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This paper examines the electrostatic shielding in plasmas, and resolves inconsistencies
about what the Debye length really is. Two different interpretations of the Debye
length are currently used: (1) The potential energy approximately equals the thermal
energy, and (2) the ratio of the shielded to the unshielded potential drops to 1/e.
We examine these two interpretations of the Debye length for equilibrium plasmas
described by the Boltzmann distribution, and non-equilibrium plasmas (e.g. space
plasmas) described by kappa distributions. We study three dimensionalities of the
electrostatic potential: 1-D potential of linear symmetry for planar charge density,
2-D potential of cylindrical symmetry for linear charge density, and 3-D potential of
spherical symmetry for a point charge. We resolve critical inconsistencies of the two
interpretations, including: independence of the Debye length on the dimensionality;
requirement for small charge perturbations that is equivalent to weakly coupled
plasmas; correlations between ions and electrons; existence of temperature for non-
equilibrium plasmas; and isotropic Debye shielding. We introduce a third Debye
length interpretation that naturally emerges from the second statistical moment
of the particle position distribution; this is analogous to the kinetic definition of
temperature, which is the second statistical moment of the velocity distribution.
Finally, we compare the three interpretations, identifying what information is required
for theoretical/experimental plasma-physics research: Interpretation 1 applies only
to kappa distributions; Interpretation 2 is not restricted to any specific form of the
ion/electron distributions, but these forms have to be known; Interpretation 3 needs
only the second statistical moment of the positional distribution.

1. Introduction
The Debye length is not simply a measuring length unit used in the description and

study of plasmas. Instead, it represents the physical scale of the transition from plasma
collectivity to individual particle behavior. Thus, it interfaces between the physics of
micro and macro scales and its technical definition and detailed attributes are crucial
for theoretical and experimental plasma-physics research. But what really is the Debye
length and how can it be meaningfully and consistently defined and interpreted?

There is currently no strict definition of the term Debye length; instead particular
properties of electrostatic shielding have been used for the ‘definition’ or ‘analytical
derivation’ of this critical length in plasmas. Here we use the word ‘interpretation’
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to characterize two fundamentally different ways of using ‘Debye length’ as found in
literature: (1) the distance at which the potential energy from a charge perturbation is
equal to the thermal energy (e.g. Kallenrode 2004; Baumjohann and Treumann 2012),
and (2) the distance at which the potential energy from a charge perturbation has
fallen to 1/e of its unshielded value (e.g. Montgomery and Tidman 1964; Chen 1974).
Interpretation 1 is a physical property of Debye shielding; it involves the distance
where a sort of equilibrium is established between the ‘source’ of the shielding that
is the restoring electric potential, and the ‘sink’ of the shielding that is the disturbing
thermal energy. In contrast, Interpretation 2 is simply a mathematical property of
the shielding and marks the distance where the shielded potential falls to a certain
fraction of its unshielded value.

To the best of our knowledge, the substantial differences between the two
interpretations of the Debye length have never been reconciled. Furthermore,
the mathematical equivalence of the two interpretations occurs only at thermal
equilibrium, the state of a system where any flow of heat (thermal conduction, thermal
convection, thermal radiation) is in balance. Thus, we ask – can the interpretations
somehow be reconciled in general and what is the correct definition for Debye length
in plasmas that are not in thermal equilibrium?

While the two interpretations are equivalent at thermal equilibrium, they are
different for plasmas out of thermal equilibrium, and the validity of Interpretation
1 is not certain for such plasmas. On the other hand, Interpretation 2 is valid
for systems both at and out of thermal equilibrium. This is because, similar to
the Boltzmann distribution at thermal equilibrium, the kappa distribution can lead
to a linearized Poisson equation with an exponential solution. Therefore, both the
interpretations of the Debye length have been used for thermal equilibrium plasmas,
but only Interpretation 2 has been used for plasmas out of thermal equilibrium
that are described by kappa distributions (Bryant 1996; Rubab and Murtaza 2006;
Gougam and Tribeche 2011). Indeed, as we will show in this paper, Interpretation 1
needs to be modified for non-equilibrium systems.

Kappa distributions are based on the solid statistical background of non-extensive
statistical mechanics (Livadiotis and McComas 2009, 2013b) and describe systems
that are in stationary states but out of thermal equilibrium. Stationary states refer to
the distribution function of phase space of a system, meaning that must be – at least
temporarily – invariant, even though is not given by the classical Boltzmann-Gibbs
distribution of energy or the equivalent Maxwell distribution of velocities. Instead, the
distribution function for stationary states out of thermal equilibrium are described by
kappa distributions, for which the temperature is well-defined and given by the mean
kinetic energy (Livadiotis and McComas 2009, 2010a, 2011b, 2012, 2013b), while
the kappa index (that governs these distributions) is a thermodynamic parameter
inversely proportional to the correlation between the phase space of any two particles
(Livadiotis and McComas 2011b, 2013d).

Space plasmas are examples of weakly coupled plasmas that typically reside
in stationary states out of thermal equilibrium. Kappa distributions have been
successfully applied in numerous space plasmas, e.g. solar wind (e.g. Chotoo et al. 2000;
Mann et al. 2002; Maksimovic et al. 2005; Yoon et al. 2006; Pierrard and Lazar 2010),
planetary magnetospheres (e.g. Christon 1987; Collier and Hamilton 1995; Grabbe
2000; Mauk et al. 2004; Schippers et al. 2008; Dialynas et al. 2009; Ogasawara
et al. 2013), outer heliosphere and inner heliosheath (e.g. Decker and Krimigis 2003;
Decker et al. 2005; Heerikhuisen et al. 2008; Zank et al. 2010; Livadiotis et al. 2011,
2012, 2013), and other general plasma analyses (e.g. Milovanov and Zelenyi 2000,
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2001; Saito et al. 2000; Leubner 2004; Raadu and Shafiq 2007; Hellberg et al. 2009;
Livadiotis and McComas 2009, 2010a-c, 2011a, 2011b, 2012, 2013a-e; Tribeche et al.
2009; Le Roux et al. 2010; Eslami et al. 2011; Kourakis et al. 2012; Yoon 2012; Yoon
et al. 2012; Bains et al. 2013; Saberian and Esfandyari-Kalejahi 2013).

The purpose of this paper is to resolve the inconsistencies of the two interpretations
of the Debye length for both equilibrium and non-equilibrium plasmas. We
organize the paper as follows. Section 2 briefly explores the two Debye length
interpretations with a simple example of one-dimensional (1-D) symmetry of electric
field and potential. In Sec. 3, we solve the Poisson equation of Gauss’ law of
electrodynamics and show the detailed derivation of the Debye length for three
different dimensionalities of the potential: 1-D or linear symmetry for planar charge
density, two-dimensional (2-D) or cylindrical symmetry for linear charge density,
and three-dimensional (3-D) or spherical symmetry for a point charge. We examine
plasmas both at and out thermal equilibrium, and compare the two interpretations of
the Debye length for all three dimensionalities. In Sec. 4, we discuss the inconsistencies
and assumptions of the Debye length interpretations: (1) Independence of the
Debye length on the potential dimensionality; (2) approximation of small charge
perturbations; (3) cut-off of the electron density; (4) weakly coupled plasmas; (5)
no correlations between ions and electrons; (6) existence of temperature for plasmas
out of thermal equilibrium; and (7) isotropic Debye shielding. In Sec. 5, we develop
the necessary modifications required to eliminate inconsistencies between the two
interpretations. In Sec. 6, we provide the restrictions of each of the two interpretations
and develop the concept of yet a third interpretation. Finally, Sec. 7 summarizes the
conclusions. Six Appendices support the mathematical formalism used in this paper:
Appendix A provides the derivation of the kappa distribution density formulations for
ions and electrons that are used in this paper; Appendices B and C solve the Poisson
equation for equilibrium and non-equilibrium plasmas, respectively; Appendix D
shows the equality of the number of ions in a perturbation and the number of excess
electrons in the plasma; Appendix E derives the Debye length for large perturbations
using Interpretation 1; and Appendix F derives the particle position moments of the
charge distribution in the plasma.

2. Two interpretations of the Debye length in plasmas
Even stable plasmas constantly undergo charge perturbations via the thermal

motion of their particles. Whenever such a charge perturbation occurs in a plasma,
positive and negative free charges respond by moving in opposite directions around the
perturbation, producing a shielding effect that preserves the charge quasi-neutrality of
the plasma (equidistribution of charge density) at large distances. Hence, the shielding
electric potential energy recovers the local plasma’s stability and restores its quasi-
neutrality. On the other hand, the thermal motions of particles compete with the
potential and make it more difficult for free charges to shield the charge perturbation.
While the potential energy is larger than the thermal energy at distances near the
charge perturbation, the thermal energy prevails at distances far from it. The specific
distance, for which the potential and thermal energies are equal, specifies the first
interpretation of the Debye length λD (Kallenrode 2004).

We demonstrate this interpretation with the simple geometry of 1-D shielding
(Fig. 1(a)). A local charge perturbation of ions can be approximated by a planar
equidistribution of total charge �Q = e�N and charge density σ = �Q/A = e�N/A,
where A is the area covered by the perturbation charge and e denotes the elementary
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Figure 1. (Colour online) Three simple geometries of charge perturbation, with (a) linear, (b)
cylindrical, (c) spherical symmetry, and respective dimensionalities d = 1, 2, 3. (The electric
field notations E(x), E(ρ), E(r) correspond to the surface σ , linear l, and point charge density.)

electric charge. Due to the charge perturbation, a local concentration of charges
results in an electric field E, with E = |E|, perpendicular to the plane (along the
direction of the x-axis). Then, (mobile) electrons move along the field, producing an
opposite field –E, and restoring the plasma quasi-neutrality.

The surface density of the free charges within a Debye length (from both sides
of the plane of the charge perturbation) is −σ = −�N e/A = −2(�N/ND)e n∞λD;
a number of �N free electrons is necessary to cancel the perturbation charge (see
Appendix D); −�Q = −e�N is the charge of these electrons; ND = 2n∞AλD is the
number of ions or electrons in a ‘Debye-rod’ of cross-sectional area A and length λD;
and n∞ denotes the density of the undisturbed plasma at sufficiently large distance
for quasi-neutrality to be valid.

The perturbation electric field is E = 1
2
σ/ε (the fraction 1

2
comes from the existence

of the perturbation electric field E on both the sides of the plane); ε is the permittivity
of the plasma. The corresponding electric potential energy is e Φ(x) ∼ e Φ(0) −
1
2
eσ ε−1x (this is true for small scales x compared to the Debye length, x � λD). At

the Debye length λD, the shielding cancels the charge perturbation, so that Φ(λD) = 0
or Φ(0) ∼ 1

2
σ ε−1λD. On the other hand, the kinetic energy per particle is ∼ 1

2
kBT0

( 1
2

comes from one degree of freedom), where T0 ≡ (T −1
i + T −1

e )−1 is the ‘effective’
temperature, which includes both the ion Ti and electron Te temperature. Hence, the
ratio of the per particle potential to thermal energy is given by

e Φ(x)
1
2
kBT0

∼=
σ

en∞λD

·
1
2
e2n∞ε−1λ2

D

1
2
kBT0

·
[

Φ(0)
1
2
σ ε−1λD

− x

λD

]
, (1a)

and noting that Φ(0) ∼ 1
2
σ ε−1λD and σ/(en∞λD) = 2�N/ND, we obtain

e Φ(x)
1
2
kBT0

∼= 2
�N

ND

·
1
2
e2n∞ε−1λ2

D

1
2
kBT0

·
(

1 − x

λD

)
. (1b)

The potential energy is due to the presence of �N ions that contribute to the charge
perturbation. On the other hand, the thermal energy applies to all the ND particles
that could be available to shield the charge perturbation, i.e. included in a Debye
length. Hence, the ratio, R, of the potential to thermal energy must be normalized by
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the quantity �N/ND, i.e.

R ≡ NDe Φ

�N 1
2
kBT0

, (2)

that is,

R(x) ∼= 2 · e2 ε−1λ2
D

kBT0

· (1 − x/λD). (3a)

The functional part of (3a), (1 − x/λD), is valid for x � λD, and is generally given by
the exponential exp (−x/λD), i.e.

R(x) ∼= 2 · e2 ε−1λ2
D

kBT0

· exp(−x/λD). (3b)

In Appendix B.1, we derive (3b) by solving the Poisson equation. There we show that

R(x) ∼= 2 exp(−x/λD). (3c)

Comparing (3b) and (3c) we find that the Debye length λD is given by

λD ≡
√

kBε

e2

T0

n∞
. (4)

The case described above is characterized as 1-D, because the planar charge
perturbation of surface density σ leads to an electric potential/field of linear symmetry,
Φ(x) and E(x) (Appendix B.1). Moreover, in this paper we also examine the simple
examples of 2-D and 3-D geometries, as shown in Figs 1(b) and (c). In the 2-D
case, a charge perturbation of linear density l leads to an electric potential/field of
cylindrical symmetry, Φ(ρ) and E(ρ) (Appendix B.2), while in the 3-D case, a point-
charge perturbation leads to an electric potential/field of spherical symmetry, Φ(r)
and E(r), (Appendix B.3; ρ and r are the cylindrical and spherical radii, respectively).

The ratio of the total potential to thermal energy at the Debye length is a constant
of the order of unity. Indeed, in the 1-D case, we have R(x = λD) ∼= 1/e. In addition,
in Sec. 3 we show that for any dimensionality d of the potential, we have

(Interpretation1) R(distance ∼ λD) ∼= C(d) · (1/e)∼O(1), (5a)

where the constant C(d) differs for each dimensionality d = 1, 2, 3, but remains in the
order of unity. This constitutes Interpretation 1 of the Debye length: The ratio R of
the potential to the thermal energy is some constant of the order of unity. Figure 2(a)
demonstrates this interpretation of Debye length through (5a) that is the approximate
equality of the potential energy by the thermal energy at this distance.

An alternative and very frequently used interpretation of the Debye length
(e.g. Montgomery and Tidman 1964; Chen 1974) involves the distance where the
exponential factor, which is included in the spatial function of the electric potential,
falls to ∼1/e of its unshielded value. For the 1-D case, the spatial dependence of
the potential is given only by the exponential factor, i.e. Φ(x) ∼ Φ(0) · exp (−x/λD),
so that Φ(λD) ∼ Φ(0)/e. In the 2-D and 3-D cases, the potential follows similar
radial behavior, Φ(ρ) ∝ exp (−ρ/λD)/

√
ρ and Φ(r) ∝ exp (−r/λD)/r . The deviation

from the unshielded (us) potential, Φus(ρ) ∝ 1/
√

ρ and Φus(r) ∝ 1/r , comes from
the exponential factor that falls to ∼1/e of its value at distance equal to λD, defining
thus, the Debye length in the 2-D and 3-D potentials. Therefore, this interpretation
could be written in a compact way for any d-dimensional (d-D) potential,

(Interpretation 2) Φ(λD)/Φus
∼= 1/e ∼O(1). (5b)
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Figure 2. (Colour online) Demonstration of Interpretations 1 and 2 of the Debye length in
plasmas. (a) Interpretation 1: The 3-D potential energy at thermal equilibrium (Appendix B,
(B18a), (B18b)) (red) and the thermal energy (blue) are co-plotted for four values of thermal
energy, kBT/J = 10−3, 10−2, 10−1, 1 (corresponding to four values of the potential energy
because the potential’s formulation involves also the temperature). The potential energy eΦ is
multiplied by 3eN/�N in order to be exactly equal to the thermal energy kBT at a distance
equal to the Debye length. (b) Interpretation 2: The exponential factor exp (−r/

√
kBT ) (red)

and the thermal energy (blue) are co-plotted for the same four values of thermal energy. Note
any involved parameter other than the temperature is normalized to 1. The exponential factor
is multiplied by kBT/e in order to be exactly equal to the thermal energy kBT at a distance
equal to the Debye length. In both panels, the geometric locus of the intersections (connected
with vertical dash-dot lines) is given by the parabola kBT = λ2

D (on a log-log scale).

This constitutes Interpretation 2 of the Debye length, demonstrated in Fig. 2(b).
The two Debye length interpretations, namely (i) via the competing thermal and

potential energies and their ratio, (5a), and (ii) via the exponential form of the
potential, (5b), are physically different, but they result to the same Debye length, thus
they are mathematically equivalent at thermal equilibrium. However, for plasmas
out of thermal equilibrium, the two interpretations do not necessarily result to the
same Debye length, and (5a) and (5b) are not equivalent for plasmas out of thermal
equilibrium. As we will see, these need to be modified for kappa distributions.

Once, the specific formulation of the phase space distribution function is known,
the Poisson equation for Gauss’ law in electrodynamics can be solved to derive the
exact potential configuration. At thermal equilibrium, the phase space distribution is
given by the Boltzmann-Maxwell distribution, while plasmas in stationary states out
of thermal equilibrium are typically described by the kappa distribution. In order to
proceed from equilibrium to the non-equilibrium plasmas, it is critical to understand
the concept of temperature for systems in stationary states that are out of thermal
equilibrium. Recently the temperature was shown to be well-defined for these non-
equilibrium systems described by kappa distributions (for details, see Livadiotis and
McComas 2009, 2010a, 2011b, 2013b; see also the early work of Treumann 1999;
Treumann et al. 2004; Treumann and Jaroschek 2008). Sections 4.6 and 4.7 show in
detail the connection of temperature with the Debye length.
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According to Interpretations 1 and 2, (5a) and (5b), the Debye length is given by
(4) for plasmas at thermal equilibrium. However, using Interpretation 2, the Debye
length is modified to λD,K for plasmas out of thermal equilibrium that are described by
kappa distributions (Bryant 1996; Rubab and Murtaza 2006; Gougam and Tribeche
2011; see also Sec. 4),

λD,K ≡ λD∞ · K(κ0), withK(κ0) ≡
√

κ0

κ0 + 1
=

√
κ − 3

2

κ − 1
2

, λD∞ ≡
√

kBε

e2

T0

n∞
. (6)

Note that we use the invariant notation of the universal kappa index, κ0, that is
independent of the dimensionality d, in contrast to the usual kappa index that
depends on d, i.e. κ = κ0 + d/2 (Livadiotis and McComas 2011b).

Hereafter, we use the notation λD for the actual Debye length, whatever that may
be. A second subscript is added to indicate if the Debye length is given by (i) the
form for plasmas at thermal equilibrium, λD = λD∞, (ii) the form for plasmas out of
thermal equilibrium and described by kappa distributions, λD = λD,K, or (iii) some
other form, λD = λD,Λ, which is given in terms of some kappa function, Λ(κ0),

λD,Λ ≡ λD∞ · Λ(κ0). (7)

If λD = λD∞ is correct, then Λ(κ0) = 1. If λD = λD,K is correct, then Λ(κ0) = K(κ0).
It might be that the correct Debye length is different from either of these cases,
corresponding to some different function Λ(κ0). Next, we derive the Debye length
for plasmas at thermal equilibrium and verify that it is given by λD = λD∞ using
both Interpretations 1 and 2. Then, we examine the Debye length for plasmas out of
thermal equilibrium, and determine whether λD is given by λD∞, λD,K, or some other
λD,Λ.

3. Debye length in equilibrium and non-equilibrium plasmas
3.1. Poisson equation

For plasmas at thermal equilibrium, the ion/electron densities are given by the
Boltzmann distribution of energy,

ni = n∞ · exp

[
−e Φ(r)

kBTi

]
, ne = n∞ · exp

[
e Φ(r)

kBTe

]
, (8a)

where n∞ denotes again the ion or electron density. For plasmas in stationary states
out of thermal equilibrium, the ion and electron densities are described by kappa
distributions, expressed in terms of the invariant kappa index κ0. This is invariant
under variations of the system’s particles N and the total degrees of freedom fN = d ·N ,
where d denotes now the kinetic degrees of freedom per particle. (For details on the
derivations, see Appendices; for more details on the kappa distribution formulation,
see Livadiotis and McComas 2011b, 2013b.) Namely,

ni = n∞ ·
[
1 +

e Φ(r)

κ0kBTi − e Φ̄i

]−κ0−1

, ne = n∞ ·
[
1 − e Φ(r)

κ0kBTe + eΦ̄e

]−κ0−1

, (8b)

where Φ̄ is the average potential energy.
The total charge density, ρ = e(ni − ne), is expanded in terms of the ratio of the

potential to the thermal energy. More precisely, for the equilibrium case, it is expanded
assuming that e Φ(r)/(kBT0) � 1, while for the non-equilibrium case, it is expanded
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Charge dimension Charge distribution Potential/field dimension Potential/field symmetry

2 Surface density σ 1 Linear (x)
1 Linear density l 2 Cylindrical (ρ)
0 Point charge Q 3 Spherical (r)

Table 1. Charge and potential/field dimensions and symmetry.

d-D e Φ/kBT0 R = (ND/�N ) · (e Φ/ 1
2
kBT0)

Equilibrium
1 (1/1) · σ

2e n∞λD∞
· exp (−x/λD∞ ) (2/1) · exp(−x/λD∞ )

2 (1/
√

π) · l

e n∞πλ2
D∞

· exp (−ρ/λD∞ )√
ρ/λD∞

(2/
√

π) · exp (−ρ/λD∞)√
ρ/λD∞

3 (1/3) · Q

e n∞(4π/3)λ3
D∞

· exp (−r/λD∞ )

r/λD∞
(2/3) · exp(−r/λD∞ )

r/λD∞

d
[
d Γ

(
d+1

2

)]−1 · �N
ND

· exp (−r/λD∞ )

(r/λD∞ )(d−1)/2

[
d
2
Γ
(

d+1
2

)]−1 · exp(−r/λD∞ )

(r/λD∞ )(d−1)/2

Non-equilibrium
1 (1/1) · σ

2e n∞λD∞
· ( κ0

κ0+1
)1/2 · exp (−x/λD,K) (2/1) · Λ(κ0)(

κ0
κ0+1

)1/2 · exp(−x/λD,K)

2 (1/
√

π) · l

e n∞πλ2
D∞

· exp (−ρ/λD,K
)√

ρ/λD,K

(2/
√

π) · Λ(κ0)
2 · exp (−ρ/λD,K

)√
ρ/λD,K

3 (1/3) · Q

e n∞(4π/3)λ3
D∞

·
(

κ0
κ0+1

)−1/2

· exp(−r/λD,K
)

r/λD,K
(2/3) · Λ(κ0)

3
(

κ0
κ0+1

)−1/2

· exp(−r/λD,K
)

r/λD,K

d
[
d Γ

(
d+1

2

)]−1 · �N
ND

· Λ(κ0)
d ( κ0

κ0+1
)(2−d)/2

[
d
2
Γ
(

d+1
2

)]−1 · Λ(κ0)
d ( κ0

κ0+1
)(2−d)/2

· exp(−r/λD,K
)

(r/λD,K
)(d−1)/2 · exp(−r/λD,K

)

(r/λD,K
)(d−1)/2

Table 2. Potential energy and ratio of potential to thermal energy for the three
dimensionalities.

assuming that e Φ(r)/( κ0

κ0+1
kBT0) � 1. Hence, we obtain

ρ(r)/ε ∼= −e2n∞

kBε

(
1

Ti

+
1

Te

)
· Φ(r) = − 1

λ2
D∞

· Φ(r) (9a)

for plasmas at thermal equilibrium, and

ρ(r)/ε ∼= −e2n∞

kBε

(
1

Ti

+
1

Te

)
· κ0 + 1

κ0

·Φ(r) = − 1

λ2
D∞

· κ0 + 1

κ0

·Φ(r) = − 1

λ2
D,K

·Φ(r) (9b)

for plasmas out of thermal equilibrium. Then, the linearized Poisson equation is given
by

∇2Φ(r) = −ρ(r)/ε ∼=
1

λ2
D,K

· Φ(r). (10)

This is solved for both equilibrium and non-equilibrium cases (Appendices B and
C, respectively), by considering the three dimensionalities of potential/electric field,
as given in Table 1 and illustrated in Fig. 1.

3.2. Results

Table 2 gathers the derived formulations of the potential for all three dimensionalities,
i.e. 1-D (Φ and E with linear symmetry along x-axis, for planar charge density on y-z
plane), 2-D (Φ and E with cylindrical symmetry on x-y plane, for linear charge density
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Figure 3. (Colour online) Functional behavior of the ratio of the potential to thermal energy.
This is depicted for the three dimensionalities d = 1, 2, 3 (Table 2), for (a) κ0 = 0.4, and

(b) κ0 → ∞, considering that Λ(κ0) =
√

κ0

κ0+1
. The ratio is compactly written for any d, i.e.

R(ξ ) ∼= C(d) · ( κ0

κ0+1
)(3+d)/4ξ (1−d)/2 exp (−

√
κ0+1
κ0

ξ ), with C(d) ≡ [ d
2
Γ ( d+1

2
)]−1 and distant from

perturbation ξ ≡ r/λD∞. The unshielded case (λD∞ → ∞) is also shown for each dimensionality
(dash lines), for reference. We observe that for large distances compared to the Debye length,
the shielding is more effective for d = 3, while for quite smaller distances, the shielding is more
effective for d = 1.

on z-axis), and 3-D (Φ and E with spherical symmetry, for a point charge). For each,
the potential energy is normalized to the thermal energy, i.e. e Φ/kBT0. The similarities
between the three cases are apparent. We observe that for all three dimensionalities
the potential is expressed in terms of the electron excess �N normalized to the Debye
number of particles ND , i.e.

�N

ND

(d = 1) =
σ

2e n∞λD,Λ

,
�N

ND

(d = 2) =
l

e n∞π λ2
D,Λ

,
�N

ND

(d = 3)

=
Q

e n∞(4π/3)λ3
D,Λ

, (11)

where λD,Λ is reduced to λD∞ at thermal equilibrium. The right column of Table 2
gives the ratio of the potential to thermal energy, R. This is shown in Fig. 3 for the
equilibrium and non-equilibrium cases, and all three dimensionalities d = 1, 2, 3.

3.3. Comparing the two interpretations

Table 3 compares the results for the two interpretations of the Debye length, given
in (5a) and (5b), for both equilibrium and non-equilibrium plasmas, and for all three
dimensionalities d = 1, 2, 3. We observe that the two interpretations of the Debye
length are different for the equilibrium and non-equilibrium cases.

Interpretation 2, that is Φ(λD,Λ)/Φus = 1/e as stated in (5b), is consistent for both

the equilibrium and non-equilibrium cases when λD,Λ = λD,K, i.e. Λ(κ0) =
√

κ0

κ0+1
.

Then, the shielded potential falls to 1/e of its unshielded value at a distance equal
to the Debye length, independently of the kappa index. However, the 1/e threshold
is arbitrary, and there is no substantial physical reason for this to be ∼ 1/e rather
than some other value of the order of unity. Further, this may even be some function
of the kappa index and not a constant. For a given function of Λ(κ0), different than√

κ0

κ0+1
, the threshold becomes a function of κ0, given by exp [−Λ(κ0)

√
κ0+1
κ0

] ≡ G(κ0)

(as given in Table 3). As an example, the threshold is modeled by the κ-deformed
exponential function expK(x) ≡ (1 − 1

κ0
x)−κ0−1 (called also q-exponential from the

entropic index q0 = 1 + 1/κ0; see also, appendix A in Livadiotis and McComas
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d-D (i) R(λD,Λ) (ii) Φ(λD,Λ)/Φus

Equilibrium
1 (2/1) · (1/e) 1/e
2 (2/

√
π) · (1/e) 1/e

3 (2/3) · (1/e) 1/e

d
[

d
2
Γ
(

d+1
2

)]−1 · (1/e) 1/e

Non-equilibrium
1 (2/1) · (λD,ΛλD,K/λ2

D∞) · exp (−λD,Λ/λD,K) =

(2/1) · Λ(κ0)
√

κ0
κ0+1

· exp
[
−Λ(κ0)

√
κ0+1
κ0

] exp (−λD,Λ/λD,K) =

exp
[
−Λ(κ0)

√
κ0+1
κ0

]
2 (2/

√
π) · (λ3/2

D,Λλ
1/2
D,K/λ2

D∞) · exp(−λD,Λ/λD,K) =

(2/
√

π) · Λ(κ0)
3/2( κ0

κ0+1
)1/4 · exp

[
−Λ(κ0)

√
κ0+1
κ0

] exp(−λD,Λ/λD,K) =

exp
[
−Λ(κ0)

√
κ0+1
κ0

]
3 (2/3) · (λ2

D,Λ/λ2
D∞) · exp (−λD,Λ/λD,K) =

(2/3) · Λ(κ0)
2 · exp

[
−Λ(κ0)

√
κ0+1
κ0

] exp (−λD,Λ/λD,K) =

exp
[
−Λ(κ0)

√
κ0+1
κ0

]
d [ d

2
Γ ( d+1

2
)]−1 · [λ(d+1)/2

D,Λ
λ

(3−d)/2
D,K /λ2

D∞] · exp(−λD,Λ/λD,K) =

[ d
2
Γ ( d+1

2
)]−1 · Λ(κ0)

(d+1)/2 · ( κ0
κ0+1

)(3−d)/4 · exp[−Λ(κ0)
√

κ0+1
κ0

]

exp(−λD,Λ/λD,K) =

exp
[
−Λ(κ0)

√
κ0+1
κ0

]
Non-equilibrium, Λ(κ0) =

√
κ0

κ0+1

d
[

d
2
Γ ( d+1

2
)
]−1 · (1/e) ·

(
κ0

κ0+1

)
1/e

Table 3. Two interpretations of the Debye length.

Figure 4. (Colour online) Functional behavior of the Debye length λD,Λ on the kappa index

(denoted as Λ(κ0)). For the modified Debye length λD,Λ ∼ λD,K, it is Λ(κ0) ∼
√

κ0

κ0+1
(black

solid). This is consistent with both Interpretation 1, R(λD,Λ) = C(d) · κ0

κ0+1
, and Interpretation

2, Φ(λD,Λ)/Φus = 1/e. Deviations from the behavior of Λ(κ0) ∼
√

κ0

κ0+1
may exist when

these equalities do not hold. For example, we derive Λ(κ0) via Interpretation 1 using
R(λD,Λ) = C(d) · c · [κ0/(κ0 + 1)]a , with c ∼= 0.3679, d = 3, a = 5 (green dash), and via
Interpretation 2 using Φ(λD,Λ)/Φus = expK(−1) (red solid).

2009), and thus, expK(−1) = ( κ0

κ0+1
)κ0+1 replaces exp(−1) = 1/e. Then, we derive

Λ(κ0) =
√

κ0(κ0 + 1) ln(1 + 1
κ0

), as shown in Fig. 4.

An important characteristic of Interpretation 1 is that the ratio R(λD,Λ) differs for
the three dimensionalities d = 1, 2, 3, while for Interpretation 2, the ratio Φ(λD,Λ)/Φus

is identical for all three dimensionalities. For thermal equilibrium plasmas, we have
R(λD∞) ∼= C(d) · (1/e), where C(d) ≡ [ d

2
Γ ( d+1

2
)]−1. For non-equilibrium plasmas, we
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have that the ratio R is a different function of κ0 for each d, i.e.

R(λD,Λ; d) = C(d) · κ0

κ0+1
·
[
Λ(κ0)/

√
κ0

κ0+1

] 1+d
2 · exp

[
−Λ(κ0)/

√
κ0

κ0+1

]
,

C(d) ≡
[

d
2
Γ ( d+1

2
)
]−1

, d = 1, 2, 3. (12a)

The only function Λ(κ0) for which the three dimensionalities become equivalent is

Λ(κ0) =
√

κ0

κ0+1
, that is the modified Debye length, λD,K, (6). Then, the ratio of the

potential to thermal energy at λD,K becomes

R(λD,K; d) = C(d) ·
(

κ0

κ0+1

)
· (1/e), d = 1, 2, 3. (12b)

In contrast to Interpretation 2, which depends on some arbitrary threshold of the
decreasing potential with distance, Interpretation 1 is based on a physical relationship,
the distance for which the potential and thermal energies are comparable. According
to Interpretation 1 in (5a), for plasmas at thermal equilibrium the ratio R is a
constant of the order of unity. However, as we observe in (12a), for plasmas out of
thermal equilibrium this is not true, but the ratio R is some function of κ0. When

Λ(κ0) =
√

κ0

κ0+1
, (12a) is reduced to (12b); then, the ratio R has much simpler form,

but still depends on κ0. Nevertheless, the quantity C(d) · ( κ0

κ0+1
) · (1/e) is still of the

order of unity for large kappa indices. In particular, for the near-equilibrium region,
which is determined for κ0>1 (Livadiotis and McComas 2010, 2011, 2013d), we have
R(λD,K; d) ∼ O(1). However, the ratio R cannot be of the order of unity for the
far-equilibrium region, which is determined for κ0 �1, because then R(λD,K; d) � 1.

In general, different forms of R(λD,Λ; κ0) may lead to different Debye length forms,
i.e. with different dependence on κ0. This is derived by equalizing the modeled
functional form of R(λD,Λ; κ0) with the respective function given in Table 3. For
example, assume that R(λD,Λ; κ0) is modeled by the functional form R(λD,Λ; κ0) =
C(d) · c · [κ0/(κ0 + 1)]a , with c ∼= 0.3679 so that Λ(κ0 → ∞) → 1. This is equalized to

[ d
2
Γ ( d+1

2
)]−1 · Λ(κ0)

(d+1)/2 · ( κ0

κ0+1
)(3−d)/4 · exp [−Λ(κ0)

√
κ0+1
κ0

], from which we extract the

form of Λ(κ0). Figure 4 shows the derived function of Λ(κ0) for a = 5.

4. Issues and inconsistencies
The results of the previous section suggest that the Debye length is characterized

by the known dependence on the kappa index, ∼
√

κ0

κ0+1
, independently of the

dimensionality of the potential d. Namely, Λ(κ0) ∼
√

κ0

κ0+1
, or λD,Λ ∼ λD,K, for any

d = 1, 2, 3. However, the two interpretations of the Debye length are interwoven with
several critical inconsistencies and considerations that are discussed separately below.

4.1. Independence of the Debye length on the dimensionality

A fundamental question is whether the Debye length depends on the geometry of the
perturbation charge distribution. If it does, then the Debye length must also depend
on the dimensionality d. Interpretation 2 does not support such dependence. Indeed, as
shown in Table 3, the ratio Φ(λD,Λ)/Φus is identical for any d (for both the equilibrium
and non-equilibrium cases). However, Interpretation 1 may lead to a Debye length that
depends on the dimensionality d. For the specific case of R(λD,Λ) = C(d) · (1/e) · κ0

κ0+1
,
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Figure 5. (Colour online) (a) Electron density is depicted as a function of r/λD∞, for κ0 = 0.1,
1, 5, q ≡ Q/

[
e n∞(4π/3) λ3

D∞
]

= 0.1, Te = Ti , and dimensionality d = 3. We observe the cutoff
condition at r = r0. (b) Plot of the cut-off distance r0 as a function of the kappa index κ0,
for Te = Ti and q = 0.01, 0.1, 0.5, 1. The maximum of r0/λD∞ follows the geometric locus of
2

√
κ0(κ0 + 1) (indicated with dash line).

C(d) ≡ [ d
2
Γ ( d+1

2
)]−1, we obtain Λ(κ0) =

√
κ0

κ0+1
, independently of d, (12a) and (12b).

In general, however, the ratio R(λD,Λ) may be some function of κ0 other than ∼ κ0

κ0+1
.

Then, the Debye length would have a dependence on κ0 different than ∼
√

κ0

κ0+1

that might vary with the dimensionality d. For example, considering the modeled
function R(λD,Λ) ∼ c · [κ0/(κ0 + 1)]a (Sec. 3.3), we find Λ(κ0) that depends on d. Also,
considering the more complicated dependence of R(λD,Λ) on κ0 that is originated by

large charge perturbations (Appendix E), we find Λ(κ0) ∼ d+1
2

·
√

κ0

κ0+1
.

4.2. Small charge perturbation approximation

The derivation of the Debye length in plasmas is attained under the assumption
of small charge perturbations, e Φ(r) � κ0

κ0+1
kBTi,e (Appendix C, (C5)), so that the

Poisson equation can be linearized. Note that the perturbation is compared with the
temperature and the kappa index, κ0. Thus, even for small potential energy e Φ(r),
the perturbation may not be small if the temperature and/or the kappa index are
also small and tend toward zero. For large charge perturbations, the Debye length
cannot be trivially determined from the nonlinear Poisson equation and may not
even be a meaningfully defined term. In Appendix E, we find that the Debye length

can behave like λD,Λ ∼ λD,K, or, Λ(κ0) ∼
√

κ0

κ0+1
, even for large charge perturbations.

Nevertheless, the problem can be avoided if the Debye length is restricted to small
charge perturbations. Then, Interpretation 1 must be modified to be valid only for
small charge perturbations (see Sec. 5).

4.3. Cut-off of the electron and ion densities

The formulation of the electron density, shown in (8b), is ill-defined in the case where
the quantity κ0kBTe −e Φ(r) becomes negative. In Fig. 5(a) we plot the electron density
ne(r)/n∞ (for d = 3), showing that for small distances r from the perturbation the dens-
ity diverges and cannot be defined. The plot is depicted as a function of r/λD∞, and for
several kappa indices κ0. The cut-off distance for which the density peaks can be shown
that is given by r0/λD∞ ∼= ti · q , where ti ≡ Ti/(Ti + Te), q ≡ Q/

[
e n∞(4π/3)λ3

D∞
]
. r0 is

the minimum distance for which the potential is well-defined via the electron density
of (8b). Figure 5(b) plots this distance r0 with respect to κ0, and various values of q.

In reality, both the ion and electron densities can be ill-defined. Indeed, in (8a)
we observe that the electron density is ill-defined when κ0kBTe − e Φ(r) + e Φ̄e < 0,
while the ion density is ill-defined when κ0kBTi + e Φ(r) − e Φ̄i < 0. The origin of
these inconsistencies is that the kappa distribution function of the phase space has
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been integrated over all the possible velocities, from zero to infinity (for each velocity
component). In the following, we reconstruct the electron density to be well-defined
even for small values of the potential energy. In order to accomplish this, we integrate
the distribution function of the phase space, so that the velocities are restricted by
the cut-off energy. The one-particle kappa distribution, defined in the six-dimensional
phase space spanned by (r, u), is given in the case of electrons by

P (r, u; κ0, Te) ∼
[
1 +

1

κ0

· H (r, u)

kBTe

]−κ0− 5
2

, (13)

(where we consider ub ≡ < u > = 0 for simplicity). The Hamiltonian is given in
terms of a zero-mean or ‘centric’ potential energy ΦC(r) ≡ Φ(r) − Φ̄e, i.e. H (r, u) =
1
2
m u2 − e ΦC(r). This is a case of negative potential energy (Livadiotis and McComas

2009, 2013b) and the Hamiltonian is not always positive; still, the quantity 1 +
H (r, u)/(κ0kBTe) in (13) must be always non-negative (because it represents the kinetic
energy ε), hence, ε ≡ 1

2
m u2 � e ΦC(r) − κ0kBTe. If the quantity at the right-hand side

of this inequality is positive, it gives the smallest possible kinetic energy, εM(r) ≡
e ΦC(r) − κ0kBTe. If this quantity is negative, then the kinetic energy has no lower
restriction and εM is zero. Namely, εM(r) = e ΦC(r) − κ0kBTe if e ΦC(r) − κ0kBTe � 0,
and εM(r) = 0 if e ΦC(r) − κ0kBTe � 0. The Tsallis cut-off condition (Tsallis 2009) may
be used to express both the cases, i.e. εM(r) = [e ΦC(r) − κ0kBTe]+, where we utilized
the operator [x]+ = x if x � 0 and [x]+ = 0 if x � 0. The integration over the
velocities leads to the density dependence on the potential and the position r, i.e.

ne(r; κ0, Te) = n∞ ·

∫ ∞
εMe(r)

[
1 + ε−eΦ(r)

κ0kBTe+eΦ̄e

]−κ0− 5
2

ε
1
2 dε

∫ ∞
εMe(r)

(
1 + ε

κ0kBTe+eΦ̄e

)−κ0− 5
2

ε
1
2 dε

, (14a)

where εMe(r) = [e Φ(r) − e Φ̄e − κ0kBTe]+. Following the same steps for the density of
ions, we obtain

ni(r; κ0, Ti) = n∞ ·

∫ ∞
εMi(r)

[
1 + ε+e Φ(r)

κ0kBTi−e Φ̄e

]−κ0− 5
2

ε
1
2 dε

∫ ∞
εMi(r)

(
1 + ε

κ0kBTi−e Φ̄e

)−κ0− 5
2

ε
1
2 dε

, (14b)

where εMi(r) = [−e Φ(r) + eΦ̄i − κ0kBTi]+. Using a step function, Θ(x > 0) = 1 and
Θ(x < 0) = 0, (14a) and (14b) become

ne(r; κ0, Te) = n∞ ·

∫ ∞
0

[
1 + ε−e Φ(r)

κ0kBTe+e Φ̄e

]−κ0− 5
2

Θ[ε − e Φ(r) + e Φ̄e + κ0kBTe] ε
1
2 dε

∫ ∞
0

(
1 + ε

κ0kBTe+e Φ̄e

)−κ0− 5
2

Θ[ε − e Φ(r) + e Φ̄e + κ0kBTe] ε
1
2 dε

,

(15a)

ni(r; κ0, Ti) = n∞ ·

∫ ∞
εMi(r)

[
1 + ε+e Φ(r)

κ0kBTi−e Φ̄e

]−κ0− 5
2

Θ[ε + e Φ(r) − e Φ̄e + κ0kBTi] ε
1
2 dε

∫ ∞
εMi(r)

(
1 + ε

κ0kBTi−e Φ̄e

)−κ0− 5
2

Θ[ε + e Φ(r) − e Φ̄e + κ0kBTi]ε
1
2 dε

.

(15b)
Equations (15a) and (15b) describe the ion and electron densities and are consistently
defined for any large values of the potential, in contrast to (8a) and (8b).
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4.4. Weakly coupled plasmas

The two previous issues, the small charge perturbations, e Φ(r) � κ0

κ0+1
kBTi,e, and the

cut-off of the electron and ion densities for κ0kBTi,e ± e [Φ(r) − Φ̄i,e] < 0, are both
equivalent to the requirement of large number of particles in the Debye volume, ND.
In fact, both of these issues require sufficiently small perturbations in order to be
resolved, i.e.

e Φ(r)

κ0kBTe

=
ti

κ0 + 1
· �N

ND

· exp (−r/λD,K)

r/λD,K

�
�N

ND

· λD,K

b
=

�N

N
2
3
D

(
4π

3

) 1
3

< 1, (16)

where we maximize e Φ(r)/(κ0kBTe) by considering the extreme cases of κ0 → 0,
ti ≡ Ti/(Ti + Te) → 1, and r → b (interparticle distance). The inequality (16) is
equivalent to the requirement of large ND ,

ND >
(

4π
3

) 1
2 �N

3
2 . (17)

The number of ions that contribute to the charge perturbation can vary from ∼1 to
orders of magnitude larger, and theoretically reach even the total number of particles
in a Debye sphere, ND. However, a likely charge perturbation is 1

2

√
ND, which comes

from the fact that all the particles in a Debye sphere are correlated and behave
like a cluster of particles within the overall system (Livadiotis and McComas 2011b,
2013a; see also Fahlen et al. 2011). Indeed, let us consider an imaginary separatrix
that divides a Debye sphere into two halves, with all the particles located at one side
at a given time t = t0, and for each of the ND particles there is a p = 1/2 probability
to be on the one or the other side. At some time later, t�t0, the equilibrium is
obtained between the two sides, and the probability of N particles located on one side
is given by the binomial distribution, P (N) = (2−ND/ND!) · N!/(ND − N)!. The mean
value < N >= 1

2
ND, which is also the most frequent N (for ND � 1), has standard

deviation
√

< �N2 > = 1
2

√
ND, and relative standard deviation 1/

√
ND that tends to

zero for ND�1.
Considering a charge perturbation of particles ∼ 1

2

√
ND, the inequality (17) becomes

ND > (π
6
)2, which is consistent with the requirement for weakly coupled plasmas

ND � 1, that is equivalent to λD∞ � b. Given that ND = ND∞( κ0

κ0+1
)

3
2 , with ND∞ ≡

ND(κ0 → ∞) = 4π
3

n∞λ
3
D∞, the restriction ND � 1 becomes

κ0 � N
− 2

3
D∞ , (18a)

e.g. for a plasma of ND∞ ∼ 106, the kappa index must be κ0 � 10−4. In fact, inequality
(18a) is a restriction between the plasma thermodynamic parameters, which must be
held for any weakly coupled plasma (Fig. 6),

κ0T n
− 1

3 �
(

4π
3

)− 2
3 e2

εkB

∼= 8.1 × 10−3 (18b)

(with temperature given in K and density in cm−3).

4.5. No correlations between ions and electrons

The specific formulation of densities, as used in (8a), implies that the electrons are
not correlated with ions. This is because in all the derivations of the Debye length,
the one-particle formulation of kappa distributions has been used, instead of the
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Figure 6. Plot of the surface f (n, T ) = 8.1 × 10−3n
1
3 /T that separates the kappa indices

κ0 � f (n, T ) of a weakly coupled plasma (ND � 1) from the kappa indices κ0 � f (n, T )
of a strongly coupled plasma (ND � 1). The weakly coupled plasma is a system with a
collective behavior between particles. (Note that the same surface indicates the kappa indices
that correspond to small charge perturbations ND � 1.)

more complicated N-particle formulation (Livadiotis and McComas 2011b, 2013b).
At least, a two-particle distribution must be used if we would like to subscribe
a correlation between electrons and ions. Then, three types of correlation may be
identified: (1) ion–ion, (2) electron–electron, and (3) ion–electron. Since, the kappa
index characterizes the correlation between some particle species, we may also have
three different kappa indices, i.e. κi

0 (ion-ion), κe
0 (electron-electron), and κi−e

0 (ion-
electron). Then, the whole distribution is written as (appendix A in Livadiotis and
McComas 2013b),

P (ri,e, ui,e; κi,e
0 , Ti,e; κi−e

0 ) ∼

⎧⎨
⎩
∑
S=i,e

[
1 +

1

κS
0

· H (rS, uS)

kBTS

] κS
0

+2.5

κi−e
0

+2.5

− 1

⎫⎬
⎭

−(κi−e
0 +2.5)

. (19)

So far, only the simple case of κi
0 = κe

0 ≡ κ0 and κi−e
0 → ∞ has been studied.

4.6. Existence of temperature for plasmas out of thermal equilibrium

One of the main problems for defining the Debye length in non-equilibrium plasmas
is the concept of temperature. Can a temperature be well-defined for systems out of
thermal equilibrium? This issue has been thoroughly addressed for systems out of
thermal equilibrium that reside in stationary states described by kappa distributions,
or a superposition of those (Livadiotis and McComas 2009, 2010a).

The study of empirical kappa distributions and their connection with the modern
framework of non-extensive Statistical Mechanics (Livadiotis and McComas 2009,
2012; appendix A in Livadiotis and McComas 2013b) has revealed that there is only
one kappa distribution formulation (among many empirical ones) aligned with the
principles of this statistical mechanics (e.g. escort probability, physical temperature).
Namely,

P (u; ub; θ, κ0) = (π κ0 θ2)− 3
2 ·

Γ (κ0 + 5
2
)

Γ (κ0 + 1)
·
[
1 +

1

κ0

· (u − ub)
2

θ2

]−κ0− 5
2

, (20)
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where the thermal parameter θ has no dependence on the kappa index, and simply
denotes the temperature in speed units, i.e. θ ≡

√
2kBT/m; (20) coincides with the

empirical form introduced by Vasyliũnas (1968).
This velocity distribution function, (20), is correctly connected with the framework

of Tsallis non-extensive Statistical Mechanics (Tsallis 1988; Tsallis et al. 1998; Tsallis
2009), as shown by Livadiotis and McComas (2009). The statistical mechanics basis
of kappa distributions is connected with the thermodynamics, and this connection
is violated when the temperature is ill-defined. Beyond the kinetic definition of
temperature, 〈ε〉 = 〈 1

2
m (u − ub)

2〉 = 3
2
kBT , there is another definition of temperature,

usually called thermodynamic definition because it connects the entropy S with the
internal energy U (U = 〈ε〉, in the approximation of small potential), T ≡ (∂S/∂U )−1 ·
[1 − 1

κ
· S/kB]. This definition is consistent with the zeroth law of thermodynamics

(Abe 2001). A well-defined temperature must be uniquely defined, and the fact of the
equivalence of the two definition leads to a meaningful temperature for systems out
of thermal equilibrium that are described by kappa distributions. (For more details
on this topic, see Livadiotis and McComas 2009, 2010a, 2011b, 2012, 2013b; see also
Livadiotis 2009; Livadiotis et al. 2011, 2012, 2013.)

4.7. Isotropic Debye shielding

In all the above, we have assumed that the Debye length is isotropic, namely, it is the
same for any direction Ω ≡ (ϑ, ϕ). The Debye length may vary with respect to the
temperature, the density, and the kappa index. The temperature is a scalar field T (r)
that can often induce anisotropies.

The induced thermal anisotropy is sometimes interpreted as a 3-D temperature.
However, the temperature cannot be defined as a vector or any other anisotropic
mathematical element. The kinetic definition of temperature is given through the
mean kinetic energy, 1

2
m
〈
u2
〉
, which is the mean of the sum (or the sum of the

mean) of all the kinetic components, 1
2
m
〈
u2

x + u2
y + u2

z

〉
. Portions of kinetic energy

may transfer from one component to the other, and thus, each component alone,
1
2
m
〈
u2

i

〉
, i = x, y, z, may not be an invariant quantity, even if the total kinetic energy

remains invariant. However, the thermodynamic definition of temperature involves
the mean of the total kinetic energy, i.e. over all the kinetic degrees of freedom. Even
for systems where the classical theorem of the equidistribution of the (kinetic) energy
in all the (kinetic) degrees of freedom is not valid, i.e. 1

2
m
〈
u2

i

〉
depends on i, the

kinetically defined temperature is still meaningful because it refers to the total kinetic
energy, 3

2
kBT ≡ 1

2
m
〈
u2

x + u2
y + u2

z

〉
, or more precisely, to the average kinetic energy

over all the degrees of freedom f, i.e.

T ≡ 1

f

f∑
i=1

Ti,with 1
2
kBTi ≡ 1

2
m
〈
u2

i

〉
, (21a)

or, in terms of speed units,

θ2 ≡ 1

f

f∑
i=1

θ2
i , with 1

2
θ2
i ≡

〈
u2

i

〉
. (21b)

The anisotropic Debye length can be defined without the necessity of a vector-like
temperature, such as the triad (Tx, Ty, Tz). The temperature’s scalar field, T (x, y, z),
can create anisotropies. For example, consider the 2-D polar space (r, ϑ) ∈ �2, and the
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specific case where the temperature scalar field depends only on the angular direction,
T (ϑ). The Debye length can inherit this anisotropy, λ2

D(ϑ) = (kBεe−2n−1
∞ ) · T (ϑ).

In general, beyond the temperature anisotropy T = T (r), the density and the
medium can be also anisotropic, i.e. n∞ = n∞(r) and ε(r) = εr (r) ε0, where εr is the
relative permittivity. Hence, the anisotropic Debye length is now written as

λD∞(r) = λD∞(r) ·

√
κ0(r)

κ0(r) + 1
, λD∞(r) ≡

√
kBε0

e2
· εr (r)T (r)

n∞(r)
. (22a)

In the specific case of an angular dependent temperature scalar field, T (ϑ, ϕ), the
Debye length is given by the 2-D Debye surface λD∞(ϑ, ϕ) =

√
(kBε e−2n−1

∞ ) · T (ϑ, ϕ),

λD(ϑ, ϕ) = λD∞(ϑ, ϕ) ·
√

κ0

κ0 + 1
, λD∞(ϑ, ϕ) =

√
(kBε e−2n−1

∞ ) · T (ϑ, ϕ), (22b)

that generalizes the Debye sphere. An ellipsoid (p = 2), a superellipsoid (p > 2), or
a subellipsoid (p < 2), are some simple cases of the generalized 2-D Debye surface,

1

λ
p

D

=

∣∣∣∣sinϑ cosϕ

αx

∣∣∣∣
p

+

∣∣∣∣sinϑ sinϕ

αy

∣∣∣∣
p

+

∣∣∣∣cosϑ

αz

∣∣∣∣
p

, (23)

where (αx, αy, αz) are the three ellipsoid axes.
Frequently, space plasmas have particle populations described by anisotropic

velocity distributions (for example, due to the presence of a local magnetic field).
In these cases, the mean kinetic energy differs over the three kinetic degrees of
freedom. Typically, one degree of freedom is a motion along the direction of the
magnetic field (uII), while the other two degrees span the perpendicular plane (u⊥). The
thermal anisotropy of these plasmas is often interpreted by a vector-like temperature,
(TII, T⊥) (e.g. Baumjohann and Treumann 2012). The actual temperature, however,
must be given by T = (TII + 2T⊥)/3, where the perpendicular component is subject
to two degrees of freedom that span the perpendicular plane. Moreover, the thermal
anisotropy can be interpreted using the classical temperature scalar field, instead of the
vector-like temperature. Indeed, by setting an angular scalar field, T (ϑ), where ϑ = 0
indicates the parallel direction and ϑ = π/2 the perpendicular plane, is sufficient to
express mathematically the different temperature components TII = T (ϑ = 0) and
T⊥ = T (ϑ = π/2); in addition, it can explain the temperature at any other directιon ϑ .

The kappa distribution function for an anisotropic non-equilibrium plasma can be
written using a vector-like temperature, as

P (u; ub) ∼
[
1 +

1

κ0,II

·
1
2
m(uII − ub,II)

2

kBTII

]−κ0,II−1.5

×
[
1 +

1

κ0,⊥
·

1
2
m(u⊥ − ub,⊥)2

kBT⊥

]−κ0,⊥−2

duII u⊥du⊥dϕ, (24a)

which treats the parallel and the perpendicular directions as uncorrelated. For
simplicity, the two component kappa index may be taken to be the same,
κ0,II = κ0,⊥ = κ0. One specific case is for plasmas at thermal equilibrium, where
(24a) is written as a product of Maxwellian distributions (e.g. Krall and Trivelpiece



358 G. Livadiotis and D. J. McComas

1973; Baumjohann and Treumann 2012),

P (u; ub) ∼ exp

[
−

1
2
m(uII − ub,II)

2

kBTII

−
1
2
m(u⊥ − ub,⊥)2

kBT⊥

]
duII u⊥du⊥dϕ. (24b)

As explained above, (24a) and (24b) imply a vector-like temperature and kappa
index, which is not correct. In contrast, the correct expression must use thermodynamic
variables as scalars instead of vector fields, e.g. T (ϑ, ϕ) and κ0(ϑ, ϕ),

P (u; ub) ∼
[
1 +

1

κ0(ϑ, ϕ)
·

1
2
m(u − ub)

2

kBT (ϑ, ϕ)

]−κ0(ϑ,ϕ)−2.5

u2du sinϑ d ϑ dϕ. (24c)

5. Modifications of the two known interpretations
5.1. Inconsistencies and modifications of Interpretation 1

Interpretation 1 involves the ratio of the potential to thermal energy, R, normalized
by the perturbation charge �N that causes the potential Φ , or more precisely, by the
ratio �N/ND as shown in (2). In order to derive the Debye length via Interpretation
1, it is necessary to solve the Poisson (10) and find the formulation of the potential
Φ . Then, the Debye length is the distance from the charge perturbation for which
the potential energy eΦ becomes comparable with the thermal energy, and more
specifically, the distance where the ratio of the potential to thermal energy, R, as
defined in (2), is a constant of the order of unity, (5a). However, (12b) shows that
R(λD,K) is proportional to κ0

κ0+1
, and thus it is not a constant and not of the order

of unity (at least for small kappa indices, κ0 � 1). Therefore, Interpretation 1 leads
to a well-defined Debye length for plasmas at thermal equilibrium (κ0 → ∞), or at
least, for plasmas at near-equilibrium (κ0 > 1), for which the dependence of R on the
kappa index is less significant.

This inconsistency of Interpretation 1 can be solved by modifying the formulation
of R that is given in (2). First, we recall that the approximation of small charge
perturbation requires the quantity e Φ/(kBT0) to be small, for equilibrium plasmas,
and this is modified to e Φ/( κ0

κ0+1
kBT0) for non-equilibrium plasmas. This quantity

is small because the perturbation charge is considered small, i.e. �N/ND � 1, and
thus, their ratio is expected to be some constant. In fact, for equilibrium plasmas,
their ratio eΦ/(kBT0

�N
ND

) coincides with the ratio 1
2
R, given in (2). Therefore, for

non-equilibrium plasmas, a consistent modification of this ratio can be given from
the quantity e Φ/( κ0

κ0+1
kBT0), normalized by �N/ND, i.e.

R̃ ≡ e Φ
1
2
kBT0

· 1
κ0

κ0+1

· 1
�N
ND

, (25a)

(where R̃ ≡ R|modified); then, at the Debye length, this ratio is a constant of the order
of unity,

R̃ (λD,K) ∼= constant = C(d) · (1/e). (25b)

5.2. Inconsistencies and modifications of Interpretation 2

Interpretation 2 is based on the arbitrary threshold (1/e) that equals the ratio of
the shielded over the unshielded potential, Φ(λD,Λ)/Φus = 1/e, at the Debye length,
(5b). One way to avoid including a threshold can be realized by using the differential
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Interpretation Inconsistency Modification Result

1 The ratio of potential
to thermal energy, R,
depends on the
kappa index

R̃ ≡ e Φ
1
2

kBT0

· 1
κ0

κ0+1

· 1
�N
ND

The Debye length is at
that distance from the
perturbation for which
the ratio R̃ is given by
some constant of the
order of unity,
∼C(d) · (1/e).

The shielding is held
for small
perturbations

R̃ ≡ lim
Φ→0

(
e Φ

1
2

kBT0

· 1
κ0

κ0+1

· 1
�N
ND

)

2 The ratio of the
shielded to the
unshielded potential
equals an arbitrary
threshold

The Debye length is
given by the ratio of
the potential Φ
(outcome of shielding)
over the charge
distribution due to
excess of electrons
e(ne − ni) (cause of
shielding)

The shielding is held
for small
perturbations

lim
Φ→0

Φ
1
ε

·e(ne−ni )
= λ2

D,Λ

Table 4. Inconsistencies and modifications of the two interpretations of the Debye length.

equation rather than its solution, i.e.

lim
Φ→0

Φ

|∇2Φ| = λ2
D,Λ. (26)

Here, the threshold 1/e that determines the Debye length is ‘encrypted’ in the
differential equation (26) and the exponential form of its solution. However, we
could substitute ∇2Φ with its equivalent form from the Poisson (10). Therefore, a
more general way to express Interpretation 2 is via the ratio of the ‘outcome’, the
potential Φ , to its ‘cause’, the non-zero charge distribution e(ne − ni), i.e.

lim
Φ→0

Φ
1
ε

· e(ne − ni)
= λ2

D,Λ. (27)

Smaller perturbation charge �N leads to weaker potential Φ and to weaker charge
distribution e(ne − ni). Consequently, these two quantities converge to being exactly
proportional as �N → 0 (or Φ → 0). The proportionality coefficient does not depend
on either of them, but instead is characterized by thermodynamic parameters of the
non-perturbed plasma (density, temperature, kappa); this provides a more robust
interpretation for the Debye length (its square), as shown in (27).

5.3. Synopsis of inconsistencies and modifications

Table 4 gathers the inconsistencies and modifications of the two interpretations
explained above.

We have modified the two interpretations to be consistent for both equilibrium and
non-equilibrium plasmas, and for any dimensionality of the charge perturbation.
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However, they are still characterized by certain restrictions. For example,
Interpretation 1 needs the formulation of the potential. Indeed, the Poisson equation
has to be solved and find the potential energy first, before this is compared to
the thermal energy. Also, Interpretation 1 is restricted for non-equilibrium plasmas
that are described by a single kappa distribution. On the other hand, Interpretation
2 is not restricted to any specific forms of the ion/electron distribution functions.
The following application of a superposition of kappa distributions illuminates this
flexibility of Interpretation 2.

5.4. Application: superposition of kappa distributions

The densities given in terms of a single kappa distribution, (8b), can be generalized to
a linear superposition on kappa distributions with density of kappa indices Di,e(κ0),
i.e.

ni = n∞ ·
∑
κ0

Di(κ0) ·
[
1 +

e Φ(r)

κ0kBTi − e Φ̄i

]−κ0−1

,

(28a)

ne = n∞ ·
∑
κ0

De(κ0) ·
[
1 − e Φ(r)

κ0kBTe + e Φ̄e

]−κ0−1

.

Given the approximation of small perturbations, the charge distribution is

ρ = e (ne − ni) = en∞ · e Φ(r)

kBT0

·
〈

κ0 + 1

κ0

〉
, (28b)

where 〈
κ0 + 1

κ0

〉
=
∑
κ0

D(κ0) · κ0 + 1

κ0

, and, (29a)

D(κ0) ≡ te · Di(κ0) + ti · De(κ0), ti,e ≡ Ti,e/(Ti + Te). (29b)

Then, utilizing Interpretation 2, we find that the generalized Debye length is given
by

λD,Λ =

〈
κ0 + 1

κ0

〉− 1
2

· λD∞, (30)

and the relevant potential (for any dimensionality d) is given by

e Φ(r)

kBT0

= [d Γ (
d + 1

2
)]−1 · �N

ND

·
〈

κ0 + 1

κ0

〉−1

· exp (−r/λD,Λ)

(r/λD,Λ)(d−1)/2
. (31)

As an example, we consider the gamma distribution of kappa indices,

D(κ0) =
1

Γ (μ + 1)
κ

μ
0 e−κ0, (32)

where μ is the most frequent kappa index. Then, we find〈
κ0 + 1

κ0

〉−1

=
μ

μ + 1
, or, λD,Λ =

√
μ

μ + 1
· λD∞. (33)

Hence, for a superposition of kappa indices with density given by (32), the usually

modified Debye length λD,K =
√

κ0

κ0+1
· λD∞, (6), is replaced by λD,Λ =

√
μ

μ+1
· λD∞,

(33), namely, the kappa index κ0 is simply replaced by its most frequent value μ.
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6. The third interpretation of the Debye length
We have seen that Interpretation 2 is not restricted to any specific forms of the

ion/electron distribution functions. The only requirement is that the specific forms
of the distributions have to be known (either analytically or numerically). Here, we
present a third interpretation of Debye length, for which only the second moment of
the ion/electron distribution functions is necessary.

Livadiotis and McComas (2013a, 2013e) recently began developing the concept of
organization of plasmas by their Debye shielding within clusters of locally correlated
particles (Debye spheres). According to this, the Debye length assigns a type of

large-scale uncertainty in position, δx =
√

< �x2 > ∼ λD, that leads to a large-scale
uncertainty in time, δ t ∼ λD/θ . Given this time uncertainty and the least energy
of a particle in a Debye sphere, these authors found a large-scale quantization of
phase-space, some 12 orders of magnitude larger than the Planck constant.

In Appendix F we derive the average of any positional function f (r), using the
charge distribution in plasma ρ(r) = e [ne(r) − ni(r)], with normalization given by the
number of the excess electrons �N = 1

e

∫
r∈V

ρ(r) dV (dV is the elementary volume
within the charge distribution). Then, we show that the standard deviation of the

position in the charge distribution of the plasma is given by
√

< �x2 > ∼= λD, as was
arrived at by different means by Livadiotis and McComas (2013a). This result is for
1-D shielding (d = 1), while for any d, the positional variance and standard deviation
becomes 〈

�r2
〉

=
d + 1

2
· λ2

D,
√

〈�r2〉 =

√
d + 1

2
· λD. (34a)

The approximation of small charge perturbation has been used, i.e. (34a) is written
as

lim
Φ→0

〈
�r2

〉
= d+1

2
· λ2

D, lim
Φ→0

√
〈�r2〉 =

√
d+1

2
· λD. (34b)

The similarity of this equation with the kinetic definition of temperature (Livadiotis
and McComas 2009, 2010a, 2013b) is remarkable,

lim
Φ→0

〈
�r2

〉
= fD

2
· λ2

D ⇔ lim
Φ→0

〈
�u2

〉
= fK

2
· θ2, (35)

where the degrees of freedom fK in the case of temperature represent the per-particle
kinetic degrees of freedom fK = d . The degrees of freedom fD in the case of shielding,
similarly, must represent the per-particle degrees of freedom that are necessary for
the shielding; we interpret fD = d + 1 as the d positional degrees of freedom of
the shielded particle (charge perturbation) and one degree of freedom for any given
shielding particle, as its shielding always occurs on a line directly toward or away
from the perturbation.

The third interpretation of the Debye length emerges naturally in a way analogous
to the kinetic definition of temperature, as shown in (35). The advantage of this
interpretation is that it can be used to derive the Debye length without having to
know the whole ion/electron positional distributions but just their second statistical
moment. This is similar to the concept of temperature, which can be derived from
the second statistical moment of the velocity distributions without having to know
the whole distribution.

Finally, the three interpretations of the Debye length are compared in Table 5
and illustrated schematically in Fig. 7. The Debye length can be derived from its
three interpretations – definitions given in this paper. There are, however, several
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Interpretation Description Restrictions and requirements

1 lim
Φ→0

[
e Φ(λD)
1
2

kBT0

· 1
�N
ND

·
〈

κ0+1
κ0

〉]
∼ O(1) 1. Poisson equation must be solved to find

the potential Φ .
2. Ion/electron distribution functions are

described by a single/superposition of
kappa distributions.

3. These functions must be
analytically/numerically given.

2 lim
Φ→0

Φ
1
ε

·e(ne−ni )
= λ2

D 1. The form of the potential Φ is not
necessary.

2. Any form of the ion/electron
distribution functions.

3. These functions must be
analytically/numerically given.

3 lim
Φ→0

〈
�r2

〉
= d+1

2
· λ2

D 1. The form of the potential Φ is not
necessary.

2. Any form of the ion/electron
distribution functions.

3. Only the second statistical moment must
be given.

Table 5. The three interpretations of the Debye length.

Figure 7. Schematic diagram of the three interpretations of the Debye length.

other interpretations of the Debye length, which are associated with its properties
rather than providing new derivation methods. Namely, the Debye sphere may be
interpreted as the region where (1) thermal fluctuations in plasma waves dominate
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any wave propagation; (2) plasma wave dispersion cannot be defined anymore; (3)
electron orbits are undefined; and (4) it must by far exceed the interparticle space for
a plasma to be defined properly (ND �1).

7. Conclusions
In this paper we examined the interpretations of the Debye length for plasmas at,

or out of thermal equilibrium, originating from the Poisson equation of Gauss’ law
for electrodynamics and its solution of the electric potential that is caused by small
charge perturbations in the plasma. Two different interpretations can be found in
the literature: (1) The ratio of the potential to the thermal energy is a constant of
the order of unity, and (2) the ratio of the shielded to the unshielded potential is a
constant of the order of unity (e.g. 1/e). The two interpretations of the Debye length
have been examined for plasmas at thermal equilibrium, described by the Boltzmann-
Maxwell phase space distribution, and plasmas out of thermal equilibrium, described
by the kappa distribution. We studied three different dimensionalities of the electric
potential/field and the charge perturbation: (1) 1-D field E of linear symmetry for
planar charge density, (2) 2-D field E of cylindrical symmetry for linear charge density,
and (3) 3-D field E of spherical symmetry for a point charge perturbation. For each
dimensionality, we derived the electric potential/field for both equilibrium and non-
equilibrium plasmas, and then used this potential to examine the two interpretations.

In this study we showed the main resolutions and modifications of the two
interpretations as follows:

• (i) The two interpretations are consistent with each other for both equilibrium
and non-equilibrium plasmas and for all three dimensionalities, if the Debye length
is characterized by the known modification that incorporates the kappa index, i.e.

λD,K ≡ λD∞ ·
√

κ0

κ0+1
.

• (ii) Interpretation 1 is modified so that the ratio of the potential to thermal
energy is normalized to be independent of the kappa index for plasmas out of
thermal equilibrium.

• (iii) Both interpretations must be restricted to small charge perturbations for
the ion/electron densities to be well-defined, which is equivalent to the condition of
having weakly coupled plasmas.

• (iv) Non-equilibrium plasmas are described by a single kappa distribution. The
more general case of linear superposition of kappa distributions was solved by
replacing the single kappa index with averages of the kappa indices.

• (v) The ion/electron densities for non-equilibrium plasmas were expressed
considering ion–ion and electron–electron but no ion–electron correlations. We showed
how a general density function can be constructed that can include all three types of
correlations.

• (vi) Debye shielding was previously considered to be isotropic. We developed the
concept of an anisotropic Debye shielding and Debye length.

Using the concept of large-scale quantization, we showed that a third interpretation
of the Debye length naturally emerges from the second statistical moment of the
plasma charge density, that is, the positional distribution. This is similar to the kinetic
definition of temperature, which is the second statistical moment of the velocity
distribution. The advantage of this interpretation is that it can be used to derive the
Debye length without having to know the whole ion/electron positional distributions
but just their second statistical moment.
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Finally, we compare the three interpretations of the Debye length: Interpretation
1 needs the Poisson equation to be solved to derive the formulation of the potential,
and applies for non-equilibrium plasmas described by single, or a superposition
of, kappa distributions. Interpretation 2 is not restricted to any specific forms of
the ion/electron distribution functions, but these forms have to be given, either
analytically or numerically. Interpretation 3 needs only the second statistical moment.

Thus, by examining electrostatic shielding in plasmas in detail, we have resolved the
fundamental physical meaning of the Debye length and defined what information is
required for theoretical and experimental plasma-physics researchers to appropriately
use each of the three interpretations of this key scale length.
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Appendix A. Kappa distribution ion and electron densities
The kappa distributions are based on the solid statistical background of non-

extensive statistical mechanics (Livadiotis and McComas 2009, 2013b). In the
Statistical Physics community, the kappa distribution is better known as q-exponential,
q-Gaussian, or q-Maxwellian distribution (Tsallis 2009). These distributions describe
systems that are in stationary states but out of thermal equilibrium. The one-particle
kappa distribution, defined in the 2-D phase space spanned by (r, u), is given by
(Livadiotis and McComas 2013b)

P (r, u; ub; κ, T ) = AH(κ0, T ) ·
[
1 +

1

κ0

· H (r, u; ub)

kBT

]−κ0−1− d
2

, (A1a)

where the normalization constant is

AH(κ0, T ) ≡ (π κ0 kBT )− d
2 ·

Γ (κ0 + 1 + d
2
)

Γ (κ0 + 1)
· AΦ(κ0, T ), (A1b)

with the potential normalization constant being equal to

AΦ(κ0, T ) ≡

⎧⎨
⎩
∫

r∈V

[
1 +

1

κ0

· Φ(r)

kBT

]−κ0−1

dV

⎫⎬
⎭

−1

, (A1c)

where κ0 is the invariant kappa index, dV is the elementary volume, and the position
vector spans the whole volume V. In the above description, the potential energy
is appropriately constructed so that Φ̄ = 0, otherwise, Φ(r) must be replaced by
Φ(r) − Φ̄ , where Φ̄ is the average potential energy,

Φ̄(κ0, T ) ≡ AΦ(κ0, T ) ·
∫

r∈V

[
1 +

1

κ0

· Φ(r)

kBT

]−κ0−1

· Φ(r)dV . (A2)
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When all the d kinetic degrees of freedom are integrated, the remaining distribution
of r describes only the d degrees of freedom of the regular space,

P (r; κ, T ) = AΦ(κ0, T ) ·
[
1 +

1

κ0

· Φ(r) − Φ̄(κ0, T )

kBT

]−κ0−1

. (A3)

Multiplying the regular space normalized distribution (A3) with the total number of
particles N, we derive the particle density, n = n(r; κ0, T ), given by

n(r; κ, T ) = N · P (r; κ, T ) = N · AΦ(κ0, T ) ·
[
1 +

1

κ0

· Φ(r) − Φ̄(κ0, T )

kBT

]−κ0−1

. (A4)

Equation (A4) can be written in the simplified form

n = n̄ ·
(

1 +
1

κ0

· Φc

kBT

)−κ0−1

, (A5)

where ΦC(r; κ0, T ) ≡ Φ(r) − Φ̄(κ0, T ) denotes the ‘centric’ potential, and n̄ ≡ N · AΦ

is the density for zero centric potential.
In quasi-neutral plasmas, we write (A5) separately for ions and electrons,

ni(r) = n̄i ·
{

1 +
e

κ0kBTi

·
[
Φ(r) − Φ̄i

]}−κ0−1

,

(A6)

ne(r) = n̄e ·
{

1 − e

κ0 kBTe

·
[
Φ(r) − Φ̄e

]}−κ0−1

,

with N =
∫

r∈V
ni(r)dV =

∫
r∈V

ne(r)dV and

n̄i = N ·

⎧⎨
⎩
∫

r∈V

{
1 +

e

κ0 kBTi

·
[
Φ(r) − Φ̄i

]}−κ0−1

dV

⎫⎬
⎭

−1

,

(A7)

n̄e = N ·

⎧⎨
⎩
∫

r∈V

{
1 − e

κ0 kBTe

·
[
Φ(r) − Φ̄e

]}−κ0−1

dV

⎫⎬
⎭

−1

,

where κ0 is the invariant kappa index (Livadiotis and McComas 2011b), common for
ions and electrons; ions are taken to be singly charged for simplicity. The average
potential Φ̄i ,Φ̄e are given by

Φ̄i =
1

N
·
∫

r∈V

ni(r) Φ(r) dV , Φ̄e =
1

N
·
∫

r∈V

ne(r)Φ(r) dV . (A8)

Quasi-neutrality requires ni
∼= ne for some sufficiently long distance r � b (with b

indicating the interparticle distance), which becomes exact, ni = ne, for the theoretical
limit of r → ∞. At this distance for which ni = ne, the potential is noted by Φ∞.
Then, using (A6), the equality ni = ne gives

n̄i ·
[
1 +

e

κ0kBTi

· (Φ∞ − Φ̄i)

]−κ0−1

= n̄e ·
[
1 − e

κ0 kBTe

· (Φ∞ − Φ̄e)

]−κ0−1

, (A9a)
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from where we find

Φ∞ =
κ0

e
· βeTe − βiTi

βi + βe

+
βiΦ̄i + βeΦ̄e

βi + βe

, with βi,e ≡ n̄
1/(κ0+1)
i,e /(kBTi,e). (A9b)

(Note that we have Φ∞ ∼= Φ̄ , if Φ̄i
∼= Φ̄e ≡ Φ̄ and n̄i

∼= n̄e.) Hence, the density n∞ at
infinity (r → ∞), that is at sufficient large distance so that quasi-neutrality applies, is
given by

n∞ = n̄i ·
[
1 +

e

κ0kBTi

· (Φ∞ − Φ̄i)

]−κ0−1

= n̄e ·
[
1 − e

κ0kBTe

· (Φ∞ − Φ̄e)

]−κ0−1

, (A10)

and the ion and electron densities in (A6) can be written as

ni(r) = n∞ ·
{

1 +
e · [Φ(r) − Φ∞]

κ0kBTi − e (Φ̄i − Φ∞)

}−κ0−1

,

(A11)

ne(r) = n∞ ·
{

1 − e · [Φ(r) − Φ∞]

κ0kBTe + e (Φ̄e − Φ∞)

}−κ0−1

.

The total charge density is ρ = e (ni − ne) that can be expanded in terms of the ratio
of the potential to the thermal energy, and keeping terms up to the first order, we
have

ρ/ε ∼= −e2n∞

kBε

(
1

Ti

+
1

Te

)
· κ0 + 1

κ0

· (Φ − Φ∞)

= − 1

λ2
D∞

· κ0 + 1

κ0

· (Φ − Φ∞) = − 1

λ2
D,K

· (Φ − Φ∞). (A12)

Appendix B. Debye length in equilibrium plasmas
For plasmas at thermal equilibrium, the ion/electron densities are given by the

Boltzmann distribution of energy,

ni = n∞ · exp

{
−e [Φ(r) − Φ∞]

kBTi

}
, ne = n∞ · exp

{
e [Φ(r) − Φ∞]

kBTe

}
, (B1a)

where n∞ denotes again the ion or electron density and Φ∞ the electric potential at
sufficient large distance so that quasi-neutrality is valid. Φ∞ can be considered as the
potential at infinity, so that Φ∞ ∼= 0, i.e.

ni = n∞ · exp

[
−e Φ(r)

kBTi

]
, ne = n∞ · exp

[
e Φ(r)

kBTe

]
. (B1b)

The total charge density is ρ = e (ni − ne); this is expanded in terms of the ratio of
the potential to the thermal energy, assuming that e Φ(r)/(kBT0) � 1; thus, keeping
terms up to the first order, we have

ρ(r)/ε ∼= −e2n∞

kBε

(
1

Ti

+
1

Te

)
· Φ(r) = − 1

λ2
D∞

· Φ(r), (B2a)

and the Poisson equation of Gauss’ law of electrodynamics is linearized

∇2Φ(r) = −ρ(r)/ε ∼=
1

λ2
D∞

· Φ(r). (B2b)
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We now examine the three different dimensionalities of the electric field/potential
symmetry.

B.1. 1-D potential: planar charge perturbation

Let the planar charge perturbation be at the y-z plane. The 1-D Poisson equation
along x-axis is written as

Φ ′′(x) = −ρ(x)/ε ∼=
1

λ2
D∞

· Φ(x), (B3)

having the solution Φ(x) ∼= B · exp(−x/λD∞), where B is a constant that can be
expressed in terms of the surface charge density σ ; this is related to the electric field
at x = 0, i.e. 1

2
(σ/ε) = E(x = 0) = −Φ ′(x = 0) ∼= B/λD∞, or B ∼= 1

2
(σ/ε)λD∞; hence,

the solution becomes

Φ(x) ∼=
σ

2ε
λD∞ · exp(−x/λD∞). (B4)

Equation (B4) describes the potential along the direction x that is perpendicular
to the planar charge perturbation of surface density σ ; this is given by σ =
2(�N/ND)e n∞λD∞, hence,

Φ(x) ∼= (�N/ND) e ε−1n∞λ
2
D∞ · exp (−x/λD∞), or (B5a)

R(x) ≡ NDe Φ(x)

�N 1
2
kBT0

∼= 2 · exp (− x/λD∞). (B5b)

Note that (B5b) holds for x � 0, and can written as R(x) ∼= 2 · exp(− |x| /λD∞) for
any x. In addition, the ratio of the shielded to the unshielded potential is

Φ(x)/Φ(0) ∼= exp(−x/λD∞). (B6)

Therefore, the Debye length is determined by the two interpretations,

(1) R(λD∞) = 2 · (1/e), and(2) Φ(λD∞)/Φ(0) ∼= 1/e, (B7)

that correspond to the two interpretations of the Debye length, given in (5a) and (5b),
respectively.

B.2. 2-D potential: linear charge perturbation

In the case of a linear charge perturbation of large length L (practically, at least
L � λD) along the z-axis, the symmetry of the electric potential and field is cylindrical.
The 2-D Poisson equation along x-y plane is isotropic and written in terms of the

cylindrical radius ρ =
√

x2 + y2,

1

ρ

d

dρ

[
ρ

dΦ(ρ)

dρ

]
= −ρ(ρ)/ε ∼=

1

λ2
D∞

· Φ(ρ), (B8)

that is given by the Bessel differential equation

Φ ′′(ρ) +
1

ρ
Φ ′(ρ) − 1

λ2
D∞

· Φ(ρ) = 0, (B9)
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with a solution given by the bounded modified Bessel function of the second kind,
Φ(ρ) = B · K0(ρ/λD∞). The function K0(x) has the asymptotic behavior,

K0(x) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
π

2
· exp(−x)√

x
, x � 1,

exp(−x)√
x

, x ∼ O(1),

− ln(x/2) − γ, x � 1.

(B10)

(γ = 0.5772156649. . . is the Euler constant; the asymptotic behavior for large x is
sufficiently accurate (∼ 90%) even for x ∼ 1.) In order to determine the constant B, we
find the electric field for distances close to perturbation, ρ/λD∞ � 1; the potential is
written as Φ(ρ) ∼= −B · ln (ρ), where we ignore the constant quantity B · ln (2λD∞) − γ .
Hence, the corresponding electric field is E(ρ) ∼= B/ρ; comparing this with the
electric field of a linear charge perturbation of large length, E(ρ) ∼= l/(2π ε ρ) with
l noting the linear charge density (e.g. see Dash and Khuntia 2010), we obtain that
B = l/(2π ε). Hence,

Φ(ρ) ∼=
l

2π ε
· K0(ρ/λD∞) ∼=

l

2π ε
·

⎧⎪⎨
⎪⎩
√

π
2

· exp(−ρ/λD∞)√
ρ/λD∞

, ρ � λD∞,

2√
π

· exp(−ρ/λD∞)√
ρ/λD∞

, ρ ∼ O(λD∞),

ln(λD∞/ρ) + constant, ρ � λD∞.

(B11)

The linear charge density is equal to l = (�N/ND) e n∞πλ2
D∞, hence,

Φ(ρ) ∼= (�N/ND)1
2

2√
π
e ε−1n∞λ

5/2
D∞ · exp (−ρ/λD∞)/

√
ρ, or (B12a)

R(ρ) ≡ NDe Φ(ρ)

�N 1
2
kBT0

∼= exp (−ρ/λD∞)/
√

ρ/λD∞. (B12b)

The potential is also written as

Φ(ρ)/Φ(ρ → 0) ∼= exp (−ρ/λD∞). (B13)

Therefore, the Debye length is determined by

(1) R(λD∞) = (1/e) and (2) Φ(λD∞)/Φ(ρ → 0) ∼= 1/e (B14)

that correspond to the two interpretations of the Debye length, given in (5a) and (5b),
respectively.

B.3. 3-D potential: point-charge perturbation

In the case of a point charge perturbation Q, the symmetry of the electric potential
and field is spherical. The 3-D Poisson equation is isotropic and written in terms only

of the spherical radius r =
√

x2 + y2 + z2,

1

r2

d

dr

[
r2 dΦ(r)

dr

]
= −ρ(r)/ε ∼=

1

λ2
D∞

· Φ(r), (B15)

that is given by the differential equation

Φ ′′(r) +
2

r
Φ ′(r) − 1

λ2
D∞

· Φ(r) = 0, (B16)

with the solution given by the potential Φ(r) = B exp (−r/λD∞)/r (called Yukawa or
Debye-Hückel). For r → 0, this describes the potential of the charge Q without the
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plasma shielding, i.e. Φ(r → 0) = Q/(4π ε r) = B/r , or

Φ(r) ∼=
Q

4π ε
· 1

r
exp (−r/λD∞). (B17)

The point charge is written as Q = (�N/ND) e n∞(4π/3)λ3
D∞, hence,

Φ(r) ∼= (�N/ND)1
3
e ε−1n∞λ

3
D∞ · exp (−r/λD∞)/r, or (B18a)

R(r) ≡ NDe Φ(r)

�N 1
2
kBT0

∼= (2/3) · λD∞

r
· exp (− r/λD∞). (B18b)

The potential is also written as

Φ(r)/Φ(r → 0) ∼= exp(−r/λD∞). (B19)

Now the Debye length determines the distance for which

(1) R(λD∞) = (2/3) · (1/e) and (2) Φ(λD∞)/Φ(r → 0) ∼= 1/e (B20)

that correspond to the two Debye length interpretations, given in (5a) and (5b).

Appendix C. Debye length in non-equilibrium plasmas
For plasmas in stationary states out of thermal equilibrium, the ion and electron

densities are described by kappa distributions, which are written in terms of the
invariant kappa index κ0. Namely,

ni = n∞ ·
{

1 +
e [Φ(r) − Φ∞]

κ0kBTi − e (Φ̄i − Φ∞)

}−κ0−1

,

ne = n∞ ·
{

1 − e [Φ(r) − Φ∞]

κ0kBTe + e (Φ̄e − Φ∞)

}−κ0−1

. (C1a)

Considering zero potential at large distances from the perturbation, Φ∞ ∼= 0, we have

ni = n∞ ·
[
1 +

e Φ(r)

κ0kBTi − e Φ̄i

]−κ0−1

, ne = n∞ ·
[
1 − e Φ(r)

κ0kBTe + e Φ̄e

]−κ0−1

. (C1b)

The total charge density is ρ = e (ni −ne), which is expanded in terms of the ratio of
the potential to thermal energy. The kappa index is involved in the expansion with a
rational function (that tends to 1 for κ0 → ∞). The first term is a good approximation
of the expansion, if e Φ(r)/( κ0

κ0+1
kBT0) � 1. Indeed, the densities are written as

ni = n∞

{
1 − e [Φ̄i − Φ∞]

κ0kBTi

}κ0+1

·
{

1 +
e [Φ(r) − Φ̄i]

κ0kBTi

}−κ0−1

,

(C2)

ne = n∞ ·
{

1 − e [Φ(r) − Φ∞]

κ0kBTe + e (Φ̄e − Φ∞)

}−κ0−1

,

that are expanded as

ni = n∞

{
1 − κ0 + 1

κ0

· e [Φ̄i − Φ∞]

kBTi

+ . . .

}
·
{

1 − κ0 + 1

κ0

· e [Φ(r) − Φ̄i]

kBTi

+ . . .

}
,

ne = n∞

{
1 +

κ0 + 1

κ0

· e [Φ̄e − Φ∞]

kBTe

+ . . .

}
·
{

1 +
κ0 + 1

κ0

· e [Φ(r) − Φ̄e]

kBTe

+ . . .

}
,
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or,

ni = n∞

[
1 − κ0 + 1

κ0

· e Φ(r)

kBTi

]
+ O

[(
κ0+1
κ0

)
e Φ(r)
kBT0

]2
,

(C3)

ne = n∞

[
1 +

κ0 + 1

κ0

· e Φ(r)

kBTe

]
+ O

[(
κ0+1
κ0

)
eΦ(r)
kBT0

]2
,

where we take also into account that Φ∞ ∼= 0. Then, the density of the excess of
electrons is given by

ne − ni =
κ0 + 1

κ0

· e Φ(r)

kBT0

+ O

[(
κ0 + 1

κ0

)
eΦ(r)

kBT0

]2

, (C4)

which is a good approximation if

e Φ(r)/

(
κ0

κ0 + 1
kBT0

)
� 1. (C5)

The linearization of the density gives

ρ(r)/ε ∼= −e2n∞

kBε

(
1

Ti

+
1

Te

)
· κ0 + 1

κ0

·Φ(r) = − 1

λ2
D

· κ0 + 1

κ0

·Φ(r) = − 1

λ2
D,K

·Φ(r) (C6a)

and the linearized Poisson equation is

∇2Φ(r) = −ρ(r)/ε ∼=
1

λ2
D,K

· Φ(r). (C6b)

We now consider the same three dimensionality cases for plasmas out of thermal
equilibrium.

C.1. 1-D potential: planar charge perturbation

The Poisson equation along the x-axis is

Φ ′′(x) = −ρ(x)/ε ∼=
1

λ2
D,K

· Φ(x), (C7)

having the solution

Φ(x) ∼=
σ

2ε
λD,K · exp (−x/λD,K). (C8)

At this point we consider the exact dependence of the Debye length on the kappa
index to be unknown and symbolized with λD,Λ as in (7). Hence, the surface density
σ is given by σ = 2(�N/ND) e n∞λD,Λ , and the potential is written as

Φ(x) ∼= (�N/ND) e ε−1n∞λD,KλD,Λ · exp (−x/λD,K). (C9a)

Then, we have

R(x) ≡ NDe Φ(x)

�N 1
2
kBT0

∼= 2 · λD,KλD,Λ

λ2
D∞

· exp (−x/λD,K). (C9b)

The potential is also written as

Φ(x)/Φ(0) ∼= exp (−x/λD,K), (C10)

and at the Debye length the two interpretations, (5a) and (5b), become

(1) R(λD,Λ) = 2 · (λD,KλD,Λ/λ2
D∞) · exp (−λD,Λ/λD,K) and

(2) Φ(λD,Λ)/Φ(0) ∼= exp (−λD,Λ/λD,K). (C11)
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Typically, the Debye length in non-equilibrium plasmas is taken to be λD,K (i.e.
λD,Λ = λD,K), because of Interpretation 2 in (5b), that is, Φ(λD,K)/Φ(0) ∼= 1/e .
However, Interpretation 1 is quite different; it cannot be equal to 1/e or any other
constant value, independent of the kappa index (see Sec. 4).

C.2. 2-D potential: linear charge perturbation

The Poisson equation for a linear charge perturbation that applies cylindrical
symmetry is written as

Φ ′′(ρ) +
1

ρ
Φ ′(ρ) − 1

λ2
D,K

· Φ(ρ) = 0, (C12)

with a solution given by

Φ(ρ) ∼=
l

2π ε
· K0(ρ/λD,K) ∼=

l

2π ε
·

⎧⎪⎪⎨
⎪⎪⎩

√
π
2

· exp(−ρ/λD,K)√
ρ/λD,K

, ρ � λD,K,√
2
π

· exp(−ρ/λD,K)√
ρ/λD,K

, ρ ∼ O(λD,K),

ln(λD,K/ρ) + constant, ρ � λD,K.

(C13)

The linear charge density is given by l = (�N/ND) e n∞πλ2
D,Λ

, hence,

Φ(ρ) ∼= (�N/ND)1
2

√
2
π

e ε−1n∞λ
2
D,Λ

√
λD,K · exp (−ρ/λD,K)/

√
ρ, or (C14a)

R(ρ) ≡ NDe Φ(ρ)

�N 1
2
kBT0

∼= (λD,Λ/λD∞)2 · exp (−ρ/λD,K)/
√

ρ/λD,K. (C14b)

The potential is also written as

Φ(ρ)/Φ(ρ → 0) ∼= exp (−ρ/λD,K). (C15)

Therefore, the Debye length is determined by

(1) R(λD,Λ) = (λ3/2
D,Λ

λ
1/2
D,K/λ2

D∞) · exp (−λD,Λ/λD,K) and

(2) Φ(λD,Λ)/Φ(ρ → 0) ∼= exp (−λD,Λ/λD,K) (C16)

that correspond to the two interpretations of the Debye length, given in (5a) and (5b),
respectively.

C.3. 3-D potential: point-charge perturbation

For a point charge perturbation Q, there is a spherical symmetry and the Poisson
differential equation is

Φ ′′(r) +
2

r
Φ ′(r) − 1

λ2
D,K

· Φ(r) = 0, (C17)

with the solution given by

Φ(r) ∼=
Q

4π ε
· 1

r
exp (−r/λD,K). (C18)

The point charge is written as Q = (�N/ND) e n∞(4π/3)λ3
D,Λ

, hence,

Φ(r) ∼= (�N/ND)1
3
e ε−1n∞λ

3
D,Λ

· exp (−r/λD,K)/r, or, (C19a)

R(r) ≡ NDe Φ(r)

�N 1
2
kBT0

∼= (2/3) · (λD,Λ/λD∞)3 · λD∞

r
exp (−r/λD,K). (C19b)
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The potential is also written as

Φ(r)/Φ(r → 0) ∼= exp (−r/λD,K). (C20)

Now the Debye length determines the distance for which

(1) R(λD) = (2/3) · (λD,ΛλD∞)2 · exp(−λD,Λ/λD,K) and

(2) Φ(λD,Λ)/Φ(r → 0) ∼= exp(−λD,ΛλD,K) (C21)

that correspond to the two Debye length interpretations, given in (5a) and (5b).

Appendix D. Excess of electrons due to perturbation
In this Appendix, we show that the number of singly charged ions �NCP that

contribute to the charge perturbation is equal to the number of excess electrons �N

in the plasma. This is required for the neutrality of the plasma. We show this in
general, and verify it specifically for the three dimensionalities d = 1, 2, 3 (Fig. 1).

The density of the electron excess ne − ni is integrated over all the space to give the
number of excess electrons �N, i.e.

�N =

∫
r∈V

[ne(r) − ni(r)] dV , (D1a)

while the density of the ions that contribute to the charge perturbation nCP is
integrated over all the space to give the number of singly charged ions �NCP, i.e.

�NCP =

∫
r∈V

nCP (r) dV . (D1b)

The elementary volume dV and the position vector r span the whole volume V. Gauss’
integrated law of electrodynamics gives∫

r∈S=∂V

E · dS = 1
ε

∫
r∈V

ρall(r)dV , (D2)

where the integration is on the surface-boundary of the volume V, denoted with
S = ∂V . The total charge distribution density ρall includes both the density of the
ions that contribute to the charge perturbation nCP and the density of the excess
electrons ne − ni , so that∫

r∈S=∂V

E · dS = e
ε

∫
r∈V

[nCP(r) − ne(r) + ni(r)]dV = e
ε

· [�NCP − �N(V )], (D3)

where �N(V ) denotes the number of the excess electrons within a volume V. At large
distances from the perturbation, r → ∞, V → ∞, the electrostatic potential and field
tend to zero, Φ → 0, E → 0, and �N(V ) gives the whole number of excess electrons.
Then, (D3) becomes

lim
r→∞

∫
r∈S=∂V

�∇Φ(r) · dS = e
ε

· [�N − �NCP] → 0, (D4)

that is, the number of excess electrons (from all the plasma) equals the number of
ions that constitute the charge perturbation. This can be easily verified for the three
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dimensionalities d = 1, 2, 3 (Fig. 1): By substituting ne − ni in (D1a), as given in
(C6a), we derive

�N =

∫
r∈V

[ne(r) − ni(r)]dV = n∞ ·
∫

r∈V

κ0 + 1

κ0

· eΦ(r)

kBT0

dV, (D5)

where the elementary volume of the 3-D plasma, dV , under the d-D geometry is given
by (1) A · 2dr for d = 1, (2) L · 2π rdr for d = 2, and (3) 4π r2dr for d = 3; all
three written in a compact way as L3−d · Bd rd−1dr , where we wrote A = L2; Bd is the

surface of a d-D sphere of unit radius given by Bd = 2π
d
2 /Γ

(
d
2

)
. We also substitute

the potential expression (Table 2),

eΦ(r)

kBT0

=

[
d

2
Γ

(
d + 1

2

)]−1

· �NCP

ND

· Λ(κ0)
d

(
κ0

κ0 + 1

)(2−d)/2

· exp(−r/λD,K)

(r/λD,K)(d−1)/2
, (D6a)

where

�NCP

ND

(d = 1) =
σ

2e n∞λD,Λ

,
�NCP

ND

(d = 2) =
l

e n∞π λ2
D,Λ

,

(D6b)

�NCP

ND

(d = 3) =
Q

e n∞(4π/3)λ3
D,Λ

.

Hence, (D5) becomes

�N = �NCP·[d ·Γ (
d + 1

2
)]−1·[Λ(κ0)/

√
κ0

κ0 + 1
]d · n∞

ND

·
∫

r∈V

exp (−r/λD,K)

(r/λD,K)(d−1)/2
dV , or, (D7a)

�N = �NCP · Γ (
d + 1

2
)−1 ·

n∞ · L3−d(Bd/d)λd
D,Λ

ND

·
∫ ∞

0

exp (−ξ )

ξ (d−1)/2
ξd−1dξ, (D7b)

where we set ξ ≡ r/λD,K, λD,Λ = [Λ(κ0)/
√

κ0

κ0+1
] · λD,K. The Debye volume is

L3−d(Bd/d)λd
D,Λ, so that ND = n∞ · L3−d(Bd/d)λd

D,Λ; the elementary volume is

dV = (Bd/d)L3−drd−1dr . Hence,

�N = �NCP · Γ (
d + 1

2
)−1 ·

∫ ∞

0

exp (−ξ ) ξ (d−1)/2dξ. (D8)

Finally, since
∫ ∞

0
exp(−ξ )ξ (d+1)/2−1dξ = Γ ( d+1

2
), we end up with

�N = �NCP. (D9)

Appendix E. Large perturbations
A better approximation of the potential energy eΦ and its ratio with the

thermal energy R is obtained by using density functions without the small potential
approximation eΦ(r) � κ0kBTi,e. Given the ion/electron densities

ni = n∞ ·
[
1 +

e Φ(r)

κ0kBTi − e Φ̄i

]−κ0−1

, ne = n∞ ·
[
1 − e Φ(r)

κ0kBTe + e Φ̄e

]−κ0−1

, (E1)
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integrated within a Debye length λD,Λ,

Ni

ND

= 1− �Ni

ND

=
n∞

ND

·
∫ λD,Λ

0

[
1 +

e Φ(r)

κ0kBTi − e Φ̄i

]−κ0−1

4π r2dr ∼=
[
1 +

e Φ̃(λD,Λ)

κ0kBTi

]−κ0−1

,

Ne

ND

= 1+
�Ne

ND

=
n∞

ND

·
∫ λD,Λ

0

[
1 − e Φ(r)

κ0kBTe + e Φ̄e

]−κ0−1

4π r2dr ∼=
[
1 − e Φ̃(λD,Λ)

κ0kBTe

]−κ0−1

,

we obtain

e Φ̃(λD,Λ)

kBT0

∼ κ0 ·

⎡
⎣(1 − �Ni

ND

)− 1
κ0+1

−
(

1 +
�Ne

ND

)− 1
κ0+1

⎤
⎦ , (E2)

where the effective temperature is modified to T0 = [(Ti − e Φ̄i/κ0kB)−1 + (Te +
e Φ̄e/κ0kB)−1]−1, and the ratio of the potential to thermal energy, R, is modified to

R(λD,Λ) =
e Φ̃(λD,Λ)

ln
(

1+�Ne/ND

1−�Ni/ND

)
1
2
kBT0

∼
κ0 ·

[(
1 − �Ni

ND

)− 1
κ0+1 −

(
1 + �Ne

ND

)− 1
κ0+1

]

ln
(

1+�Ne/ND

1−�Ni/ND

) . (E3)

The logarithm factor has been inserted so that R(λD,Λ) = 1 at thermal equilibrium
(κ0 → ∞), and it is reduced to �N/ND for small values of �N/ND = (�Ne+�Ni)/ND.
Notion Φ̃(λD,Λ) is for the ‘p-mean’ (Livadiotis 2012) of the potential within a Debye
sphere, with p = −(κ0 + 1), i.e.

x̄p ≡
(

n∞

ND

·
∫ λD,Λ

0

xp4π r2dr

) 1
p

, with x ≡ 1 +
e Φ(r)

κ0kBTi

, x̄p = 1 +
e Φ̃(λD,Λ)

κ0kBTi

. (E4)

Equation (E3) gives a functional dependence on κ0 of the ratio R at the Debye length,
R(λD,Λ). This function must be equal to the functional of (12a),

R(λD,Λ; d) =
[

d
2
Γ ( d+1

2
)
]−1 · κ0

κ0+1
·
[
Λ(κ0)/

√
κ0

κ0+1

] 1+d
2

· exp
[
−Λ(κ0)/

√
κ0

κ0+1

]
, d = 1, 2, 3. (E5)

The equality of the two forms of the ratio R(λD,Λ), (E3), (E5), leads to

F (Λ; κ0, δ; c) ≡ κ0 · [(1 − δ)
− 1

κ0+1 − (1 + δ)
− 1

κ0+1 ]

ln[(1 + δ)/(1 − δ)]

−c · κ0

κ0+1
· (Λ/

√
κ0

κ0+1
)

1+d
2 · exp

(
−Λ/

√
κ0

κ0+1

)
→ 0, (E6)

where δ ≡ �Ne/ND
∼= �Ni/ND. The function F is positive with a minimum, without

any real roots Λ for small values of κ0. This minimum value of F is its closest value

to zero, and corresponds to Λ(κ0) ∼ d+1
2

·
√

κ0

κ0+1
, that is again the modified Debye

length, i.e. λD,Λ ∼ λD,K.
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Appendix F. Statistical moments of the position
Using the charge distribution in plasma,

ρ(r) = e [ne(r) − ni(r)], (F1)

with normalization given by the number of the excess electrons,

�N =

∫
r∈V

[ne(r) − ni(r)] dV , or, �Ne =

∫
r∈V

ρ(r) dV . (F2)

Then, the average value of a positional function f (r) is given by

〈f 〉 =
1

�Ne

∫
r∈V

f (r) ρ(r) dV , (F3)

(dV is the elementary volume). For small charge perturbations, the charge distribution
is given by (28b),

ρ(r) = e [ne(r) − ni(r)] ∼= en∞ ·
〈

κ0 + 1

κ0

〉
· e Φ(r)

kBT0

, (F4a)

and the potential is given by (31),

e Φ(r)

kBT0

= [d Γ (
d + 1

2
)]−1 · �N

ND

·
〈

κ0 + 1

κ0

〉−1

· exp (−r/λD)

(r/λD)(d−1)/2
, (F4b)

(written for any Debye length λD), so that

ρ(r) ∝ Φ(r) ∝ exp(−r/λD)

r (d−1)/2
. (F4c)

Hence, (F3) is written as

〈f 〉 ∼=

∫
r∈V

f (r)Φ(r) dV∫
r∈V

Φ(r) dV
∼=

∫
r∈V

f (r) exp (−r/λD)
r (d−1)/2 dV∫

r∈V

exp(−r/λD)
r (d−1)/2 dV

. (F5a)

If the function f is isotropic, i.e. f (r) = f (r), then the elementary volume is dV =
(Bd/d)L3−drd−1dr , and (F5a) becomes

〈f 〉 ∼=
∫ ∞

0
f (r) exp (−r/λD) r (d−1)/2dr∫ ∞
0

exp(−r/λD) r (d−1)/2dr
. (F5b)

As an example, let the m-statistical moment

〈rm〉 =
1

�N

∫
r∈V

[ne(r) − ni(r)]r
mdV , (F6)

which, according to (F5a), is

〈rm〉 ∼=

∫
r∈V

Φ(r)rmdV∫
r∈V

Φ(r)dV
=

∫ ∞
0

exp (−r/λD) rm+(d−1)/2dr∫ ∞
0

exp (−r/λD) r (d−1)/2dr
.

Hence,

〈rm〉 ∼=
Γ (m + d+1

2
)

Γ ( d+1
2

)
· λm

D. (F7)
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The first and second moments

〈r〉 ∼= d+1
2

· λD and
〈
r2
〉 ∼= [ d+1

2
+ 1] d+1

2
· λ2

D (F8)

lead to the positional variance〈
�r2

〉
=
〈
r2
〉

− 〈r〉2 ∼= d+1
2

· λ2
D, (F9a)

and positional standard deviation√
〈�r2〉 ∼=

√
d+1

2
· λD. (F9b)

Specifically for d = 1, we have √
〈�x2〉 ∼= λD. (F9c)

The above equations are for small perturbations, and thus can be written in terms
of the limit of Φ→0, e.g.

lim
Φ→0

〈
�r2

〉
= d+1

2
· λ2

D, lim
Φ→0

〈
�x2

〉
= λ2

D. (F10)
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