x) = (—=1)"7 limy_, o, 7 (X)
33. limyx, f(x) = limy—sx, g(x)
37. (c) m)c—>x()—(f -8x) = mx—>)€o— S(x) - lim, . g(x);
lim, ., _(f—gx) >lim,_,, _ f(x)— Timy—s xo— g(x)

Section 2.2 pp. 69-73

3. (a) from theright (b) continuous  (c) none  (d) continuous
(€) none  (f) continuous (g) from the left

4.0,1),(0,1),[1,2),(1,2), (1,2],[1,2] 5.[0,1),(0, 1), (1,00)
13. (b) tanh x is continuous for all x, cothx forall x # 0 16. No
21. (a) [-1,1],[0,00)  (b) U™_.2n7, 21 + D7), (0, 00)
(€) UnZ oo, (n + 1)), (=00, =1) U (=1, 1) U (1, 00)
(d) UnZ_oolnz. (n + 3)7], [0, 00)
23.(a) (-1,1) (b) (—o0,00) (c) xo # (2k + 37), k =integer (d) x # 1

() x#1 (f)x#(k+1in), k =integer (g)x # (k+ in), k = integer
(h)x#0 (@{)x#0
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Section 2.3 pp. 84-88

4. (b) p(c) = gq(c) and p_(c) = ¢/, (c)
5. fOx)=n(n—1)--(n—k—Dx"*x|ifl <k <n-—1;
fOx) =nlifx >0, f™(x)=—-nlifx <0;
f®(x) =0ifk > nand x # 0; f%(0) does not exist if k > n.
7.(a) ¢’ =ac—bs,s' =bc+as (b)c(x) =ecosbx,s(x) =e**sinbx

15. (b) f(x) = —1ifx <0, f(x) = 1if x > 0;then f/(04) = 0, but 7 (0)
does not exist. (c) continuous from the right

22. There is no such function (Theorem 2.3.9).
24. Counterexample: Let xo = 0, f(x) = |x|>/?sin(1/x) if x # 0, £(0) = 0.
27. Counterexample: Let xo = 0, f(x) = x/|x|if x # 0, f(0) = 0.

Section 2.4 pp. 9698

2.1 3.1 4.00 5.(-D)"'n 6.1 7.0 81 9.0 10.0
11.0 12.—0c0 13.0 14.-1 150 16.0 17.1 18.1 19.1

20.e 21.1 22.0 23 —ocoifa<0,0ifa>0 24.1/e 25.¢% 26.1
27.0 28.0 29.00ifa>0,—oc0ifa <0 30.0c0 31.1 32.:4; 33.0
34. —oc0 35.—oc0ifa <0,0ife >0 36.c0 37.1 38.0 39.0 40.0
41. (b) Suppose that g’ is continuous at xo and f(x) = g(x) if x < xo,

f(x) =1+ g(x)ifx > xo.
44.(a)1 (b)e (c)1 45.¢L

Section 2.5 pp. 107-112

2. f®+D(xo)/(n + 1)!. 4. (b) Counterexample: Let xo = 0 and f(x) = x|x|.
5.(b) Let g(x) = 1 + |x — xo/, s0 f(x) = (x —x0)(1 + |x — xo])-
6. (b) Let g(x) = 1 + |x — xo|, 50 f(x) = (x — x0)*(1 + |x — xo]).
10. (b) (i) 1,2,2,0 (i) 0, -, 37/2, —47 + 7%/2
(iii) —2/4, 27, 6 + n2/4,4x  (iv) 2,5, 16,65
11. (b) 0,-1,0,5
12.(b) (i) 0,1,0,5 (ii) —1,0,6,—24 (iii) v2,3v2, 1142,57V2
(iv) —1,3,-14,8813. (a) min (b) neither (c) min (d) max
(€) min (f) neither (g) min (h) min
14. f(x) = e~ V** if x # 0, £(0) = 0 (Exercise 1.)
15. None if b2 — 4¢ < 0; local min at x; = (—b + /b2 — 4¢)/2 and local max at

x1 = (=b — Vb2 —4¢)/2if b?> — 4¢ > 0;if b = 4c then x = —b/2 is a critical

point, but not a local extreme point.
1 3 1 w2 1
16. (a) - (=) (b) = (c d
@ 5(55) ® 5 © 5575 @ g
20. (a) M3h/3, where M3 = sup|,_. 1<, | f @ ()|
(b) M4h?/12 where My = supj,_<; | [P (c)]

21.k = —h/2

T

551
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Section 3.1 pp. 125-128

8 (b) monotonic functions (c) Let [a, b] = [0, 1]and P = {0, 1}. Let £(0) = f(1) = 4
and f(x) = xif0 < x < 1. Thens(P) = Oand S(P) = 1, but neither is a Riemann
sum of f over P.

9.(a) 1, -1 (b)i 1 10.eP—e 11.1-cosh
14. f(a)[g1 — g(@)] + f(d)(g2 — g1) + f(D)[g(b) — g2]
15. f(@)g1 — g@)] + fO)gB) — gp] + X2y f(@m)(8mt1 — gm)
16. (a) If g = 1 and f is arbitrary, then fab f(x)dg(x) = 0.

12. sinb

Section 3.3 pp. 149-151

7.(@Qu=c=2

2 D)u=c=0 (c)u=(—2)/(e—1).c=vu

Section 3.4 pp. 165-171
4 () (@(G)p=2 (i)p>0 (iii) 0
() (@) p=2 ({i)p>o0 (iii) 0
(c) (i)none (ii) p>0 (iii) 1/p
(d) ()p=o (i)0<p<1 (ii)1/1-p)
(e) (i) none  (ii) none
5.(a)n! (b)4 (c)divergent (d)1 (e)-1 (f)0
8. (a) divergent (b) convergent (c) divergent
(d) convergent (e) convergent (f) divergent
9.(a)p<2 (b)p<1l (¢)p>-1 (d)-1<p<2
(e) none (f) none (g) p<1
11.(a) p—qg<1 (b)pg<l (c)-1<p<2q-—1

(d)g>-1,p+g>1

12.degg —deg f =2

e)p+g>1 (f)g+1<p<3g+1

8. (a) ())p>1 (i)o<p=1
(b) (i) p>1 (i) p =<1
() ()p>1 (i)o<p=1
(d @) p=>o0 (ii) none
(e) (I)1<p<4 (ii)0<p=<1
) @Or>;3 (i)o<p=3
25.(a) (i)p>-1 (ii)—2<p<-1
(b) (i) p> -1 (ii) none
(c) (i) p<-1 (ii) none
(d) (i) none (ii) none
(e) (@)p<-1 (ii)p>1
Section 4.1 pp. 192-195
3. (a2 (b)1 (c)0 4.(a)1/2 (b)1/2 (c)1/2 (d)1/2
11.(d) VA4 14.(a)1 (b)1 (c)1 (d)-occ (e)0



22

24

25
34
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.Ifs, = land t, = —1/n, then (limyeo Sp)/(limy—eoty) = 1/0 = oo, but
limy 00 Sy /th = —00.

.(a) 00,0 (b)) 0o, —c0if |r| > 1;2, =2if r = —1;0,0ifr = 1; 1, -1 if |r| < 1
(c) oo, —coif r < —1;0,0if |r| < 1; 1, if r = 1; 00, 00 if r > 1
(d) 00,00 (e) It]. ]

(@) 1L,-1 (b)2,-2 (e)3,-1 (c)+/3/2,—+3/2

.(b) If {s,} = {1.0,1,0,...}, then limy 00 fn = %

Section 4.2 pp. 199-200

2

3.

(Q) limpy 00 S2m = 00, liMyy 500 S2m4+1 = —00
(b) limy—s00 Sam = 1, liMp—00 Sam+2 = —1, limMy—00 S2m+1 = 0
() limp— o0 S2m = 0, liMpy—s 00 Samt+1 = 1, liMy—00 Sam43 = —1
(d) limp—00 5n = 0 (€) limp—so0 S2m = 00, liMy—s00 S2m+1 = 0
(f) limy,; 00 S8m = liMy 500 Sgm+2 = 1, liMyy 00 S8mt+1 = \/E,
limy; 00 S8m+3 = liMy 00 Sgm+7 = 0, liMy, 500 Sgm+5 = _\/E,
limy,; 00 S8m+4 = liMy 500 S8m+6 = —1
{1,2,1,2,3,1,2,3,4,1,2,3,4,5,...}

8. Let {t,} be any convergent sequence and {s,} = {t1,1,%,2,...,tn, 1, ... }.

Section 4.3 pp. 228-234

4
8

1
1

7 I —}

1
1

B |

1

o

2

<

2

Y

27

28.

30

. (b) No; consider " 1/n

. (a) convergent (b) convergent (c) divergent (d) divergent
(e) convergent (f) convergent (g) divergent (h) convergent

(@)p>1 (b)p>1 (c)p>1

. (a) convergent (b) convergent if 0 < r < 1, divergentif r > 1 (c) divergent
(d) convergent (e) divergent (f) convergent

. (a) convergent (b) convergent (c) convergent (d) convergent

. (a) divergent (b) convergent if and only if 0 <7 < lorr =1land p < —1
(c) convergent (d) convergent (e) convergent

. (a) divergent (b) convergent (c) convergent
(d) convergentif o < B — 1, divergentifa« > f — 1

. (a) divergent (b) convergent (c) convergent (d) convergent

(@ XEDT (B) /e X [ﬂ + nlign}
(€) X (=12 (d) (1)

. (a) conditionally convergent (b) conditionally convergent
(c) absolutely convergent (d) absolutely convergent

Let k and s be the degrees of the numerator and denominator, respectively. If |r| =
1, the series converges absolutely if and only if s > k + 2. The series converges
conditionallyif s = k+1and r = —1, and diverges in all other cases, where s > k+1
and |r| = 1.

(b)Y (-1y'/yia 41.(a)0 (b)24—a
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Section 4.4 pp. 254257

1.(a) Fix) =0, |x| <1 (b) F(x) =0, |x| <1
(c) Fx) =0, -1<x <1 (d) F(x) =sinx, —00 < x < o0
() Fx) =1, -1<x <L F(x)=0, |x| >1 (f) F(x) =x, —00 <x <00
(8) F(x) =x2/2, —co<x<oo (h) F(x) =0, —00 <x <00
(i) Fx) =1, —co < x <00

5() Fx) =0 (b) Fix) =1, |x| <1; F(x) =0, |x| > 1
(c) F(x) = sinx/x

6.(C) Fulx) = 2" Sk = [~k /(k + 1).k/(k + 1)

7.(a) [-1,1] (b) [-r,rlU{l}U{-1},0<r <1 (c)[-rr]U{l},0<r <1
(d) [-r.r]l. r >0 (e) (—oo,—1/r]U[-r,r]U[1/r,o0)U{l}, 0 <r <1
&) [=r.rl,r>0 (g)[-rr]l,r>0 (h)(—oco,—r]U[r,00) U{0}, r >0
@) [-r,r], r>0

12. (b) Let S = (0, 1], F,(x) = sin(x/n), Gn(x) = 1/x% then F =0, G = 1/x2,

and the convergence is uniform, but || F,, G, ||s = oo.
14.(a)3 (b)1 (c)i (d)e-1
17. (a) compact subsets of (—1,00) (b) [-1, o0)

1_2ﬁ, ! +2ﬁ> (d) (—o0,00) (€) [r,00), r > 1

(f) compact subsets of (—oo, 0) U (0, 00)
19. (a) Let S = (—00, 00), fn = an (constant), where ) _ a, converges conditionally,
and g, = |an]|.
(b) “absolutely”

20. (a) (i) means that }_ | f» (x)| converges pointwise and Y f,(x) converges
uniformly on S, while (ii) means that " | f,, (x)| converges uniformly on S.

x2n+1

) i x2n+1 Rt "
27. (a) g(—l) PTCTERT ’;(‘1) @n+ @n + )

(c) closed subsets of (

Section 4.5 pp. 276281

2.(a)1/3e (b)1 (c)3 (d)1 (e)oo
8.(a)1 ()1 (c)i (d)4 (e)l/e (f)1

—x2 - (_l)n_l n.
10. x(1 +x)/(1 —x)3 12.¢ 16. n§=1 2 x—-1D" R=1
-1, _ - 1\ X2t @R . £CrAD Y (172 .
17. Tan x—n§=0( VG SO0 =0 7O 0) = C1Peny

T 1 > (=1)"
— =Tan"" —= = PP —

6 V3 o @n+ )32
x2n o0 x2n+1
_ 1 X = _
(2n)! = (2n+ 1)

23. (1 —x) Y 2, x" = 1 converges for all x
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x3 3x° X2 5x3
24. 2407 27 4 (b))l —x— I
(a)x+x2+ 3, 2 -: ) ' 23+ % " 5
X X 721x X X X
c)l — — - d 2_ 2 -
1=+~ 0t ()" -+ -+
2)(?2 x3 x2 3)(?3
27.(a)1+x+T+?+... (b)l—x—7+7+...
(C)1+x2+5x4+61x6+ (d)1+x2+7x4+31x6+
2 %4 6720 6 360 15120
(€)2—x2+ -+
12 360
5 3 2 e
28. F = = — 3n+1_ ) n+1ly..n
W)= T 00120 - 1-3x T T1x n;)[ (=2 ]«

29.1

Section 5.1 pp. 299-302

1.(a) 3.0,3,3) (b) (-1,—-1.4) (c) (:,1.2 3,
3.(a) V15 (b) V/65/12 (c) /31 (d) /3
4.(a) V89 (b) V166/12 (c)3 (d) /31
5.()12 (b) &5 (c)27
7.X =Xp +tU (—oo0 < t < 00) in all cases.
8....Uand X; — Xj are scalar multiples of V.
9.(a) X = (1,-3,4,2) + 1(1,3,-5.3)
(b)X = (3,1,-2,1,4,) + t(~1,-1,1,3,-7)
(c) X = (1.2, ~1) + 1(~1,-3,0)
10. (a)5 (b)2 (c)1/24/5
11. (a) (i) {(x1.x2,x3,x4) | |xi| <3 (i =1,2,3) with at least one equality}
(ii) {(x1. x2, x3, x4) | Ixi| <3G =1,2,3)} (iii) S
(iv) {(x1. x2. x3, x4) | |x;| > 3 forat least one of i = 1,2,3}
(b) i) s (ii)s (i)o (@(v) {(x.y.2) |Z #lorx? +y*>1}
12. (a) open (b) neither (c) closed 18.(a) (7,1,0) (b) (1,0,¢)
19.(a)6 (b)6 (c)2v/5 (d)2Lyn (€)oo 29.{(x.y)|x?+y? =1}
33.... if for A there is an integer R such that |X,| > Aif r > R.

Section 5.2 pp. 314-316

1.(a)10 (b)3 (c)1 (d)o (e)o (f)o
3.(b)a/(1+da? 4. (a)oo (b)oo (c)no (d)—oco (e)no
5.(a)0 (b)0 (c)none (d)0 (e) none
6. (a) ...if Dy is unbounded and for each M there is an R such that f(X) > M
ifX € Dy and |X| > R.
(b) Replace “> M” by “< M” in (a).
7. limx f(X) =0ifa; + a2 +---+ a, > b;nolimitifa; +a, + -+ a, < b and
a?+ a2+ +a2#0;limxg f(X) =ocoifa; =a, =---=a, =0and b > 0.
8. No; for example, limy_, o0 g(x, /X) = 0.
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9. ()R> (b)R? (c)R® ()R> (e) {(x.»)|x=y} ()R
10. (a) R*—{(0,0,0)} (b)R?> (c)R* (d)R?> (e)R?
11. f(x,y) = xy/(x* + y?)if (x, y) # (0,0) and f(0,0) =0

Section 5.3 pp. 335-339

2 2
1. (a) %(x + ycosx — xy sinx) —2\/;(xcosx)

(b) 122Y ety (c) %(?ﬂ + X240+ xp)
(d) 1/ +x+y+2)
2.¢2¢> 3.(a) -57/46 (b)—2¢ (c)0 (d)o
5.() i=f=1/(x+y+22), f; =2/(x+y+22)
(b) fx =2x +3yz +2y, fy =3xz +2x, f; = 3xy
(c) fx = €%, fy = xze’?, fr = xye’?
(d) fx =2xycosx?y, f, = x2cosx?y, f; =1
6. (a) Jax = fyy = fay = frx=—-1/(x +y + 21)2’ Jaz = foax = fyz = foy =
—2/(x +y+22)%, foz = —4/(x + y +22)?
(b) Jrx =2, fyy = fzz =0, fxy = fyx =3242, fxz = fzx =3y,
fyz = fzy = 3x
(C) Jax =0, fyy = xz%e’?, Sz = xyzeyz’ Jxy = fyx = 2€7%, fxz = fox =

ye’s,
Syz = fzy = xe*?
(d) fex =2ycosx?y —4x2y?sinx?y, f,, = —x*sinx2y, f;; =0,
fry = fyx =2xcos x2y —2x3y sinx2y, frz = fax = fyz = fzy =0
7.(a) fxx(0,0) = fy(0,0) =0, f2,(0.0) = —1, f,x(0,0) =1
(b) fxx(0,0) = f54(0,0) = 0, fxy(0,0) = —1, £,x(0,0) = 1
8. f(x,y) = g(x,y) + h(y), where gy, exists everywhere and / is nowhere
differentiable.

18. (a) df = (3x2% +4y? + 2y sinx + 2xy cos x) dx + (8xy + 2xsinx) dy,
dxof =16 dx, (dxof)(A —Xo) = 16x

(b) df = —e™* 772 (dx +dy +dz), dx,f = —dx —dy —dz,
(dxo /)X —=Ag) = —x—y—2

(©)df =(+x14+2x2+ - +nxy) ' X jdxj, dxy f =2-) jdxj,
(dxo X =Xo) = 3T, jxj,

(d) df =2r|XP"2370_ xjdxj, dxo f =2rn" 71 30 dxy,
(dxo /)X —Ag) =2rn" ' 3 (x; — 1),

19. (b) The unit vector in the direction of ( fx, (Xo), fx,(Xo0), - - -, fx,(Xo)) provided
that this is not 0; if it is 0, then 9/ (Ag)/d® = O for every ®.

24.(a)z=2x+4y—6 (b)z=2x+3y+1
(©)z=@x)/2+y-n/2 (d)z=x+10y +4

Section 5.4 pp. 356-360

2.(a)5du+34dv (b)0 (c)6du—18dv (d) 8du
3.h = fycosO + fysinf, hg = r(—fysin@ + f,cos0), h; = f



4. h, = fysingcos@ + fysingsinf + f; cos¢,
hg = rsing(— fysinf + f, cosf),

Answers to Selected Exercises

hg =r(fxcos¢cost + fy,cos¢psind — f; sing)
6.hy = gxxy + &y + guWwy, hz = gxXz + gz + guw;
13. hyp = frxsin® pcos? 0 + fyy sin® ¢ sin® @ + f;; cos® dp + fiy sin? ¢ sin 20 +
fyzsin2¢sinf + fr, sin2¢ cos b,

hrg = (— fxsin@ + fycosf)sing + %(fyy — fex)sin® ¢ sin26
+ 7 fry sin® ¢ cos 26 + %(fzy cos  — fzx sin0) sin2¢

2 2 3

2
16.(a) 1 +x+—-2 42 2%

2 2 6 2
2

()0 (d) xyz
21. (a) (dj g P)(x, ¥) = (D) (X, y) = 2(x — y)?

Section 6.1 pp. 376-378

3 4 6 g _;
3.(a)| 2 —4 2 (b)
7 23 7
- 6 1
[ 8 8 16 24 -2
4. (a) 0 0 4 12 (b) 0
| 12 16 28 44 -2
2 2 6 -1
s.()] 6 7 -3 | (b)]| 3
| 0 -2 6 5
[ 13 25
6.(a)| 16 31 | (b [ 2 }
| 16 25
10. A and B are square of the same order.
7 3 3 14 10 ]
12.(a) | 4 7 7 (b) 6 -2
| 6 -9 1 14 2
-7 6 4 -5 6 0]
13.( -9 7 13 |, 4 —-12 3
5 0 —14 4 0 3 |
15. (a) [ 6xyz 3xz® 3x%y |;[ -6 3 =3 ]
(b)cos(x+y»[1 1]:[0 0]
(c)[ 1 —xz)ye ™ xe ™ —x?ye
(d)sec*(x +2y+2)[ 1 2 1]
1
() IAI™ [ x1 x2 o xn |5 ﬁ[ 1

20.(a) 2.3.-2) (b) (2.3,0) (c) (=2,0,—1)

14

0
—4
-6

(d) (3,1,3,2)

557
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1 1 2
21.(a)11_0[_‘3‘ ﬂ by 3 1 -4
-1 -1 2
N I N
(5| 6 -8 5| (@3] -1 1 1
3 4 10 11 -1
3 20 0 1 =2 0 5
1l2 10 o 1| —14 —18 10 20
©z10 02 23 O ol 21 2 —10 25
0 01 2 17 24 —10 —-25

Section 6.2 pp. 390-394

2x 1 2
12.(a)FX)=| — sin(x +y+2z) —sin(x+y+z) —sin(x+y+2)
yzez xze*r® xye*rz

JF(X) = e™%sin(x + y + 2)[x(1 = 2x)(y —2) — z2(x = y)];

0 2 1 2 x—1
GA=|1]|+[00 o0 y+1
1 0 0 -1 z

e* cos —e* sin
(b) F'(A) = e~ sini e* cosi :|; JE(X) = e,

aar=[ V][V 0[]

| —

2x =2y 0
(c0)FX) = 0 2y -2z |;JF=0;
—2x 0 2z

- 2 —2 0 x—1
GX)=| 0 2 =2 y—1
-2 0 2 z—1

g1(x)

/
iy | FyH+z+De* ¥ e oAy §2(%)
13. (a) F (A) - [ (2x _ x2 _ yZ)e—x Zye—x 0 (b) F (A) -
n(x)
e*sinyz ze*cosyz ye*cosyz
(c) F(r,0) =| zeYcosxz e’sinxz xe”cosxz
yetcosxy xe®cosxy e?sinxy
, | cos@ —rsind
14. (a) A'(r.6) = [ sinf  rcos6

:|; JE@, 0)=r
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(b) A'(r,0,¢) = | sinficos¢  rcosfcos¢ —rsinfsing
sin ¢ 0 r cos ¢

cosfcos¢p —rsinfcos¢p —rcosfsing j|
JE(r,0,¢) =r?cos¢

1
o8] @[} 3]
@3 0] (f){_% Eg}

Section 6.3 pp. 414417

2. (a) [ -

NI*—‘ [}

cosf@ —rsinf 0

(c)A'(r,0,2) = sm@ rcos@ 0 |;JF(r,0,z)=r
4 -3

@[y ]

4.(a)[1,7/2] (b)[1,27] () [l,x] (d)[2v2,97/4] (e)[v2,3n/4]
5.(a)[1.-37/2] (b)[l.—27] (c)[l.—x] (d)[2v2.-77/4] (e)[v2.—57/4]

6. (b) Let f(x) =x (0<x < %), fx)=x—35 (2 < x < 1); then f is locally
invertible but not invertible on [0, 1].

7.F(S) = {(u, V) | -1+ 2¢ <arg(u,v) <mw+ 2¢}, where ¢ is an argument of
(a,b);

cos(arg(u, v)/2)
sin(arg(u, v)/2)

X 1 u—2v Sy L1 =2
YO I Il U T

X 1 u+2v + 3w 1 1 2 3

()| v | =5 u—w . Fly==-|10 -1

Z 2 u—+v+2w 2 1 1 2
IR TR I [ 1 aFs  1/VaTy
IZ‘GI(”’”)—_[ JMT] G(w.v) = m[ YN _1/m}

G [ —Vutv G L [ —1/Vut+v —1/Ju+v
2. v) = 7= F} 204, v) = ﬁ[ YN = -1/¢m}

Galut,v) = — V””],Gg(u =1 [ TR 1/¢u+v}

Fgl(u,v)z(u2+v2)1/4|: ], 2¢0 —w < arg(u,v) <2¢ +w

(=)

V2 —Vu—-v 22| —U/Vu—v 1/ u—v
G L[ —u+tv G 1 —1/Ju+v —-1/Ju+v
W=7 v } 4, v) = fl: YN 1/@}

15. From solving x = rcos 8, y = rsin@ for 6 = arg(x, y). Each equation is satisfied by
angles that are not arguments of (x, y), since none of the formulas identifies the quadrant
of (x, y) uniquely. Moreover, (c) does not hold if x = 0.
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16. [ x } = G(u ‘U) = (u2+U2)1/4 COS[% arg(u’ U)]
y ’ sin(arg(u, v)/2)

B + m/2 and B is an argument of (a, b);

, _ 1 X oy
G(u,v)—iz(xz_'_yz) [ X :|

19. IfF(x1, X2,...,Xxp) = (xf,x;,...,x,f), then F is invertible, but JF(0) = 0.
1 1[5 5 u—+5
smo-[ 43 1]

o[ 2[4 3]
0
0

1
1
0 0 —1
()AU) =| 1 [+]| -1 1
1 10

], where f—m/2 < arg(u, v) <

1 0 -1 0 u
(AU =| #/2 |+]| 1 0o o v+ 1
A 0 0 -1 w
cos 6 cos ¢ sin 0 cos ¢ sin¢
. sin @ cos 6 0
21.G'(x, y. 2) = r cos ¢ r cos ¢
——cosfsing ——sinfsing —cos¢
L r r r
cos 6 sinf 0
22.G/'(x,y.2) = —l sin 6 lcos@ 0
r r
i 0 0 1

Section 6.4 pp. 431-434
vl V)= ][]

u 3 3
<b>[;}=-§{-; d[ﬂ
@[v]=5[ 1 2]
(AQu=-xv=—y,z=-w

r
n
3. fiX,U) = (Z ajj(xj —xj0) | — Wi —ui0)’, 1 <i < m, where r and s are
i=1

positive integefs andnotalla;; = 0. (a) r =s =3;(b)r = 1,5 = 3; (c)
r=s=2



4
5
6

<

=]

11.

12.

13.

14.

15.
16.

18.

19.

Answers to Selected Exercises

(L) = =2, uy(1,1) = -1
(L) =2 uy(1L1L, D) ==2,u (1,1, 1) =1
(@) u(1,2) = 0,ux(1,2) = uy(1,2) = —4
(b) u(-1,-2) =2, ux(-1,-2) = L uy(-1,-2) = -4
() u(n/2,7/2) = ux(w/2,7/2) = uy(w/2,7/2) =0
(d) u(1,1) = Lux(1,1) = uy(1,1) = —1
dui(1,1) _5 dui(1,1) _

(@ wmn =1, —- L b,
uz(l,l):z, 3”2(131) :_14’ 3”2(1,1) __
dx dy
(b) ux (0, 7) = 2k + 1)7/2, O, m) _ o w0, 7) _
ox dy

5 5
If-1 =2 1 p 1
‘g[_l s 1} 9.1/(0) = 3,v'(0) = —1 10‘6[_5 —5}

6 6
Ui(1,1) = [ f :|,U’1(1,1)= [ _i ; }

A2(1,1)=—[ ] :|’U/2(1’1):_|: . ;}

ux(0,0,0) = 2, v,(0,0,0) = w,(0,0,0) = —2
a(f. g h) A(f. g h) A(f. g h)
_ 0(x,z,u) _0(v,z,u) 0y, x,u)
YT TR T T g ) T T a(fg )
a(y,z,u) a(y,z,u) a(y,z,u)
a(f. g h) a(f. g h) a(f. g h)
o= w32y 30,2.v)
v af.g.h) a(f.g.h) " A(f. g h)
Ay, z,u) Ay, z,u) Ay, z,u)
xX==-2y—u,z=-2v;x=-2y—u,v :—5;
X u X u Z
YETy T TSy V=Y

z:—Zv,u:—x—Zy;u:—x—Zy,v:—%

ye(1,-1,-2) = -1 v, (1,-1,-2) =1

uw (0, —1) = 2,150, —1) = 0, v, (0, —1) = =2, v,(0,—1) = 0,

X (0, —1) = 1, x,(0, —1) = —1

ux(1,1) = 0,uy (1, 1) = 0, vx(1,1) = =1, v, (1, 1) = =L uyx(1,1) = 2,

Uxy(1,1) = Luy,(1,1) =2, vxx(1,1) = =2, v, (1, 1) = =1, vy, (1,1) = -2

1 1
ux(l,—-1) =0,u,(1,-1) = 3 ve(l,—-1) = 5 vy(1,-1) =0,

1 1 1 1
uxx(lv -1) = _g, uxy(lv -1) = g’ ”yy(lv -1) = g, Uxx(la -1) = _g,

1 1
vxy(l,=1) = —g, vyy(l,—1) = g

—1, k = integer
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Section 7.1 pp. 459462

2.(a)28 (b) 3 6.3(b—a)(d —c),0 13.{(m.n)|m,n = integers}

Section 7.2 pp. 480484

1.(a)12 (b) 2 (c)-1 (d)(1—1log2)/2
5()2 ()17 (c)2(vV2-1) (d)1/4n

L@ M3 S@IF Mt @b

11.(a) —285 (b)0 (c)0 (d) ie-2)
12.(a) 324 (b)+ (c)1 13.2
14.(a)36 (b)1 (c)§ (d)(e®+17)/2
17.(a) % (b)3~3 ()5 (d)3
18.(a)16x (b)i (c)i (d)Z
19. () 3(br —a1) -+ (bn — an) Xj_1(a; + bj)
(b) 35y —ar) -+ (by —an) X_ (@5 +a;b; +b3)
(€) 27" (b7 —a3)--- (by —ap)
20, [0 ax (37 fepydy 224

Section 7.3 pp. 514-517

1. Let S; and S, be dense subsets of R such that S; U S, = R.
7. (a) —1; ¢ (constant); 1 9. (up —uy1)(v2 — v1)/|ad — bc|
10.2 14.(a)2 (b)log? 153 16.1 17.2e¢(e—1)
18. 4wabc  19.2m(e?* —¢®) 20.167/3 21.21/64
22.(a) (r/8)1log5 (b) (w/4)(e*—1) (c)2x/15 23.72%a*/2
24. (a) (B1 —a1) -+ (Bn —an)/|det(A)|  25. |araz---an|Vn



A
Abel’s test, 219
Abel’s theorem, 273, 279 (Ex. 31)
Absolute convergence, 215

of an improper integral, 160

of a series of constants, 215

of a series of functions, 247
Absolute integrability, 160
Absolute uniform convergence, 247, 255

(Ex. 17, 20), 256 (Ex. 21)

of a power series, 257
Absolute value, 2
Addition of power series, 267
Adjoint matrix, 370
Affine transformation, 380
Alternating series, 203

test, 203, 219
Analytic transformation, 416 (Ex. 17)
Angle between two vectors, 286
Antiderivative, 143, 151 (Ex. 16-17)
Archimedean property, 5
Area under a curve, 116
Argument, 398

branch of, 409, 410, 415 (Ex. 14)
Ascoli—Arzela theorem, 541
Associative laws

for the real numbers, 1

for vector addition, 283

B

Bessel function, 277, (Ex. 11)

Binomial coefficient, 17 (Ex. 19), 102,
195 (Ex. 35)

Index

563

Binomial series, 266
Binomial theorem, 18 (Ex. 19)
Bolzano—Weierstrass theorem, 27, 294,
301 (Ex. 22)
Bound
lower, 7
upper, 3
Boundary, 526
point, 289, 526
of a set, 23, 289
Bounded convergence theorem, 243
Bounded function, 47, 60, 313
Boundedness of a continuous function
on a closed interval, 62, 199
on a compact set, 313
Boundedness of an integrable function,
119
on a metric space, 536
Bounded sequence, 181, 197, 292
Bounded set
above, 3, 313
below 7, 313
Bounded variation, 134-135
(Ex. 7,9, 10)
Branch
of an argument, 409, 415 (Ex. 14)
of an inverse, 409

C
C[a,b], 528
equicontinuous subset of, 539
uniformly bounded subset of, 539
Cartesian product, 31, 435
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Cauchy product of series, 226, 233 (Ex. 40),
280 (Ex. 32)
Cauchy sequence, 527
Cauchy’s convergence criterion
for sequences of real numbers, 190
for sequences of vectors, 292
for series of real numbers, 204
Cauchy’s root test, 215
Cauchy’s uniform convergence criterion
for sequences, 240
for series, 246
Chain rule, 77, 340, 388
Change of variable, 145, 147
in an improper integral, 164
in a multiple integral, 496
formulation of the rule for, 494
in an ordinary integral, 145, 147
Changing the order of integration, 478
Characteristic function, 70 (Ex. 9), 485
Closed
under scalar multiplication, 519
under vector addition, 519
Closed interval, 23
Closed n-ball, 291
Closed set, 21, 289, 525
Closure of a set, 23, 289
Cofactor, 370
expanding a determinant in, 371-372
Commutative laws
for the reals, 1
for vector addition, 283
Compact set, 26, 293, 536
Comparison test
for improper integrals, 156
for series, 206
Complement of a set, 20
Complete metric space, 527
Completeness axiom, 4
Complete ordered field, 4
Component function, 311
Components, 281
of a vector-valued function, 311, 362
Composite function, 58, 311
continuity of, 59, 311
differentiability of, 77, 340

higher derivatives of, 345

Taylor polynomial of, 109-110 (Ex. 11)

Composition of functions, 58
Conditional convergence
of an improper integral, 162
of a series, 217
Conditionally integrable, 162
Connected metric space, 547 (Ex. 2)
Connected set, 294-295
polygonally, 296
Containment of a set, 19
Content, 453
of a coordinate rectangle, 437
of a set, 485
zero, 448, 514 (Ex. 2)
Continuity, 54, 302
of a composite function, 59, 311
of a differentiable function, 76, 325
of a function of »n variables, 309
of a function of one variable, 54
on an interval, 55
from the left, 54
of a monotonic function, 67
piecewise, 56
from the right, 54
on a set, 56, 311
of a sum, difference, product, and
quotient, 57, 311
in terms of sequences, 198
of a transformation, 379
uniform, 64, 66, 315, 392 (Ex. 10)
of a uniform limit, 242
of a uniformly convergent series, 250
Continuous function 54, 309
boundedness of, 62, 313
extreme values of on a closed inter-
val, 62
integrability of, 133
intermediate values of, 63, 313
on a metric space, 543
Continuous transformation, 379
Continuously differentiable, 73, 80, 329,
385, 409
Contraction mapping theorem, 545
Convergence



absolute
of an improper integral, 160
of a series of constants, 215
absolute uniform, 247
conditional
of a series, 217
of an improper integral, 162
of an improper integral, 152
of an infinite series, 201
interval of, 258
pointwise
of a sequence of functions, 234,
238
of a series of functions, 244
of a power series, 257
radius of, 258
of a sequence in a metric space, 526
of a sequence in R”, 292
of a sequence of real numbers, 179
of a series of constants, 200
of a sum, difference, or product of
sequences, 184
of a Taylor series, 264
uniform, 246
of a sequence, 237
of a series, 246
Coordinate cube, 437
degenerate, 437
nondegenerate, 437
Coordinate rectangle, 437
Coordinates, 281
polar, 397, 502, 505
spherical, 507
Covering, open, 25, 293, 535
Cramer’s rule, 374
Critical point, 81, 335
Curve, differentiable, 453

D
Decreasing sequence, 182
Dedekind cut, 9 (Ex. 8)
Dedekind’s theorem, 9 (Ex. 8)
Defined inductively, 12
Degree
of a homogeneous polynomial, 352

Index 565

of a polynomial, 98
Deleted e-neighborhood, 22
Deleted neighborhood, 525
Dense set, 6, 29 (Ex. 22), 70 (Ex. 10)
Density of the rationals, 6, 392 (Ex. 11)
Density of the irrationals, 6
Denumerable set, 176
Derivative, 73
of a composite function, 77
directional, 317
infinite, 88 (Ex. 26)
of an inverse function, 86 (Ex. 14)
left-hand, 79
nth, 73
one-sided, 79
ordinary, 317
partial, 317
of a power series, 260-261
right-hand, 79
rth order, 319
second, 73
of a sum, difference, product, and
quotient, 77
zeroth, 73
Determinant, 369
expanding in cofactors, 371-372
of a product of square matrices, 370
Diameter of a set, 292, 586
Difference quotient, 73
Differentiability
of a composite function, 340
continuous, 329
of a function of one variable, 73
of a function of several variables, 323
of the limit of a sequence, 243
of a power series, 260-261
of a series, 252
Differentiable 73, 323
continuously, 73, 80, 409
curve, 453
function, continuity of, 76, 325, 385
on an interval, 80
on a set, 73
surface, 453
transformation, 380
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vector-valued function, 339
Differential, 326
higher, 348
of a linear transformation, 367
matrix, 367, 381
of a real-valued function, 326
of a sum, difference, product, and
quotient, 328
of a transformation, 381
Differential equation, 170-171 (Ex. 27—
29)
Directional derivative, 317
Dirichlet’s test
for improper integrals, 163
for series of constants, 217
for uniform convergence of series,
248
Disconnected set, 295
Discontinuity
jump, 56
removable, 58
Discrete metric, 519
Disjoint sets, 20
Distance
in a metric space, 518
from a point to a set, 301 (Ex. 24)
between subsets of a metric space,
542 (Ex. 3)
between two sets, 301 (Ex. 25)
between two vectors, 283
Distributive law, 1
Divergence, unconditional, 233 (Ex. 38)
Divergent improper integral, 152
Divergent sequence, 179
Divergent series, 201
Domain of a function, 30, 32, 543
Double integral, 439

E

Edge lengths of a coordinate rectangle,
437

Elementary matrix, 488

Empty set, 4-5

Entries of a matrix, 364

e-neighborhood, 21, 289, 525

e-net, 538

Equicontinuous subset of C|[a, b], 539

Equivalent metrics, 529

Error in approximating derivatives, 112
(Ex. 20-22)

Euclidean n-space, 281

Euler’s constant, 230 (Ex. 14)

Euler’s theorem, 358-359 (Ex. 8)

Existence of an improper integral, 152

Existence theorem, 424

Expanding a determinant, 371-372

Exponential function, 70 (Ex. 12), 72-73
(Ex. 33), 228, 273

Extended mean value theorem, 106

Extended reals, 7, 8

Exterior point, 289, 526

Exterior of a set, 23, 289, 526

F
Faa di Bruno’s formula, 109 (Ex. 11)
Fibonnacci numbers, 17 (Ex. 17)
Field
complete ordered, 4
ordered, 2
properties, 1
Finite real, 8
First mean value theorem for integrals,
139
Forward differences, 104, 111 (Ex. 18),
112 (Ex. 19-22)
Fredholm’s integral equation, 546
Function 30, 32
absolutely integrable, 160
Bessel, 277 (Ex. 11)
bounded, 47, 60, 313
above, 60, 313
below, 60, 313
of bounded variation, 134 (Ex. 7)
characteristic, 70 (Ex. 9), 485
composite, 58, 311
decreasing, 44
differentiable at a point, 73, 323
domain of, 30, 32

exponential, 70 (Ex. 12), 72-73 (Ex. 33),

228,273
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generating, 279 (Ex. 26) Homogeneous function, 357 (Ex. 8), 360
homogeneous, 357 (Ex. 8) (Ex. 23)
increasing, 44 Homogeneous polynomial, 359 (Ex. 22),
infimum of, 60, 313 Homogeneous system, 375-376
inverse of, 68 Hypercube, 294
linear, 325 Holder’s inequality, 521
locally integrable, 152
maximum of, 60 I
monotonic, 44, 67 Identity matrix, 370
nondecreasing, 44 Image, 394
nonincreasing, 44 Implicit function theorem, 420, 423
nonoscillatory at a point, 162 Improper integrability, 151
nth power of, 33 Improper integral, 152
oscillation of, 171 absolutely convergent, 160
piecewise continuous, 56 change of variable in, 164
range of, 31, 32 conditionally convergent, 162
rational, 33, 232 (Ex. 8), 276 (Ex. 4) convergence of, 152
real-valued, 302 divergence of, 152
restriction of, 399 existence of, 152
Riemann integrable, 113-114, 438 of a nonnegative function, 156
Riemann-Stieltjes integrable, 125 Incompleteness of the rationals
strictly monotonic, 44 Increasing sequence, 182
supremum of, 313 Indeterminate forms, 9, 91, 93-95
value of, 30, 32 Induction assumption, 12
vector-valued, 311 Induction proof, 12
Functions, Inequality,
composition of, 58, 311 Holder, 521
difference of, 32 Minkowski, 522
product of, 32 Schwarz, 284
quotient of, 32 triangle, 3, 285
sum of, 32 Infimum
Fundamental theorem of calculus, 143 of a function, 60, 313
of aset, 7
G existence and uniqueness of, 7, 9
Generalized mean value theorem, 83 (Ex. 6)
Generating function, 279 (Ex. 26) Infinite derivative, 88 (Ex. 26)
Geometric series, 202 Infinite limits, 42, 306, 317 (Ex. 6)
Grouping terms of series, 220 Infinite sequence, 179
in a metric space, 526
H Infinite series, 210, 244
Heine—Borel property, 535 convergence of, 201
Heine—Borel theorem, 25, 66, 172, 293 integrability of, 251
Higher derivatives of a composite func- oscillatory, 201
tion, 345 Infinity norm, 496, 523, 524

Higher differential, 348 Inner product, 284
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Instantaneous
rate of change, 74
velocity, 74
Integrability
conditional, 162
of a continuous function, 133
of a function of bounded variation,
135 (Ex. 7)
improper, 152
of an infinite series, 251
local, 152
of a monotonic function, 133
of a power series, 264
Integrable
Riemann, 114, 438
Riemann-Stieltjes, 125
Integral
over an arbitrary set in R”, 452
of a constant times a function, 136,
456
double, 439
improper, 151
iterated, 462-463
lower
for Riemann integral, 120, 442
for Riemann—Stieltjes integral 128
(Ex. 17)
multiple, 439
ordinary, 439
of a product, 138, 456
proper, 153
over a rectangle in R”, 435
Riemann, 114, 438
Riemann-Stieltjes, 125, 127 (Ex. 16),
135 (Ex. 8-10), 151 (Ex. 23)
over subsets of R”, 435, 450, 452,
471-472
of a sum, 136, 456
test, 207
triple, 439
Integration by parts, 144
for Riemann—Stieltjes integrals, 135
(Ex. 8)
Interior of a set, 21, 289
Interior point, 21, 289, 525

Intermediate value theorem
for continuous functions, 63, 313
for derivatives, 82
Intersection of sets, 20
Interval
closed, 23
half closed, 23
half open, 23
open, 21
semi-infinite, 21, 23
Interval of convergence, 258
Inverse function, 68
branch of, 409
derivative of, 86 (Ex. 14)
of a function restricted to a set, 399
of a matrix, 370
of a transformation, 396
Inverse function theorem, 412
Invertible, locally, 400
Invertible transformation, 396
Irrational number, 6
Isolated point, 23, 289, 526
Iterated integral, 462-463
Iterated logarithm, 97 (Ex. 42), 167 (Ex. 10),
208,230 (Ex. 11),231 (Ex. 16)

J
Jacobian, 384, 426
Jordan content, 485
changed by linear transformation, 488
Jordan measurable set, 485, 488
Jump discontinuity, 56

L

Lebesgue measure zero, 175, 177 (Ex. 7, 8)
Lebesgue’s existence criterion, 176
Left limit inferior, 47

Left limit superior, 47

Left-hand derivative, 79

Left-hand limit, 38

Legendre polynomial, 279 (Ex. 27)
Leibniz’s rule, 86, (Ex. 12)

Length of a vector, 283

I’Hospital’s rule, 88

Limit of a real-valued function, 302



Limit
along a curve, 315 (Ex. 3)
in the extended reals, 43
inferior of a sequence, 188
left, 47
infinite, 42, 306, 316 (Ex. 6)
at infinity, 308, 316 (Ex. 6)
left hand, 38
one-sided, 37, 40
point, 23, 289, 526
pointwise, 234, 238, 244
at o0, 40
of a real-valued function
as x approaches xo, 34
as x approaches oo, 40
as x approaches —oo, 50 (Ex. 14)
right-hand, 39
of a sequence, 179, 292
uniqueness of, 35, 305
of a sum, product, or quotient, 35,
305
superior, left, 47
superior of a sequence, 188
uniform, 237
uniqueness of, 35, 305
Line segments in R”, 288
Line, parametric representation of, 288—
289
Linear function, 325
Linear transformation, 362
change of content under, 490
differential of, 367
matrix of, 363-364
Lipschitz condition, 84, 87 (Ex. 24), 140
Local extreme point, 80, 334
Local extreme value, 80
Local integrability, 152
Local maximum point, 80, 334
Local minimum point, 80, 334
Locally invertible, 400
Lower bound, 7
Lower integral, 120, 442
Lower sum, 120, 442

M

Index 569

Maclaurin’s series, 264
Magnitude, 2
Main diagonal of a matrix, 370
Mathematical induction, 10, 14
Matrices

product of, 364

sum of, 364
Matrix

adjoint, 370

of a composition of linear transfor-

mations, 366

differential, 367, 381

elementary, 488

identity, 370

inverse, 370

of a linear transformation, 363-364

main diagonal of, 370

nonsingular, 370

norm of, 368

scalar multiple of, 364

singular, 370

square, 369

transpose of, 370
Maximum value, local, 80
Maximum of a function, 60
Mean value theorem, 83, 347

extended, 106

generalized, 83

for integrals, 139, 144
Metric, 518

discrete, 519

induced by a norm, 520
Metrics, equivalent, 529
Metric space, 518

complete, 527

connected, 547 (Ex. 2)
Minimum of a function, 60
Minimum value, local, 80
Minkowski’s inequality, 522
Monotonic function, 44, 67, 84

integrability of, 133
Monotonic sequence, 182
Multinomial coefficient, 322, 336 (Ex. 12)
Multiple integral, 439
Multiplication
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of matrices, 364
of series, 223
scalar, 519
Multiplicity of a zero, 87 (Ex. 21), 108
(Ex. 5-7)

N
Natural numbers, 10
n-ball, 290-291
Negative definite polynomial, 353
Negative semidefinite polynomial, 353
Neighborhood, 21, 289, 525
deleted, 22, 525
deleted €, 22
€, 21
Nested sets, 292, 529
principle of, 292, 529
Nondecreasing sequence, 182
Nondegenerate coordinate cube, 437
Nondenumerable set, 176
Nonempty set, 4, 5
Nonincreaing sequence, 182
Nonoscillatory at a point, 162
Nonsingular matrix, 370
Nontrivial solution, 375
Norm
infinity, 496, 523, 524
of a matrix, 368
metric induced by, 520
of a partition, 114, 437
on a vector space, 519
Normed vector space, 519
nth derivative, 73
nth partial sum of a series, 201
nth term of a series, 201
Number, natural, 10
Number, prime, 15

0]

One-sided derivative, 79
One-sided limit, 37

One-to-one transformation, 396
Open ball, 525

Open covering, 25, 293, 535
Open interval, 21

Open n-ball, 290
Open set, 21, 289, 525
Ordered field, 2
complete, 4
Order relation, 2
Ordinary derivative, 317
Ordinary integral, 439
Origin of R", 283
Oscillation of a function, 171
at a point, 172
Oscillatory infinite series, 201

P
Parametric representation of a line, 288—
289
Partial derivative, 317
rth order, 319
Partial sums, 244
Partition, 114, 437
norm of, 114, 437
points, 114
refinement of, 114, 438
Path, polygonal, 296
Peano’s postulates, 10
Piecewise continuous function, 56
Point, 19
boundary, 23, 289, 526
critical, 81, 335
exterior, 23, 289, 526
at infinity, 7
interior, 21, 289
isolated, 23, 289, 526
limit, 23, 289, 526
local extreme, 80, 334
local maximum, 80, 334
local minimum, 80, 334
in terms of sequences, 197
Pointwise convergence
of a sequence of functions, 234, 238
of a series, 244
Pointwise limit, 234, 238, 244
Polar coordinates, 397, 502, 505
Polygonal path, 296
Polygonally connected, 296
Polynomial, 33, 98



homogeneous, 352
negative definite, 353
negative semidefinite, 353
positive definite, 353
positive semidefinite, 353
semidefinite, 353
Taylor, 99, 351

Power series, 257
arithmetic operations with, 267
continuity of, 260-261
convergence of, 257
differentiability of, 260-261
integration of, 264
of a product, 268
of a reciprocal, 271
of a quotient, 269
uniqueness of, 263

Prime, 15

Principal value, 155

Principle of mathematical induction, 10,

14

Principle of nested sets, 529

Product
Cartesian, 31, 435
Cauchy, 226, 233 (Ex. 40)
inner, 284
of matrices, 364
of power series, 268
of series, 223

Proper integral, 153

R
R”, 281
rth order partial derivative, 319
Raabe’s test, 212
Radius of convergence, 258
Range of a function, 31, 32, 543
Ratio of a geometric series, 202
Ratio test, 210
Rational function, 33, 232 (Ex. 28), 276
(Ex. 4)
Rational numbers, 2
density of, 6
incompleteness of, 6
Real line, 19

Index 571

Real number system, 19
Real-valued function,
of n variables, 302
of areal variable, 31
Reals, extended, 8
Rearrangement of series, 221
Rectangle, coordinate, 437
Refinement of a partition, 114, 438
Region, 295, 297
Region of integration, 478
Regular transformation, 405
Remainder in Taylor’s formula, 104
Removable discontinuity, 58
Restriction of a function, 399
Riemann integrable, 114, 438
Riemann integral 113-114, 438
uniqueness of, 125 (Ex. 1)
Riemann sum, 114, 438
Riemann-Stieltjes integral, 125
integration by parts for, 135 (Ex. 8)
Riemann-Stieltjes sum, 125
Right limit inferior, 53 (Ex. 39)
Right limit superior, 53 (Ex. 39)
Right-hand derivative, 79
Right-hand limit, 39
Rolle’s theorem, 82

S
Scalar multiple, 282
Scalar multiplication, 519
Schwarz’s inequality, 284
Secant plane, 333
Second derivative, 73
Second derivative test, 103
Second mean value theorem for integrals,
144
Sequence, 179, 526
bounded, 181, 292
bounded above, 181
bounded below, 181
Cauchy, 527
convergence of, 179,292, 526
decreasing, 182
divergent, 179
to o0, 181



572 Index

of functional values, 183
of functions,
pointwise, 234
increasing, 182
limit of, 179, 292
uniform, 237
limit inferior of, 188
limit superior of, 188
monotonic, 182
nondecreasing, 182
nonincreasing, 182
nth term of, 179
terms of, 179
unbounded, 292
uniformly convergent, 237

Series

Set

alternating, 203

binomial, 266

Cauchy productof, 226, 233 (Ex. 40),
280 (Ex. 32)

differentiability of, 252

divergent, 201

geometric, 202

grouping terms in, 220

Maclaurin, 264

multiplication of, 223

of nonnegative terms, 205

partial sums of, 244

power, 257

product of, 223

rearrangement of, 221

Taylor, 264

term by term differentiation of, 252

term by term integration of, 251

uniformly convergent, 246

boundary of, 23, 289, 526
bounded, 7, 536

above, 3

below, 7
closed, 21, 289, 525
closure of, 23, 289, 526
compact, 26, 293, 536
complement of, 20
connected, 295

Sets

containment of, 19
content of, 485

dense, 6, 29 (Ex. 22), 70 (Ex. 10)
denumerable, 176
diameter of, 292, 536
disconnected, 295
empty, 5

exterior of, 23, 289, 526
interior of, 21, 289, 525
nondenumerable, 176
nonempty, 4, 5

open, 21, 289, 525
singleton, 20

strict containment of, 20
subset of, 19

totally bounded, 538
unbounded below, 7
uniformly bounded, 539
universal, 19

disjoint, 20
equality of, 19
intersection of, 20
nested, 529

union of, 20

Simple zero, 108 (Ex. 5)

Singleton set, 20

Singular matrix, 370

Solution of a system of linear equations

nontrivial, 375
trivial, 375

Space

metric, 518
vector, 519

Spherical coordinates, 507
Square matrix, 369
Subsequence, 195

of a convergent sequence, 196, 527

Subset, 19
Subspace of a vector space, 519
Successor, 11

Sum

of matrices, 364
Riemann, 114, 438
lower, 120, 442



upper, 120, 442
Riemann-Stieltjes, 125
of vectors, 282
Summation by parts, 218
Supremum
of a function, 60, 313
of a set, 3
existence and uniqueness of, 4
Surface, 331
differentiable, 453

T

Tangent
to a curve, 75
line, 75
plane, 332

Taylor polynomial, 99, 351

of a composite function, 109-110 (Ex. 11)

of a product, 109 (Ex. 10)

of a reciprocal, 110 (Ex. 12)
Taylor series, 264

convergence of, 264
Taylor’s theorem

for functions of n variables, 350

for a function of one variable, 104
Terms of a sequence, 179
Term by term differentiation, 252
Term by term integration, 251
Test

Cauchy’s root, 215

comparison

for improper integrals, 156

for series, 206

integral, 207

Raabe, 212

ratio, 210

second derivative, 103
Topological properties of R", 281
Topological space, 26
Total variation, 134-135 (Ex. 7)
Totally bounded, 538
Transformation, 362

affine, 380

analytic, 416 (Ex. 17)

continuous, 379

Index 573

differentiable, 339, 379-380
differential of, 381
inverse of, 396
invertible, 396
linear, 362
one-to-one, 396
regular, 405
Transitivity of <, 2
Transpose of a matrix, 370
Triangle inequality, 3, 285
in a metric space, 518
Triple integral, 439
Trivial solution, 375

U

Unbounded
above, 7
below, 7

sequence, 292
Unconditional divergence, 233 (Ex. 38)
Uniform continuity, 64, 72 (Ex. 30-32),
544
for functions of n variables, 314, 392
(Ex. 10)
Uniform convergence
properties preserved by
continuity, 242
differentiability, 243
integrability, 242
of a sequence, 236
of a series, 246
Uniformly bounded set in Ca, b], 539
Union of sets, 20
Uniqueness
of infimum, 7
of limit, 35, 305, 527
of power series, 263
of prime factorization, 16 (Ex. 14)
of Riemann integral, 125 (Ex. 1)
of supremum, 4
Uniform continuity, 64, 66, 72 (Ex. 30—
32)
Unit vector, 283
Universal set, 19
Upper bound, 3
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Upper integral, 120, 442
Upper sum, 120, 442

A%
Value
of a function, 30, 32
local maximum, 80
local minimum, 80
principal, 155
Variation, total, Ex. 7, 134 (Ex. 7)
Vector, 283,519
Vector space, 283, 519
normed, 519
subspace of, 519
Vector sum, 282
Vector, unit, 283
Vector-valued function, 361-362
continuous, 379
differentiable, 379-380

%%

Weighted average, 139
Weierstrass’s test, 246

Z
Zero content, 448, 460 (Ex. 14, 15), 461
(Ex. 16-19), 487, 514 (Ex. 2),

517 (Ex. 11)
Zero
multiplicity of, 108 (Ex. 5-7)
simple

Zeroth derivative, 73



